577,219 research outputs found

    Combined Effort Opportunities of Aggregated Demand Response Flexibility and Energy Savings in Households

    Get PDF
    This paper analyses possible synergies between demand response flexibility programmes and energy savings delivered by households. In the fra-mework of the energy transition, European Union (EU) directives are endorsing energy consumers to become full-fledged participants of the energy market, mostly via independent aggregator intermediaries. The flexibility aggregators have a very arduous role in collecting, optimising and settling aggregated flexibility delivered from heterogenous sources on the energy market. Novel business models incorporating both flexibility and energy savings opportunities from household consumers could deliver revenue diversification for flexibility aggregators and support them in overcoming technical and motivational challenges for activating consumers in the energy market. This paper discusses the main pillars for a sustainable flexibility aggregator business model which sums up the potential for flexibility placement on energy, ancillary services and energy savings markets. The main challenge identified in this work are the requirements for programme establishment, allowing the recognition and proper interpretation of energy savings triggered by short-term events and obtained by an aggregator via explicit demand response actions. This paper proposes possible solutions for a joint venture of a flexibility and energy savings aggregator, thus alleviating possible data collection problems. Collaborative efforts have been recognised in the establishment and maintenance of information and communication technologies and infrastructure, therefore facilitating continuous monitoring and verification of flexibility programmes which are able to deliver energy savings

    Requirements to Testing of Power System Services Provided by DER Units

    Get PDF
    The present report forms the Project Deliverable ‘D 2.2’ of the DERlab NoE project, supported by the EC under Contract No. SES6-CT-518299 NoE DERlab. The present document discuss the power system services that may be provided from DER units and the related methods to test the services actually provided, both at component level and at system level

    Application of Advanced Framework Technology in Smart Cities to Improve Resource Utilization

    Get PDF
    Nowadays, the application technology and demand are growth; there have been millions of solutions for user communication in smart cities. However, the quality of the autonomy of handheld devices and the information exchange of applications are functions of requesting services or participating in communications. Therefore, it is very difficult and tedious to implement resource management and control in such an environment. This study here proposes distributed cyber-physical systems (CPS) for agent-based middleware framework (AMF) using to achieve technology, thereby improving the reliability of environmental communication in smart cities. The technical solution has the characteristics of avoiding the problem of data source interruption because of the proxy technology of the linear calculation model. The aforementioned agents are independent and autonomous of each other in terms of providing seamless resource sharing and response scheduling, and have nothing to do with communication time and request queries. In this study, the architecture mainly uses the best linear calculation model to classify overlapping agents, and then allocates non-overlapping resources, and finally analyzes the overall architecture operation performance by responding to processed queries, storage utilization and resource usage, pause time and response

    Closed-loop elastic demand control under dynamic pricing program in smart microgrid using super twisting sliding mode controller

    Get PDF
    Electricity demand is rising due to industrialisation, population growth and economic development. To meet this rising electricity demand, towns are renovated by smart cities, where the internet of things enabled devices, communication technologies, dynamic pricing servers and renewable energy sources are integrated. Internet of things (IoT) refers to scenarios where network connectivity and computing capability is extended to objects, sensors and other items not normally considered computers. IoT allows these devices to generate, exchange and consume data without or with minimum human intervention. This integrated environment of smart cities maintains a balance between demand and supply. In this work, we proposed a closed-loop super twisting sliding mode controller (STSMC) to handle the uncertain and fluctuating load to maintain the balance between demand and supply persistently. Demand-side load management (DSLM) consists of agents-based demand response (DR) programs that are designed to control, change and shift the load usage pattern according to the price of the energy of a smart grid community. In smart grids, evolved DR programs are implemented which facilitate controlling of consumer demand by effective regulation services. The DSLM under price-based DR programs perform load shifting, peak clipping and valley filling to maintain the balance between demand and supply. We demonstrate a theoretical control approach for persistent demand control by dynamic price-based closed-loop STSMC. A renewable energy integrated microgrid scenario is discussed numerically to show that the demand of consumers can be controlled through STSMC, which regulates the electricity price to the DSLM agents of the smart grid community. The overall demand elasticity of the current study is represented by a first-order dynamic price generation model having a piece-wise linear price-based DR program. The simulation environment for this whole scenario is developed in MATLAB/Simulink. The simulations validate that the closed-loop price-based elastic demand control technique can trace down the generation of a renewable energy integrated microgrid

    Smart Grid Communications: Overview of Research Challenges, Solutions, and Standardization Activities

    Full text link
    Optimization of energy consumption in future intelligent energy networks (or Smart Grids) will be based on grid-integrated near-real-time communications between various grid elements in generation, transmission, distribution and loads. This paper discusses some of the challenges and opportunities of communications research in the areas of smart grid and smart metering. In particular, we focus on some of the key communications challenges for realizing interoperable and future-proof smart grid/metering networks, smart grid security and privacy, and how some of the existing networking technologies can be applied to energy management. Finally, we also discuss the coordinated standardization efforts in Europe to harmonize communications standards and protocols.Comment: To be published in IEEE Communications Surveys and Tutorial

    Analysis of building energy upgrade technologies for implementing the dual energy efficiency and demand response scheme for non-residential buildings

    Get PDF
    The continuous growth of renewable energy and the transition to a more de-centralised electricity generation adds significant complexity to balance power supply and demand in the grid. These imbalances are partially compensated by demand response programs, which represent a new business opportunity in the building sector, especially for ESCOs. Including demand response to their traditional energy efficiency-based business model adds an additional revenue stream that could potentially shorten payback periods of energy renovation projects. This paper introduces this new dual-services business model, and evaluates the potential suitability of HVAC, generation and storage technologies to ensure proposed energy efficiency and flexibility goals.This paper is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 745594. This paper reflects only the author´s views and neither the Agency nor the Commission are responsible for any use that may be made of the information contained therei
    • …
    corecore