36 research outputs found

    Lie Group integrators for mechanical systems

    Full text link
    Since they were introduced in the 1990s, Lie group integrators have become a method of choice in many application areas. These include multibody dynamics, shape analysis, data science, image registration and biophysical simulations. Two important classes of intrinsic Lie group integrators are the Runge--Kutta--Munthe--Kaas methods and the commutator free Lie group integrators. We give a short introduction to these classes of methods. The Hamiltonian framework is attractive for many mechanical problems, and in particular we shall consider Lie group integrators for problems on cotangent bundles of Lie groups where a number of different formulations are possible. There is a natural symplectic structure on such manifolds and through variational principles one may derive symplectic Lie group integrators. We also consider the practical aspects of the implementation of Lie group integrators, such as adaptive time stepping. The theory is illustrated by applying the methods to two nontrivial applications in mechanics. One is the N-fold spherical pendulum where we introduce the restriction of the adjoint action of the group SE(3)SE(3) to TS2TS^2, the tangent bundle of the two-dimensional sphere. Finally, we show how Lie group integrators can be applied to model the controlled path of a payload being transported by two rotors. This problem is modeled on R6×(SO(3)×so(3))2×(TS2)2\mathbb{R}^6\times \left(SO(3)\times \mathfrak{so}(3)\right)^2\times (TS^2)^2 and put in a format where Lie group integrators can be applied.Comment: 35 page

    Geometric integration of non-autonomous Hamiltonian problems

    Full text link
    Symplectic integration of autonomous Hamiltonian systems is a well-known field of study in geometric numerical integration, but for non-autonomous systems the situation is less clear, since symplectic structure requires an even number of dimensions. We show that one possible extension of symplectic methods in the autonomous setting to the non-autonomous setting is obtained by using canonical transformations. Many existing methods fit into this framework. We also perform experiments which indicate that for exponential integrators, the canonical and symmetric properties are important for good long time behaviour. In particular, the theoretical and numerical results support the well documented fact from the literature that exponential integrators for non-autonomous linear problems have superior accuracy compared to general ODE schemes.Comment: 20 pages, 3 figure

    B-stability of numerical integrators on Riemannian manifolds

    Full text link
    We propose a generalization of nonlinear stability of numerical one-step integrators to Riemannian manifolds in the spirit of Butcher's notion of B-stability. Taking inspiration from Simpson-Porco and Bullo, we introduce non-expansive systems on such manifolds and define B-stability of integrators. In this first exposition, we provide concrete results for a geodesic version of the Implicit Euler (GIE) scheme. We prove that the GIE method is B-stable on Riemannian manifolds with non-positive sectional curvature. We show through numerical examples that the GIE method is expansive when applied to a certain non-expansive vector field on the 2-sphere, and that the GIE method does not necessarily possess a unique solution for large enough step sizes. Finally, we derive a new improved global error estimate for general Lie group integrators

    On the Lie enveloping algebra of a post-Lie algebra

    Full text link
    We consider pairs of Lie algebras gg and gˉ\bar{g}, defined over a common vector space, where the Lie brackets of gg and gˉ\bar{g} are related via a post-Lie algebra structure. The latter can be extended to the Lie enveloping algebra U(g)U(g). This permits us to define another associative product on U(g)U(g), which gives rise to a Hopf algebra isomorphism between U(gˉ)U(\bar{g}) and a new Hopf algebra assembled from U(g)U(g) with the new product. For the free post-Lie algebra these constructions provide a refined understanding of a fundamental Hopf algebra appearing in the theory of numerical integration methods for differential equations on manifolds. In the pre-Lie setting, the algebraic point of view developed here also provides a concise way to develop Butcher's order theory for Runge--Kutta methods.Comment: 25 page

    Integrators on homogeneous spaces: Isotropy choice and connections

    Full text link
    We consider numerical integrators of ODEs on homogeneous spaces (spheres, affine spaces, hyperbolic spaces). Homogeneous spaces are equipped with a built-in symmetry. A numerical integrator respects this symmetry if it is equivariant. One obtains homogeneous space integrators by combining a Lie group integrator with an isotropy choice. We show that equivariant isotropy choices combined with equivariant Lie group integrators produce equivariant homogeneous space integrators. Moreover, we show that the RKMK, Crouch--Grossman or commutator-free methods are equivariant. To show this, we give a novel description of Lie group integrators in terms of stage trees and motion maps, which unifies the known Lie group integrators. We then proceed to study the equivariant isotropy maps of order zero, which we call connections, and show that they can be identified with reductive structures and invariant principal connections. We give concrete formulas for connections in standard homogeneous spaces of interest, such as Stiefel, Grassmannian, isospectral, and polar decomposition manifolds. Finally, we show that the space of matrices of fixed rank possesses no connection
    corecore