36 research outputs found

    A calibration free vector network analyzer

    Get PDF
    Recently, two novel single-port, phase-shifter based vector network analyzer (VNA) systems were developed and tested at X-band (8.2 - 12.4 GHz) and Ka-band (26.4 - 40 GHz), respectively. These systems operate based on electronically moving the standing wave pattern, set up in a waveguide, over a Schottky detector and sample the standing wave voltage for several phase shift values. Once this system is fully characterized, all parameters in the system become known and hence theoretically, no other correction (or calibration) should be required to obtain the reflection coefficient, (Γ), of an unknown load. This makes this type of VNA calibration free which is a significant advantage over other types of VNAs. To this end, a VNA system, based on this design methodology, was developed at X-band using several design improvements (compared to the previous designs) with the aim of demonstrating this calibration-free feature. It was found that when a commercial VNA (HP8510C) is used as the source and the detector, the system works as expected. However, when a detector is used (Schottky diode, log detector, etc.), obtaining correct Γ still requires the customary three-load calibration. With the aim of exploring the cause, a detailed sensitivity analysis of prominent error sources was performed. Extensive measurements were done with different detection techniques including use of a spectrum analyzer as power detector. The system was tested even for electromagnetic compatibility (EMC) which may have contributed to this issue. Although desired results could not be obtained using the proposed standing-wave-power measuring devices like the Schottky diode but the principle of calibration-free VNA was shown to be true --Abstract, page iii

    Design and implementation of a compact Vector Network Analyzer

    Full text link
    Vector Network Analyzers (VNAs) are extensively used in Radio Frequency circuit design to characterize RF components and systems. They are also used for materials characterization, as analyzing the purity of petroleum or for detecting skin tumors. These instruments perform the measurement of the S-parameters, which are used to describe the electrical behavior of linear electrical networks. In this project we are developing a miniature device that can be connected to a smartphone. Together, our device and the smartphone can provide some basic VNA features. The device will be in charge of the RF signals generation and detection, while the phone will be used to provide a User Interface (making use of its touch screen) and data processing. This new device would be of great importance in applications that require high mobility, as system¿s validation in difficult locations (for example an antenna located on the top of a tower); it can also be of great use in education, because it would be a cheap instrument that could be used in university laboratories or high schools. In research it could be used in portable medical instruments and, finally, radio amateurs could have a great and affordable tool to use in their home projects. This project has been carried out within the van der Weide research group at the College of Engineering of the University of Wisconsin ¿ Madison.Martínez Argudo, M. (2014). Design and implementation of a compact Vector Network Analyzer. http://hdl.handle.net/10251/34999.Archivo delegad

    Conception et réalisation d'un récepteur composé de réseau d'antennes YAGI multicouches verticales et de composants en ondes millimétriques

    Get PDF
    RÉSUMÉ Les applications en ondes millimétriques telles que les réseaux sans-fils haute vitesse demandent des composants de hautes performances, faibles coûts de revient, modulaires et compacts. Ce mémoire présente la conception d’une chaine de démodulation en ondes millimétriques utilisant le concept du multicouche. Tout d’abord, une antenne Yagi multicouche est proposée et démontrée à 5.8 GHz. La structure utilise pour la première fois les éléments parasites des antennes Yagi dans une structure de substrats empilés verticalement. Cela permet d’atteindre un gain de 12 dBi. Deux configuration sont présentées : une première basée sur un dipôle et une deuxième basée sur un patch circulaire afin d’avoir une double polarisation. Les résultats mesurés montrent un très bon accord avec les simulations. Basé sur les principes démontrés précédemment, l’antenne est adaptée à 60 GHz, puis un réseau d’antennes Yagi verticales en ondes millimétriques est introduit pour la première fois exploitant les technologies multicouches. Une analyse est faite pour définir les limites du design. L’antenne élément mesurée atteint un gain de 11 dBi. Le réseau 4x4 a une taille 50x50x60 mm3, et atteint un gain mesuré de 18 dBi sur 7% de bande passante. Une autre configuration du réseau utilisant des antennes Yagi inclinées permet d’avoir une réduction des lobes secondaires tout en ayant un impact minimum sur le gain. Les antennes proposées sont d’excellents candidats pour des systèmes intégrés, faibles coûts, demandant une petite empreinte en ondes millimétriques. Finalement, un nouveau six-port double couche utilisant des Guides Intégrés au Substrats (GIS) est présenté et démontré. Celui-ci permet de faire la démodulation QPSK. Son architecture utilise des coupleurs multicouches, fournissant une grande surface de couplage à travers deux fentes ; un déphaseur inédit, large bande composé de deux stubs plan-H et une ligne de référence ; ainsi que de deux diviseurs de puissance. Les simulations et mesures montrent que le circuit fonctionne correctement sur toute la bande V. La démodulation QPSK complète est testée sous le logiciel de simulation ADS et montre les excellentes performances du système.----------ABSTRACT Millimeter wave applications such as high-speed wireless connections require modular, compact-size, low-cost and high-performance systems. In order to realize a complete receiver satisfying those requirements, compact stacked multilayered designs are presented in this thesis. First, high-gain compact stacked multilayered Yagi designs are proposed and demonstrated at 5.8 GHz. The structure makes use for the first time of vertically stacked Yagi-like parasitic director elements that allow easily obtaining a simulated gain of 12 dBi. Two different antenna configurations are presented, one based on dipole geometry for single polarization, and the other on a circular patch to achieve dual polarization. Measured results of the fabricated antenna prototypes are in good agreement with simulated results. Second, based on the above-demonstrated principle, the antenna is redesigned and adapted for 60 GHz applications, and a novel design showing for the first time an array of Yagi elements in millimeter wave stacked structure is presented. An analysis is performed to define the structure limits. The measured element attains 11 dBi of gain. The proposed 4x4 array has a size of 50x50x60 mm3, and reaches a measured gain of 18 dBi over 7% of bandwidth. An alternative configuration of the array using angled Yagi antenna elements allows for a significant improvement of the side lobe level without a visible impact on the gain. The proposed antennas present excellent candidates for integrated low-cost millimeter-wave systems that require small footprint. Third, a novel dual layered six-port front-end circuit using the Substrate Integrated Waveguide (SIW) technology is presented and demonstrated. The six-port architecture makes use of multilayer couplers, providing a wide coupling area through two slots; a new broadband SIW phase shifter composed of two H-plane stub lines and one reference line; and two SIW power dividers. Simulation and measurement results show that the proposed six-port circuit can easily operate at 60 GHz for V-band system applications. The complete QPSK demodulation is tested through the ADS simulation platform to prove the good performances of the designed circuits

    Recent Advancements in Microwave Imaging Plasma Diagnostics

    Full text link

    Miniaturization Techniques of Substrate Integrated Waveguide Based on Multilayered Printed Circuit Board Platform

    Get PDF
    RESUMÉ Le guide d'ondes intégrées au substrat (GIS) est une structure à ondes guidées qui présente des avantages avec un facteur de qualité Q élevé et une excellente isolation ligne à ligne. La technique GIS a été largement utilisé dans la construction de composants passifs, tels que coupleurs, diviseurs, filtres, et déphaseurs. Certains dispositifs actifs ont également été développés avec facteur Q élevé et résonateurs en technologie GIS. En comparant à d'autres types de lignes de transmission planaire, le facteur de qualité Q important du GIS est une embouchure pour son intégration avec d'autres circuits classiques. Les techniques de miniaturisation du SIW sont donc devenues une urgence. Le travail dans cette thèse commence par l'examen et la discussion des techniques de miniaturisation existantes pour GIS, y compris les (ridge substrate integrated waveguide, RSIW), intégrés sur substrat à demi-mode (HMSIW) et les (folded substrata integrated waveguide, FSIW). L'impédance et la constante de propagation des lignes basées sur ces techniques de miniaturisation sont calculées en utilisant la méthode de résonance transversale (transverse resonant method, CRT). Bien que ces paramètres puissent être obtenus par des méthodes de simulation EM, un calcul rapide sera utile pour l’optimisation de la conception en utilisant l'analyse paramétrique. Une préoccupation particulière est axée sur la relation entre la constant d’atténuation et les paramètres géométriques. Les dimensions optimisées de chaque GIS miniaturisés sont proposés en se basant sur l'analyse paramétrique. Les paramètres de transmission de ces lignes de SIW miniaturisés peuvent être extraire en utilisant la méthode à double ligne. Sauf HMSIW, toutes les autres techniques de miniaturisation mentionnées ci-dessus pour la mise en œuvre de la plateforme multicouche. Parmi les techniques de fabrication diverses qui sont en mesure de fournir des substrats multicouches, le circuit imprimé multicouche est utilisé dans la conception des circuits rapportés dans cette thèse.---------- ABSTRACT Substrate integrated waveguide (SIW) is a guided-wave structure that enjoys the benefits of a high Q-factor and an excellent line-to-line isolation. SIW technique has been widely used in building passive components, such as couplers, dividers, filters, and phase shifters. Some active devices have also been developed with high Q-factor SIW resonators. Comparing to other types of planar transmission lines, the big form factor of SIW is a bottleneck for its integration with other conventional integrated circuits. Miniaturization techniques for SIW therefore become very urgent. The work in this dissertation starts with the review and discussion of existing miniaturization techniques for SIW, including ridge substrate integrated waveguide (RSIW), half-mode substrate integrated waveguide (HMSIW) and folded substrata integrated waveguide (FSIW). The impedance and propagation constant of the transmission lines based on these miniaturization techniques are calculated using transverse resonant method (TRM). Although these parameters can be extracted from full wave EM simulations, a fast computation be helpful in design optimization by using parametric analysis. One particular concern focuses on the relationship between attenuation constant and geometric parameters. Optimized dimensions of each miniaturized SIW are suggested based on the parametric analysis. The transmission line parameters of these miniaturized SIW transmission lines can be extracted using dual-line method. Except HMSIW, all other miniaturized techniques mentioned above need multilayer platform for implementation. Among various fabrication techniques which are able to provide multilayered substrate, multilayer printed circuit board is used in the design of the circuits reported in this dissertation. It is believed that the advantages of SIW circuit are important in millimeter wave applications, although the design might limit the operating frequency. Specifically, Rogers substrate R6002 is used in all our designs for proving the concepts investigated in this work. One principal step for using the SIW technology is to develop high-performance transitions and interconnects between substrate integrated circuits (SICs) and other types of transmission lines or circuits embedded in or surface mounted on the multilayer substrates. In this work, a novel transition between a microstrip line and an SIW in a multilayer substrate design environment is presented

    Design and analysis of wideband passive microwave devices using planar structures

    Get PDF
    A selected volume of work consisting of 84 published journal papers is presented to demonstrate the contributions made by the author in the last seven years of his work at the University of Queensland in the area of Microwave Engineering. The over-arching theme in the author’s works included in this volume is the engineering of novel passive microwave devices that are key components in the building of any microwave system. The author’s contribution covers innovative designs, design methods and analyses for the following key devices and associated systems: Wideband antennas and associated systems Band-notched and multiband antennas Directional couplers and associated systems Power dividers and associated systems Microwave filters Phase shifters Much of the motivation for the work arose from the desire to contribute to the engineering o

    Bilgi toplumu teknolojileri için anten sistemleri ve algılayıcılar

    Get PDF
    TÜBİTAK EEEAG01.10.2010Bu proje kapsamında, özellikle milimetre-dalga frekanslarında çalışan yeniden şekillendirilebilir anten, elektronik taramalı dizi anten ve yansıtıcı dizi anten tasarımı, üretimi ve ölçümleri yapılmıştır. Yeniden şekillendirilebilirlik özelliği için farklı teknolojiler kullanılmıştır. Huzmesi yönlendirilebilen sur biçimli mikroşerit yürüyen dalga anten dizisi X-bant uygulamalarında kullanılmak üzere tasarlamış, üretilmiş ve ölçülmüştür. Antenin ana huzmesinin istenilen yöne elektronik olarak döndürülebilmesini sağlayabilmek için mikroşerit hat üzerinde gerekli faz değişimini sağlayacak varaktör diyotlar kullanılmıştır. Yapılan EM benzetim ve ölçümler sonucu sur biçimli anten dizisinde, ana huzmenin diyot kontrolü ile tasarlandığı gibi 10 lik bir açı taraması yapabildiği gösterilmiştir. Bu kavram kanıtlaması şeklinde bir çalışmadır; huzmenin daha büyük açı aralığında tarama yapması için tasarımda yapılması gereken değişiklikler belirtilmiştir. MM-Dalga sabit genişlikli ve doğrusal sönümlenen yarık antenler tasarlanıp, üretilmiş ve antenin şeklinin, optik uyarımla bu iki yapı arasında değiştirilmesinin sağlanması durumunda ışıma örüntüsünün değiştirilebileceği gösterilmiştir. Proje kapsamında gerçekleştirilen bir diğer çalışmada da K ve Ka bantlarında bağımsız çalışabilen, RF MEMS anahtarlarla huzmesi elektronik olarak döndürülebilen dairesel polarizasyonlu yansıtıcı dizi anten tasarlanmış, üretilmiş ve ölçülmüştür. Çift frekanslı (24.4 GHz ve 35.5 GHz) dizi iç içe geçmiş farklı boyutlarda iki ayrık-halka dizisi şeklinde tasarlanmıştır. Huzme döndürme amacıyla her bir ayrık halkanın açısal konumunu RF MEMS anahtarlarla ayarlayarak, dairesel polarizasyonlu dalgaların fazları kontrol edilmektedir. Anten ODTÜ MEMS merkezinde geliştirilen yüzey mikro-işleme süreciyle üretilmiştir. Işıma örüntüleri ölçülmüş ve benzetim sonuçlarıyla karşılaştırılmıştır. Ölçümlerle, ana huzmenin, tasarlandığı gibi, Ka bandında 35°‟ye, K bandında 24°‟ye döndürülebildiği gösterilmiştir. Proje çalışmalarından sur biçimli mikroşerit anten dizisiyle ilgili hazırlanan makale Microwave and Optical Technology Letters adlı dergide yayınlanmak üzere kabul edilmiştir. Yansıtıcı dizi antenle ilgili makale de hazırlık sürecindedir. Saygın konferanslarda yedi bildiri sunulmuştur. Ayrıca, proje kapsamında üç yüksek lisans tez çalışması tamamlanmıştır.In this project, reconfigurable antenna, beam steering array and reflectarray have been designed, produced and measured, especially in mm-wave frequencies. To provide reconfigurability, different technologies have been considered. X-band electronically scanning meanderline microstrip traveling wave antenna array has been designed, produced and measured. To rotate the antenna beam to the desired direction, microstrip meander line has been loaded by varactor diodes that provide required phase shift values. EM simulations and rdiation pattern measurements of the meanderline antenna have demonstrated that the antenna has the capability to scan 10 with the control of varactors as designed. This is a proof-of-concept type study; alternative configurations to increase the scan range have also been discussed. MM-wave tapered slot antennas with a constant width and linear taper have been designed, produced and measured. It has been demonstrated that if the shape of the tapered slot antenna can be changed between constant width and linear taper structures by means of optical excitation, radiation pattern reconfigurability can be obtained. In another study accomplished in this project, electronically scanning circularly polarized reflectarray working independently in K and Ka bands has been designed, produced and measured. Dual band (24.4 GHz and 35.5 GHz) reflectarray has been designed as an interlaced array of split rings of two different sizes. In order to steer the beam, the phase of the incident circularly polarized wave is controlled by RF MEMS switches that modify the angular orientation of split-rings individually. The antenna has fabricated by using surface micromachining process developed in METU MEMS Center. Radiation patterns of the antenna are measured and compared with the simulations. It has been shown that the reflectarray is capable of beam switching to 35° in Ka band, 24° in K band as required. One journal paper on meanderline antenna has been accepted to be published in Microwave and Optical Technology Letters. Preparation of manuscript on reflectarray is under progress. Seven conference papers have been presented in well known Conferences. Furthermore, three Master Thesis studies have been accomplished during the project

    Photonic Vector Processing Techniques for Radiofrequency Signals

    Full text link
    [EN] The processing of radiofrequency signals using photonics means is a discipline that appeared almost at the same time as the laser and the optical fibre. Photonics offers the capability of managing broadband radiofrequency (RF) signals thanks to its low transmission attenuation, a variety of linear and non-linear phenomena and, recently, the potential to implement integrated photonic subsystems. These features open the door for the implementation of multiple functionalities including optical transportation, up and down frequency conversion, optical RF filtering, signal multiplexing, de-multiplexing, routing and switching, optical sampling, tone generation, delay control, beamforming and photonic generation of digital modulations, and even a combination of several of these functionalities. This thesis is focused on the application of vector processing in the optical domain to radiofrequency signals in two fields of application: optical beamforming, and photonic vector modulation and demodulation of digital quadrature amplitude modulations. The photonic vector control enables to adjust the amplitude and phase of the radiofrequency signals in the optical domain, which is the fundamental processing that is required in different applications such as beamforming networks for direct radiating array (DRA) antennas and multilevel quadrature modulation. The work described in this thesis include different techniques for implementing a photonic version of beamforming networks for direct radiating arrays (DRA) known as optical beamforming networks (OBFN), with the objectives of providing a precise control in terrestrial applications of broadband signals at very high frequencies above 40 GHz in communication antennas, optimizing the size and mass when compared with the electrical counterparts in space application, and presenting new photonic-based OBFN functionalities. Thus, two families of OBFNs are studied: fibre-based true time delay architectures and integrated networks. The first allow the control of broadband signals using dispersive optical fibres with wavelength division multiplexing techniques and advanced functionalities such as direction of arrival estimation in receiving architectures. In the second, passive OBFNs based on monolithically-integrated Optical Butler Matrices are studied, including an ultra-compact solution using optical heterodyne techniques in silicon-on-insulator (SOI) material, and an alternative implementing a homodyne counterpart in germanium doped silica material. In this thesis, the application of photonic vector processing to the generation of quadrature digital modulations has also been investigated. Multilevel modulations are based on encoding digital information in discrete states of phase and amplitude of an electrical signal to enhance spectral efficiency, as for instance, in quadrature modulation. The signal process required for generating and demodulating this kind of signals involves vector processing (phase and amplitude control) and frequency conversion. Unlike the common electronic or digital implementation, in this thesis, different photonic based signal processing techniques are studied to produce digital modulation (photonic vector modulation, PVM) and demodulation (PVdM). These techniques are of particular interest in the case of broadband signals where the data rate required to be managed is in the order of gigabit per second, for applications like wireless backhauling of metro optical networks (known as fibre-to-the-air). The techniques described use optical dispersion in optical fibres, wavelength division multiplexing and photonic up/down conversion. Additionally, an optical heterodyne solution implemented monolithically in a photonic integrated circuit (PIC) is also described.[ES] El procesamiento de señales de radiofrecuencia (RF) utilizando medios fotónicos es una disciplina que apareció casi al mismo tiempo que el láser y la fibra óptica. La fotónica ofrece la capacidad de manipular señales de radiofrecuencia de banda ancha, una baja atenuación, procesados basados en una amplia variedad de fenómenos lineales y no lineales y, recientemente, el potencial para implementar subsistemas fotónicos integrados. Estas características ofrecen un gran potencial para la implementación de múltiples funcionalidades incluyendo transporte óptico, conversión de frecuencia, filtrado óptico de RF, multiplexación y demultiplexación de señales, encaminamiento y conmutación, muestreo óptico, generación de tonos, líneas de retardo, conformación de haz en agrupaciones de antenas o generación fotónica de modulaciones digitales, e incluso una combinación de varias de estas funcionalidades. Esta tesis se centra en la aplicación del procesamiento vectorial en el dominio óptico de señales de radiofrecuencia en dos campos de aplicación: la conformación óptica de haces y la modulación y demodulación vectorial fotónica de señales digitales en cuadratura. El control fotónico vectorial permite manipular la amplitud y fase de las señales de radiofrecuencia en el dominio óptico, que es el procesamiento fundamental que se requiere en diferentes aplicaciones tales como las redes de conformación de haces para agrupaciones de antenas y en la modulación en cuadratura. El trabajo descrito en esta tesis incluye diferentes técnicas para implementar una versión fotónica de las redes de conformación de haces de en agrupaciones de antenas, conocidas como redes ópticas de conformación de haces (OBFN). Se estudian dos familias de redes: arquitecturas de retardo en fibra óptica y arquitecturas integradas. Las primeras permiten el control de señales de banda ancha utilizando fibras ópticas dispersivas con técnicas de multiplexado por división de longitud de onda y funcionalidades avanzadas tales como la estimación del ángulo de llegada de la señal en la antena receptora. En la segunda, se estudian redes de conformación pasivas basadas en Matrices de Butler ópticas integradas, incluyendo una solución ultra-compacta utilizando técnicas ópticas heterodinas en silicio sobre aislante (SOI), y una alternativa homodina en sílice dopado con germanio. En esta tesis, también se han investigado técnicas de procesado vectorial fotónico para la generación de modulaciones digitales en cuadratura. Las modulaciones multinivel codifican la información digital en estados discretos de fase y amplitud de una señal eléctrica para aumentar su eficiencia espectral, como por ejemplo la modulación en cuadratura. El procesado necesario para generar y demodular este tipo de señales implica el procesamiento vectorial (control de amplitud y fase) y la conversión de frecuencia. A diferencia de la implementación electrónica o digital convencional, en esta tesis se estudian diferentes técnicas de procesado fotónico tanto para la generación de modulaciones digitales (modulación vectorial fotónica, PVM) como para su demodulación (PVdM). Esto es de particular interés en el caso de señales de banda ancha, donde la velocidad de datos requerida es del orden de gigabits por segundo, para aplicaciones como backhaul inalámbrico de redes ópticas metropolitanas (conocida como fibra hasta el aire). Las técnicas descritas se basan en explotar la dispersión cromática de la fibra óptica, la multiplexación por división de longitud de onda y la conversión en frecuencia. Además, se presenta una solución heterodina implementada monolíticamente en un circuito integrado fotónico (PIC).[CA] El processament de senyals de radiofreqüència (RF) utilitzant mitjans fotònics és una disciplina que va aparèixer gairebé al mateix temps que el làser i la fibra òptica. La fotònica ofereix la capacitat de manipular senyals de radiofreqüència de banda ampla, una baixa atenuació, processats basats en una àmplia varietat de fenòmens lineals i no lineals i, recentment, el potencial per implementar subsistemes fotònics integrats. Aquestes característiques ofereixen un gran potencial per a la implementació de múltiples funcionalitats incloent transport òptic, conversió de freqüència, filtrat òptic de RF, multiplexació i demultiplexació de senyals, encaminament i commutació, mostreig òptic, generació de tons, línies de retard, conformació de feix en agrupacions d'antenes i la generació fotònica de modulacions digitals, i fins i tot una combinació de diverses d'aquestes funcionalitats. Aquesta tesi es centra en l'aplicació del processament vectorial en el domini òptic de senyals de radiofreqüència en dos camps d'aplicació: la conformació òptica de feixos i la modulació i demodulació vectorial fotònica de senyals digitals en quadratura. El control fotònic vectorial permet manipular l'amplitud i la fase dels senyals de radiofreqüència en el domini òptic, que és el processament fonamental que es requereix en diferents aplicacions com ara les xarxes de conformació de feixos per agrupacions d'antenes i en modulació multinivell. El treball descrit en aquesta tesi inclou diferents tècniques per implementar una versió fotònica de les xarxes de conformació de feixos en agrupacions d'antenes, conegudes com a xarxes òptiques de conformació de feixos (OBFN), amb els objectius de proporcionar un control precís en aplicacions terrestres de senyals de banda ampla a freqüències molt altes per sobre de 40 GHz en antenes de comunicacions, optimitzant la mida i el pes quan es compara amb els homòlegs elèctrics en aplicacions espacials, i la presentació de noves funcionalitats fotòniques per agrupacions d'antenes. Per tant, s'estudien dues famílies de OBFNs: arquitectures de retard en fibra òptica i arquitectures integrades. Les primeres permeten el control de senyals de banda ampla utilitzant fibres òptiques dispersives amb tècniques de multiplexació per divisió en longitud d'ona i funcionalitats avançades com ara l'estimació de l'angle d'arribada del senyal a l'antena receptora. A la segona, s'estudien xarxes de conformació passives basades en Matrius de Butler òptiques en fotònica integrada, incloent una solució ultra-compacta utilitzant tècniques òptiques heterodinas en silici sobre aïllant (SOI), i una alternativa homodina en sílice dopat amb germani. D'altra banda, també s'ha investigat en aquesta tesi tècniques de processament vectorial fotònic per a la generació de modulacions digitals en quadratura. Les modulacions multinivell codifiquen la informació digital en estats discrets de fase i amplitud d'un senyal elèctric per augmentar la seva eficiència espectral, com ara la modulació en quadratura. El processat necessari per generar i desmodular aquest tipus de senyals implica el processament vectorial (control d'amplitud i fase) i la conversió de freqüència. A diferència de la implementació electrònica o digital convencional, en aquesta tesi s'estudien diferents tècniques de processament fotònic tant per a la generació de modulacions digitals (modulació vectorial fotònica, PVM) com per la seva demodulació (PVdM). Això és de particular interès en el cas de senyals de banda ampla, on la velocitat de dades requerida és de l'ordre de gigabits per segon, per a aplicacions com backhaul sense fils de xarxes òptiques metropolitanes (coneguda com fibra fins l'aire). Les tècniques descrites es basen en explotar la dispersió cromàtica de la fibra òptica, la multiplexació per divisió en longitud d'ona i la conversió en freqüència. A més, es presePiqueras Ruipérez, MÁ. (2016). Photonic Vector Processing Techniques for Radiofrequency Signals [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/63264TESI

    Dually-Polarized Microwave Components Based on Polarization-Selective Coupling for Green Wireless Systems

    Get PDF
    RÉSUMÉ Avec le développement rapide et continu de technologies et de réseaux sans fil de nouvelle génération tels que la 5G et avec les ressources limitées d'énergie et de spectre disponibles pour soutenir ces développements sans fil rapides, l'exploration des bandes millimétriques sous-utilisées devient incontournable. Il devient de plus en plus crucial de se concentrer sur la réduction de la consommation d'énergie dans les futurs systèmes sans fil. Le moyen le plus efficace de réception d'énergie d'onde électromagnétique est de capturer complètement les deux composantes orthogonales de son vecteur de champ de propagation en relation avec la diversité de polarisation. De plus, l'utilisation d'ondes bi-polarisées permet l'amélioration d'une capacité de transmission via la réception simultanée de deux canaux orthogonaux. Cette thèse montre comment proposer et exploiter le concept très original de la diversité de polarisation sur la bande de fréquences mmW qui a été assignée aux applications sans fil. Auparavant, la diversité de polarisation était mise en oeuvre dans des profils non planaires, ce qui compliquait son intégration avec l'application de carte de circuit imprimé (PCB). Par conséquent, la motivation principale de cette thèse est de mettre en oeuvre la diversité de polarisation dans les profils planaires aux bandes de fréquence récemment assignées autour de 28 GHz et 38 GHz pour être intégrée dans la cinquième génération (5G) de communication sans fil. Ceci est fait en développant la théorie du fonctionnement et de la procédure de conception des composants MMW à double polarisation. La nouveauté présentée dans ce travail de thèse réside dans le développement d'un principe de fonctionnement permettant de concevoir et de mettre en évidence une classe de composants mmW bi-polarisés, à savoir les coupleurs 3dB, les coupleurs 0dB et les déphaseurs. Cela permet le développement de réseaux de formation de faisceau bi-polarisés tels que la matrice de Butler et les systèmes de télédétection à polarisation, basés sur une jonction à six ports à double polarisation. Une procédure de conception analytique complète est présentée avec des vérifications à travers des simulations pleine onde et des mesures de prototypes. La diversité de polarisation a été un facteur essentiel dans la performance et l'amélioration de la capacité de divers systèmes sans fil, y compris les réseaux cellulaires. Par conséquent, la conception et le développement de structures d'alimentation d'antenne bi-polarisées dans la bande mmW sont indispensables.----------ABSTRACT With the rapid and continuous development of new generation wireless technologies and networks such as 5G and with the limited enabling energy and spectrum resources available in support of such fast-moving wireless developments, exploring the underutilized millimeter-wave (mmW) bands becomes inescapable. It becomes more and more crucial to focus on the reduction of energy use in future wireless systems. The most efficient way of electromagnetic wave energy reception is to fully capture the two orthogonal components of its propagating field vector in connection with polarization diversity. In addition, the use of dually-polarized waves allows the enhancement of a transmission capability via the simultaneous reception of two orthogonal channels. This thesis shows how to propose and exploit the highly original concept of polarization diversity over the mmW frequency band which has been assigned for wireless applications. Previously, the polarization diversity was implemented within non-planar profiles which complicates its integration with the printed circuit board (PCB) application. Therefore, the main motivation of this thesis is to implement the polarization diversity within planar profiles at the recently assigned frequency bands around 28 GHz and 38 GHz to be suitable for integration in the fifth generation (5G) of wireless communication. This is done by developing the theory of operation and design procedure of dually-polarized mmW components. The novelty presented in this thesis work lies in developing a principle of operation to come up with the design and demonstration of a class of dually-polarized mmW components, namely 3dB couplers, 0dB couplers and phase shifters. This allows the development of dually-polarized beamforming networks such as Butler matrix and polarization-inclusive remote sensing systems based on a dually-polarized six-port junction. A full analytical design procedure is presented with verifications through full-wave simulations and prototype measurements. Polarization diversity has been an essential factor in the performance and capacity enhancement of various wireless systems including cellular networks. Accordingly, the design and development of dually-polarized antenna feeding structures in the mmW band is a must. Firstly, as the basic dual-polarized device, a compact orthomode transducer (OMT) design in the Ka-band is proposed. The novelty of the proposed OMT stems from a distinct concept of handling dually-polarized signals based on a polarization selective coupler (PSC)
    corecore