360 research outputs found

    A Hybrid Vision-Map Method for Urban Road Detection

    Get PDF

    Validation of trajectory planning strategies for automated driving under cooperative, urban, and interurban scenarios.

    Get PDF
    149 p.En esta Tesis se estudia, diseña e implementa una arquitectura de control para vehículos automatizados de forma dual, que permite realizar pruebas en simulación y en vehículos reales con los mínimos cambios posibles. La arquitectura descansa sobre seis módulos: adquisición de información de sensores, percepción del entorno, comunicaciones e interacción con otros agentes, decisión de maniobras, control y actuación, además de la generación de mapas en el módulo de decisión, que utiliza puntos simples para la descripción de las estructuras de la ruta (rotondas, intersecciones, tramos rectos y cambios de carril)Tecnali

    High-Level Interpretation of Urban Road Maps Fusing Deep Learning-Based Pixelwise Scene Segmentation and Digital Navigation Maps

    Get PDF
    This paper addresses the problem of high-level road modeling for urban environments. Current approaches are based on geometric models that fit well to the road shape for narrow roads. However, urban environments are more complex and those models are not suitable for inner city intersections or other urban situations. The approach presented in this paper generates a model based on the information provided by a digital navigation map and a vision-based sensing module. On the one hand, the digital map includes data about the road type (residential, highway, intersection, etc.), road shape, number of lanes, and other context information such as vegetation areas, parking slots, and railways. On the other hand, the sensing module provides a pixelwise segmentation of the road using a ResNet-101 CNN with random data augmentation, as well as other hand-crafted features such as curbs, road markings, and vegetation. The high-level interpretation module is designed to learn the best set of parameters of a function that maps all the available features to the actual parametric model of the urban road, using a weighted F-score as a cost function to be optimized. We show that the presented approach eases the maintenance of digital maps using crowd-sourcing, due to the small number of data to send, and adds important context information to traditional road detection systems

    Learning Behavior Models for Interpreting and Predicting Traffic Situations

    Get PDF
    In this thesis, we present Bayesian state estimation and machine learning methods for predicting traffic situations. The cognitive ability to assess situations and behaviors of traffic participants, and to anticipate possible developments is an essential requirement for several applications in the traffic domain, especially for self-driving cars. We present a method for learning behavior models from unlabeled traffic observations and develop improved learning methods for decision trees

    Statistical modelling of algorithms for signal processing in systems based on environment perception

    Get PDF
    One cornerstone for realising automated driving systems is an appropriate handling of uncertainties in the environment perception and situation interpretation. Uncertainties arise due to noisy sensor measurements or the unknown future evolution of a traffic situation. This work contributes to the understanding of these uncertainties by modelling and propagating them with parametric probability distributions

    Effects of Ground Manifold Modeling on the Accuracy of Stixel Calculations

    Get PDF
    This paper highlights the role of ground manifold modeling for stixel calculations; stixels are medium-level data representations used for the development of computer vision modules for self-driving cars. By using single-disparity maps and simplifying ground manifold models, calculated stixels may suffer from noise, inconsistency, and false-detection rates for obstacles, especially in challenging datasets. Stixel calculations can be improved with respect to accuracy and robustness by using more adaptive ground manifold approximations. A comparative study of stixel results, obtained for different ground-manifold models (e.g., plane-fitting, line-fitting in v-disparities or polynomial approximation, and graph cut), defines the main part of this paper. This paper also considers the use of trinocular stereo vision and shows that this provides options to enhance stixel results, compared with the binocular recording. Comprehensive experiments are performed on two publicly available challenging datasets. We also use a novel way for comparing calculated stixels with ground truth. We compare depth information, as given by extracted stixels, with ground-truth depth, provided by depth measurements using a highly accurate LiDAR range sensor (as available in one of the public datasets). We evaluate the accuracy of four different ground-manifold methods. The experimental results also include quantitative evaluations of the tradeoff between accuracy and run time. As a result, the proposed trinocular recording together with graph-cut estimation of ground manifolds appears to be a recommended way, also considering challenging weather and lighting conditions
    corecore