152 research outputs found

    A Large-Scale Community Questions Classification Accounting for Category Similarity: An Exploratory?

    Full text link
    The paper reports on a large-scale topical categorization of questions from a Russian community question answering (CQA) service [email protected]. We used a data set containing all the questions (more than 11 millions) asked by [email protected] users in 2012. This is the first study on question categorization dealing with non-English data of this size. The study focuses on adjusting category structure in order to get more robust classification results. We investigate several approaches to measure similarity between categories: the share of identical questions, language models, and user activity. The results show that the proposed approach is promising.14-07-00589; RFBR; Russian Foundation for Basic Research

    What Users Ask a Search Engine: Analyzing One Billion Russian Question Queries

    Full text link
    We analyze the question queries submitted to a large commercial web search engine to get insights about what people ask, and to better tailor the search results to the users’ needs. Based on a dataset of about one billion question queries submitted during the year 2012, we investigate askers’ querying behavior with the support of automatic query categorization. While the importance of question queries is likely to increase, at present they only make up 3–4% of the total search traffic. Since questions are such a small part of the query stream and are more likely to be unique than shorter queries, clickthrough information is typically rather sparse. Thus, query categorization methods based on the categories of clicked web documents do not work well for questions. As an alternative, we propose a robust question query classification method that uses the labeled questions from a large community question answering platform (CQA) as a training set. The resulting classifier is then transferred to the web search questions. Even though questions on CQA platforms tend to be different to web search questions, our categorization method proves competitive with strong baselines with respect to classification accuracy. To show the scalability of our proposed method we apply the classifiers to about one billion question queries and discuss the trade-offs between performance and accuracy that different classification models offer. Our findings reveal what people ask a search engine and also how this contrasts behavior on a CQA platform

    Multi-Target Prediction: A Unifying View on Problems and Methods

    Full text link
    Multi-target prediction (MTP) is concerned with the simultaneous prediction of multiple target variables of diverse type. Due to its enormous application potential, it has developed into an active and rapidly expanding research field that combines several subfields of machine learning, including multivariate regression, multi-label classification, multi-task learning, dyadic prediction, zero-shot learning, network inference, and matrix completion. In this paper, we present a unifying view on MTP problems and methods. First, we formally discuss commonalities and differences between existing MTP problems. To this end, we introduce a general framework that covers the above subfields as special cases. As a second contribution, we provide a structured overview of MTP methods. This is accomplished by identifying a number of key properties, which distinguish such methods and determine their suitability for different types of problems. Finally, we also discuss a few challenges for future research

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    Approximation and Relaxation Approaches for Parallel and Distributed Machine Learning

    Get PDF
    Large scale machine learning requires tradeoffs. Commonly this tradeoff has led practitioners to choose simpler, less powerful models, e.g. linear models, in order to process more training examples in a limited time. In this work, we introduce parallelism to the training of non-linear models by leveraging a different tradeoff--approximation. We demonstrate various techniques by which non-linear models can be made amenable to larger data sets and significantly more training parallelism by strategically introducing approximation in certain optimization steps. For gradient boosted regression tree ensembles, we replace precise selection of tree splits with a coarse-grained, approximate split selection, yielding both faster sequential training and a significant increase in parallelism, in the distributed setting in particular. For metric learning with nearest neighbor classification, rather than explicitly train a neighborhood structure we leverage the implicit neighborhood structure induced by task-specific random forest classifiers, yielding a highly parallel method for metric learning. For support vector machines, we follow existing work to learn a reduced basis set with extremely high parallelism, particularly on GPUs, via existing linear algebra libraries. We believe these optimization tradeoffs are widely applicable wherever machine learning is put in practice in large scale settings. By carefully introducing approximation, we also introduce significantly higher parallelism and consequently can process more training examples for more iterations than competing exact methods. While seemingly learning the model with less precision, this tradeoff often yields noticeably higher accuracy under a restricted training time budget

    Learning by correlation for computer vision applications: from Kernel methods to deep learning

    Get PDF
    Learning to spot analogies and differences within/across visual categories is an arguably powerful approach in machine learning and pattern recognition which is directly inspired by human cognition. In this thesis, we investigate a variety of approaches which are primarily driven by correlation and tackle several computer vision applications
    corecore