2,076 research outputs found

    Communicating with Beeps

    Get PDF
    The beep model is a very weak communications model in which devices in a network can communicate only via beeps and silence. As a result of its weak assumptions, it has broad applicability to many different implementations of communications networks. This comes at the cost of a restrictive environment for algorithm design. Despite being only recently introduced, the beep model has received considerable attention, in part due to its relationship with other communication models such as that of ad-hoc radio networks. However, there has been no definitive published result for several fundamental tasks in the model. We aim to rectify this with our paper. We present algorithms for the tasks of broadcast, gossiping, and multi-broadcast, and also, as intermediary results, means of depth-first search and diameter estimation. Our O(D+log(M)-time algorithm for broadcasting is a simple formalization of a concept known as beep waves, and is asymptotically optimal. We give an O(n*log(L))-time depth-first search procedure, and show how this can be used as the basis for an O(n*log(L*M))-time gossiping algorithm. Finally, we approach the more general problem of multi-broadcast. We differentiate between two variants of this problem: one where nodes must know the origin of all source messages, and another where this information is not required. In the first instance we achieve an algorithm running in time O(k*log((L*M)/k)+D*log(L)), and in the second an O(k*log(M/k)+D*log(L))-time algorithm (or O(M+D*log(L)) when M k and M <= k respectively. These lower bounds demonstrate that our algorithms are optimal except for the D*log(L) additive term. In these running-time expressions, n represents network size, D network diameter, L range of node labels, M range of source messages, and k number of sources. Our algorithms are all explicit, deterministic, and practical, and give efficient means of communication while making arguably the minimum possible assumptions about the network

    Beeping a Maximal Independent Set

    Full text link
    We consider the problem of computing a maximal independent set (MIS) in an extremely harsh broadcast model that relies only on carrier sensing. The model consists of an anonymous broadcast network in which nodes have no knowledge about the topology of the network or even an upper bound on its size. Furthermore, it is assumed that an adversary chooses at which time slot each node wakes up. At each time slot a node can either beep, that is, emit a signal, or be silent. At a particular time slot, beeping nodes receive no feedback, while silent nodes can only differentiate between none of its neighbors beeping, or at least one of its neighbors beeping. We start by proving a lower bound that shows that in this model, it is not possible to locally converge to an MIS in sub-polynomial time. We then study four different relaxations of the model which allow us to circumvent the lower bound and find an MIS in polylogarithmic time. First, we show that if a polynomial upper bound on the network size is known, it is possible to find an MIS in O(log^3 n) time. Second, if we assume sleeping nodes are awoken by neighboring beeps, then we can also find an MIS in O(log^3 n) time. Third, if in addition to this wakeup assumption we allow sender-side collision detection, that is, beeping nodes can distinguish whether at least one neighboring node is beeping concurrently or not, we can find an MIS in O(log^2 n) time. Finally, if instead we endow nodes with synchronous clocks, it is also possible to find an MIS in O(log^2 n) time.Comment: arXiv admin note: substantial text overlap with arXiv:1108.192

    Beeping a Deterministic Time-Optimal Leader Election

    Get PDF
    The beeping model is an extremely restrictive broadcast communication model that relies only on carrier sensing. In this model, we solve the leader election problem with an asymptotically optimal round complexity of O(D + log n), for a network of unknown size n and unknown diameter D (but with unique identifiers). Contrary to the best previously known algorithms in the same setting, the proposed one is deterministic. The techniques we introduce give a new insight as to how local constraints on the exchangeable messages can result in efficient algorithms, when dealing with the beeping model. Using this deterministic leader election algorithm, we obtain a randomized leader election algorithm for anonymous networks with an asymptotically optimal round complexity of O(D + log n) w.h.p. In previous works this complexity was obtained in expectation only. Moreover, using deterministic leader election, we obtain efficient algorithms for symmetry-breaking and communication procedures: O(log n) time MIS and 5-coloring for tree networks (which is time-optimal), as well as k-source multi-broadcast for general graphs in O(min(k,log n) * D + k log{(n M)/k}) rounds (for messages in {1,..., M}). This latter result improves on previous solutions when the number of sources k is sublogarithmic (k = o(log n))

    E-Mail Revealed: What the Research Tells Us

    Get PDF
    • …
    corecore