813 research outputs found

    The 2021 flexible and printed electronics roadmap

    Get PDF
    This roadmap includes the perspectives and visions of leading researchers in the key areas of flexible and printable electronics. The covered topics are broadly organized by the device technologies (sections 1–9), fabrication techniques (sections 10–12), and design and modeling approaches (sections 13 and 14) essential to the future development of new applications leveraging flexible electronics (FE). The interdisciplinary nature of this field involves everything from fundamental scientific discoveries to engineering challenges; from design and synthesis of new materials via novel device design to modelling and digital manufacturing of integrated systems. As such, this roadmap aims to serve as a resource on the current status and future challenges in the areas covered by the roadmap and to highlight the breadth and wide-ranging opportunities made available by FE technologies

    Compact Modeling and Physical Design Automation of Inkjet-Printed Electronics Technology

    Get PDF

    The role of printed electronics and related technologies in the development of smart connected products

    Get PDF
    The emergence of novel materials with flexible and stretchable characteristics, and the use of new processing technologies, have allowed for the development of new connected devices and applications. Using printed electronics, traditional electronic elements are being combined with flexible components and allowing for the development of new smart connected products. As a result, devices that are capable of sensing, actuating, and communicating remotely while being low-cost, lightweight, conformable, and easily customizable are already being developed. Combined with the expansion of the Internet of Things, artificial intelligence, and encryption algorithms, the overall attractiveness of these technologies has prompted new applications to appear in almost every sector. The exponential technological development is currently allowing for the ‘smartification’ of cities, manufacturing, healthcare, agriculture, logistics, among others. In this review article, the steps towards this transition are approached, starting from the conceptualization of smart connected products and their main markets. The manufacturing technologies are then presented, with focus on printing-based ones, compatible with organic materials. Finally, each one of the printable components is presented and some applications are discussed.This work has been supported by NORTE-06-3559- FSE-000018, integrated in the invitation NORTE59-2018-41, aiming the Hiring of Highly Qualified Human Resources, co-financed by the Regional Operational Programme of the North 2020, thematic area of Competitiveness and Employment, through the European Social Fund (ESF), and by the scope of projects with references UIDB/05256/2020 and UIDP/05256/2020, financed by FCT—Fundação para a Ciência e Tecnologia, Portugal

    Phase Noise Analyses and Measurements in the Hybrid Memristor-CMOS Phase-Locked Loop Design and Devices Beyond Bulk CMOS

    Get PDF
    Phase-locked loop (PLLs) has been widely used in analog or mixed-signal integrated circuits. Since there is an increasing market for low noise and high speed devices, PLLs are being employed in communications. In this dissertation, we investigated phase noise, tuning range, jitter, and power performances in different architectures of PLL designs. More energy efficient devices such as memristor, graphene, transition metal di-chalcogenide (TMDC) materials and their respective transistors are introduced in the design phase-locked loop. Subsequently, we modeled phase noise of a CMOS phase-locked loop from the superposition of noises from its building blocks which comprises of a voltage-controlled oscillator, loop filter, frequency divider, phase-frequency detector, and the auxiliary input reference clock. Similarly, a linear time-invariant model that has additive noise sources in frequency domain is used to analyze the phase noise. The modeled phase noise results are further compared with the corresponding phase-locked loop designs in different n-well CMOS processes. With the scaling of CMOS technology and the increase of the electrical field, the problem of short channel effects (SCE) has become dominant, which causes decay in subthreshold slope (SS) and positive and negative shifts in the threshold voltages of nMOS and pMOS transistors, respectively. Various devices are proposed to continue extending Moore\u27s law and the roadmap in semiconductor industry. We employed tunnel field effect transistor owing to its better performance in terms of SS, leakage current, power consumption etc. Applying an appropriate bias voltage to the gate-source region of TFET causes the valence band to align with the conduction band and injecting the charge carriers. Similarly, under reverse bias, the two bands are misaligned and there is no injection of carriers. We implemented graphene TFET and MoS2 in PLL design and the results show improvements in phase noise, jitter, tuning range, and frequency of operation. In addition, the power consumption is greatly reduced due to the low supply voltage of tunnel field effect transistor

    Characterization and compact modeling of printed electrolyte-gated thin film transistors and circuits

    Get PDF
    Die Herstellung konventioneller Elektronik ist ein hochkomplexer Prozess, der hohe Kosten erfordert. In diesem Zusammenhang gewinne die gedruckte Elektronik sowohl in der Wissenschaft als auch in der Industrie eine erhöhte Aufmerksamkeit. Der Hauptgrund dafür ist die Vereinfachung des Herstellungsprozesses durch additive Drucktechnologien wie Inkjet-Druck. Dies hat Vorteile wie die bedarfsgerechte Herstellung und minimaler Materialverbrauch. Außerdem wird eine vielfältige Auswahl verschiedener Substratmaterialien ermöglicht. Im Zentrum der Entwicklung von Schaltungen auf Basis gedruckter Elektronik stehen gedruckte Transistoren. In letzter Zeit sind Metalloxidhalbleiter wie Indiumoxid aufgrund ihrer hohen Ladungsbeweglichkeit zu vielversprechenden Materialien für die Herstellung gedruckter elektronischer Bauelemente geworden. Darüber hinaus bietet der Elektrolyt-Gate-Ansatz aufgrund der großen Gate-Kapazität, die durch die elektrischen Doppelschichten bereitgestellt wird, auch die Vorteile, einen Niederspannungsbetrieb im Sub-1 V-Bereich zu erreichen. Dies eröffnet neue Möglichkeiten für die Herstellung gedruckter Bauteile und Schaltungen in Nischenanwendungen. Um das Design und die Herstellung von gedruckten Schaltungen zu erleichtern, ist die Entwicklung kompakter Modelle erforderlich. Die meisten existierenden Arbeiten haben sich bisher auf die Untersuchung des statischen Verhaltens von Transistoren konzentriert. Hierbei wird das dynamische und das Rauschverhalten der Bauteile häufig vernachlässigt. Ziel dieser Arbeit ist es daher, die umfassende Untersuchung der Kapazitäts sowie Rauscheigenschaften Tintenstrahl-gedruckter Dünnschichttransistoren mit einem flüssig-prozessierbaren Feststoffelektrolyten als Isolator (EGT) und einem Indiumoxid-Halbleiter als Kanalmaterial durchzuführen.. Es werden geeignete Modellierungsansätze vorgeschlagen, um das elektrische Verhalten genau zu erfassen. Dies ermöglicht eine erweiterte Analyse analoger, digitaler sowie gemischter analog-digitaler Schaltungen. In dieser Arbeit wird die Kapazität von EGTs mittels spannungsabhängiger Impedanzspektroskopie charakterisiert. Intrinsische und extrinsische Effekte werden durch Verwendung von De-Embedding-Teststrukturen getrennt. Des Weiteren wird ein Ersatzschaltbild erstellt, um genaue Simulationen des gemessenen Frequenzgangs der Gate-Impedanz zu ermöglichen. Auf dieser Grundlage zeigt sich, dass Top-Gate EGTs das Potenzial haben, eine Schaltfrequenz im kHz-Bereich zu erreichen, wenn die Materialien und der Druckprozess weiter optimiert werden. Darüber hinaus wird ein Meyer-ähnliches Modell vorgeschlagen, um die Kapazitäts-Spannungs-Eigenschaften der Anschlusskapazität genau zu erfassen. Es werden sowohl parasitäre Kapazitäten als auch nicht-quasistatische Effekte berücksichtigt. Die resultierenden Modelle ermöglichen weitere AC- und transiente Simulationen komplexer Schaltungen in der EGT-Technologie. Im Folgenden werden Untersuchungen zu den Rauscheigenschaften gedruckter EGTs durchgeführt. Das Niederfrequenzrauschen wird anhand eines eigens dafür optimierten Versuchsaufbaus charakterisiert. Durch Untersuchung der gemessenen Rauschspektren im Transistor-Drainstrom bei verschiedenen Gate-Spannungen wurde die Ladungsträgerschwankung mit korrelierter Mobilitätsschwankung als primärer Rauschmechanismus bestimmt. Auf dieser Grundlage kann das normalisierte Flachband-Spannungsrauschen als Hauptleistungsmetrik berechnet werden, was im Vergleich zu anderen Dünnschichttechnologien, die auf Dielektrika und Halbleitern wie IZO und IGZO basieren, einen erheblich niedrigeren Wert aufweist.. Ein plausibler Grund könnte die große Gate-Kapazität sein, die durch die elektrische Doppelschicht erzeugt wird. Daher eigenen sich gedruckte EGTs für beispielsweise rauscharme Anwendungen in der Sensorik. Abschließend werden verschiedene Schaltungsdesigns vorgeschlagen, die auf EGT-Technologie basieren. Dies beinhaltet grundlegende digitale Schaltungen wie Inverter Strukturen und Ringoszillatoren. Ihre Leistungsmetriken, einschließlich der Gatterlaufzeit und dem Stromverbrauch, werden ausführlich charakterisiert. Des Weiteren wird das erste Design eines gedruckten Brückengleichrichters unter Verwendung von EGTs mit eine nahe-null-Volt-Schwellspannung in einer Dioden-Konfiguration vorgestellt. Der vorgestellte Gleichrichter ist in der Lage, Eingangsspannungen mit kleiner Amplitude von circa 100 mV effektiv zu verarbeiten. Dies ist besonders im Anwendungsbereich des Energy-Harvestings von Interesse. Zusätzlich werden die zuvor etablierten Kapazitätsmodelle auf diesen Schaltungen verifiziert. Ein Vergleich der Simulations- und Messdaten zeigt deren sehr gute Übereinstimmung und verifiziert die entwickelten Kapazitätsmodelle

    Agenda: Second International Workshop on Thin Films for Electronics, Electro-Optics, Energy and Sensors (TFE3S)

    Get PDF
    University of Dayton’s Center of Excellence for Thin Film Research and Surface Engineering (CETRASE) is delighted to organize its second international workshop at the University of Dayton’s Research Institute (UDRI) campus in Dayton, Ohio, USA. The purpose of the new workshop is to exchange technical knowledge and boost technical and educational collaboration activities within the thin film research community through our CETRASE and the UDRI

    Integrated circuits for wearable systems based on flexible electronics

    Get PDF
    • …
    corecore