
Communicating with Beeps∗

Artur Czumaj1 and Peter Davies2

1 Department of Computer Science, Centre for Discrete Mathematics and its
Applications (DIMAP), University of Warwick, Warwick, UK
A.Czumaj@warwick.ac.uk

2 Department of Computer Science, Centre for Discrete Mathematics and its
Applications (DIMAP), University of Warwick, Warwick, UK
P.W.Davies@warwick.ac.uk

Abstract
The beep model is a very weak communications model in which devices in a network can commu-
nicate only via beeps and silence. As a result of its weak assumptions, it has broad applicability
to many different implementations of communications networks. This comes at the cost of a
restrictive environment for algorithm design.

Despite being only recently introduced, the beep model has received considerable attention,
in part due to its relationship with other communication models such as that of ad-hoc radio
networks. However, there has been no definitive published result for several fundamental tasks
in the model. We aim to rectify this with our paper.

We present algorithms for the tasks of broadcast, gossiping, and multi-broadcast, and also,
as intermediary results, means of depth-first search and diameter estimation. Our O(D + log M)-
time algorithm for broadcasting is a simple formalization of a concept known as beep waves, and
is asymptotically optimal. We give an O(n log L)-time depth-first search procedure, and show
how this can be used as the basis for an O(n log LM)-time gossiping algorithm. Finally, we
approach the more general problem of multi-broadcast. We differentiate between two variants
of this problem: one where nodes must know the origin of all source messages, and another
where this information is not required. In the first instance we achieve an algorithm running
in time O(k log LM

k + D log L), and in the second an O(k log M
k + D log L)-time algorithm (or

O(M + D log L) when M ≤ k). We then give corresponding lower bounds: Ω(k log LM
k + D) in

the case where nodes must know message origins, and Ω(k log M
k +D) and Ω(M +D) in the other

case, for M > k and M ≤ k respectively. These lower bounds demonstrate that our algorithms
are optimal except for the D log L additive term. In these running-time expressions, n represents
network size, D network diameter, L range of node labels, M range of source messages, and k

number of sources.
Our algorithms are all explicit, deterministic, and practical, and give efficient means of com-

munication while making arguably the minimum possible assumptions about the network.

1998 ACM Subject Classification C.2.1 Distributed Networks

Keywords and phrases Beep model, Communication networks, Broadcasting, Gossiping, Leader
election

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2015.30

∗ Research partially supported by the Centre for Discrete Mathematics and its Applications (DIMAP).

© Artur Czumaj and Peter Davies;
licensed under Creative Commons License CC-BY

19th International Conference on Principles of Distributed Systems (OPODIS 2015).
Editors: Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Gradinariu; Article No. 30; pp. 30:1–30:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62922867?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.OPODIS.2015.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 Communicating with Beeps

1 Introduction

The beep model, introduced recently by Cornejo and Kuhn [3], is a very weak network
communications model in which information can be passed only in the form of a beep or a
lack thereof. The model is related to the ad-hoc radio network model, and has been used as
a surrogate model in results concerning radio networks with collision detection. As well as
attracting study from this angle, the beep model is interesting in its own right because of its
generality, simplicity, and wide range of areas where it could be applied.

1.1 Model
The network is modeled as an undirected connected graph G = (V, E), where vertices in
the graph represent devices in the network, and edges represent direct reachability. Time is
divided into discrete steps, with a synchronized global clock (though, as in [4], we can extend
to the case where only a subset of nodes wake up at time 0 and others must be woken by
receiving beeps). In each time-step every node decides whether to beep or to listen. Nodes
which choose to listen in a particular time-step hear a beep if at least one of their neighbors
chose to beep, and they cannot distinguish between one neighbor beeping or many. We will
assume that nodes have unique labels (IDs), which is essential (at least when considering
deterministic algorithms) in order to break symmetry.

We will use the following parameters in analysis of our algorithms:
n will denote network size, i.e., |V |.
D will denote network diameter, the largest distance between any pair of nodes.
L will be the range of node labels, i.e., labels will be strings of no more than log L bits.
M will be the range of messages, i.e., messages will be strings of no more than log M bits.
k will be the number of source nodes when considering the multi-broadcast task.

We do not, however, assume that nodes have any prior knowledge of these parameters,
nor any other knowledge about the network.

1.2 Related Work
There has been a large amount of research focusing on fundamental communication problems
in distributed computing, see e.g., [9] and the references therein. The beep model was
introduced by Cornejo and Kuhn [3], who used it to design an algorithm for interval coloring.
This task is a variant of vertex coloring used in resource allocation problems, and is, in a
sense, tailored to the model. In another recent work, Afek et al. [1] presented an algorithm for
finding a maximal independent set in the beep model. The beep model is strictly weaker than
the model of radio networks with collision detection (see, e.g., [9]), though the aforementioned
two results did not approach it from this angle, and so algorithmic results in the former also
apply in the latter. This relationship was exploited by Ghaffari and Haeupler [6] to give
almost optimal O((D + log n log log n) ·min(log log n, log n

D))-time randomized algorithm for
leader election in radio networks with collision detection. Ghaffari and Haeupler [6] introduces
the method of “beep waves” to transmit bit strings, a method which is also employed here
for the purpose of broadcast. Ghaffari et al. [5] give a randomized broadcast algorithm in
radio networks with collision detection which employs beeping techniques, but, unlike the
algorithm of [6], does not entirely translate over to the beep model. A deterministic leader
election algorithm in the beep model was given by Förster et al. [4], taking O(D log L) time.
While a simple binary search approach, like that used in [2] for radio networks, gives the
same running time, the method of [4] has the benefit of not requiring prior knowledge of

A. Czumaj and P. Davies 30:3

parameters D and L, an advantage which we make use of in our results. In another related
work, Gilbert and Newport [7] studied the quantity of computational resources needed to
solve specific problems in the beep model.

Concurrently with this paper, Hounkanli and Pelc [8] give a O(D + log M) time broad-
casting algorithm and an O(n2 log M + nD log L)-time gossiping algorithm in a slightly
different model where nodes know network parameters n, L, M but wake-up at arbitrary
different time-steps, rather than simultaneously. To our knowledge there have been no earlier
published results for broadcast, gossiping, and multi-broadcast in the model we study.

1.3 Our Results
In this paper, we present the following results:

An optimal O(D+log M)-time algorithm for broadcasting a log M bit message, developing
and formalizing the “beep waves” method of [6].
An O(n log L)-time procedure for performing depth-first search.
An O(n log LM)-time gossiping algorithm based on depth-first search.
An O(D)-time procedure for estimating diameter.
An O(k log LM

k + D log L)-time algorithm for multi-broadcast with provenance (where
every node must learn all (source ID, source message) pairs).
A corresponding Ω(k log LM

k + D) lower bound.
An algorithm for multi-broadcast without provenance (where every node must learn all
unique source messages) taking O(k log M

k +D log L) time when M > k and O(M+D log L)
time when M ≤ k.
A corresponding lower bound of Ω(k log M

k + D) when M > k and Ω(M + D) when
M ≤ k.
These multi-broadcasting algorithms imply O(n log LM

n +D log L) and (n log M
n +D log L)-

time gossiping algorithms with and without provenance respectively.

The multi-broadcasting algorithms are our most significant results. The first outperforms
the DFS-based gossiping algorithm despite being designed for a more general problem.
Furthermore, perhaps surprisingly, the second is faster even than the k log M time-steps
required for a node to directly transmit or hear the source messages, which might intuitively
have appeared to be a lower bound for the problem.

2 Broadcasting

Broadcasting is perhaps the most fundamental task in distributed communication models.
It assumes that one designated source node has a message (which we will assume to be an
integer in the range [0, M − 1]) that must be known by all nodes in the network. We achieve
optimal an O(D + log M)-time algorithm for broadcasting based on the idea of “beep waves.”

2.1 Beep Waves
Beep waves were first introduced by Ghaffari and Haeupler [6] as a means of transmitting
information in the beep model. Variations of the technique are useful for different circum-
stances, and here we give a simple formalization tailored to the task of broadcasting from a
single source.

The idea is the following: every three time-steps, starting at zero, the source transmits a
bit of its message, that is it beeps to represent a 1 or remains silent to represent a 0. We can
encode the message so that it is obvious when the beginning and end are, for example by

OPODIS 2015

30:4 Communicating with Beeps

duplicating every bit of the message and then placing 10 at the beginning and end. We will
denote this coding method C, and note that for any message m, |C(m)| ≤ 2|m|+ 4. When
we refer to the size of the message, we mean its length in bits, i.e. |m| ≤ log M . It is easy to
see that we can decode to find the original message(s), even if there are several, separated by
any number of 0s. This will become necessary within algorithms for more complex tasks
which involve several successive broadcasts.

All non-source nodes, upon hearing a beep in some time-step i, then relay the beep
themselves in time-step i + 1, unless they themselves beeped in time-step i− 1.

Algorithm 1 Beep-Wave(s, m(s)) at source s

for i = 1 to |C(m(s))| do
if bit C(m(s))i is 1 then

s beeps in time-step 3i

end if
end for

Algorithm 2 Beep-Wave(s, m(s)) at non-source u

while end of message not heard do
if u hears a beep in time-step i and did not itself beep in time-step i− 1 then

u beeps in time-step i + 1
bit m(u)bi/3c ← 1

end if
end while
output C−1(m(u))

I Lemma 1. Beep-Wave(s, m(s)) correctly performs broadcast in time O(D + |m(s)|) =
O(D + log M).

Proof. Partition all nodes into layers depending on their distance from the source s, i.e.
layer Li = {v ∈ V : dist(v, s) = i}. Every beep emitted by the source is propagated one layer
per time-step, reaching all nodes in layer i after i time-steps. Nodes in layer i only ever relay
beeps from layer i− 1, because the only times layer i + 1 beeps are directly after layer i does.
This can be seen by an inductive argument.

Therefore, a node in layer i receives a beep exactly i steps after the source transmits one,
and so can decode its received bit-string to recover the source’s message. J

To use our broadcast algorithm, we must have a designated source node, and we must
also have a good estimate of D if we want to know how much time to allow for completion.
We do not require nodes to have access to a synchronized global clock when performing
Beep-Wave; however, non-source nodes must know that they should be behaving in a
“beep-forwarding” fashion. If we wish to use broadcast as part of larger algorithms, then we
must take care to ensure that each node has the correct behavior during the time period
involved.

2.2 Lower Bound for Broadcasting
It is straightforward to demonstrate that the O(D + log M) running time of Beep-Wave is
asymptotically optimal:

A. Czumaj and P. Davies 30:5

I Lemma 2. Any algorithm for broadcasting a message m(s) ∈ [0, M − 1] must take at least
c(D + log M) time-steps for some constant c.

Proof. The message can be any of M different bit-strings, and so requires log M bits to
specify. Let u be the furthest non-source node from the source s. Since u can only receive
at most one bit of information per time-step (a beep or silence), log M time-steps must be
required for it to know the message.

Information can only be propagated through the network at most one adjacency layer
per time-step, since non-adjacent nodes have no means of communication. Therefore at least
dist(u, s) time-steps are required for any information to reach u. Since dist(u, s) ≥ D

2 , the
total number of time-steps required to inform u of the message is at least max(D

2 , log M) ≥
1
2 (D

2 + log M) ≥ 1
4 (D + log M) J

3 Leader Election

If we wish to use broadcast as part of a more complex algorithm, we must be sure that we
have a single source who wishes to send a message. To ensure this, we can perform the task
of leader election.

Leader election enables all nodes to agree on the ID of one particular node. In our
applications, we will always choose the node with the highest ID in the entire network. More
generally, though, leader election can be used on any subset of nodes, whenever each holds
some integer value, to find the participating node with the highest (or lowest) such value.
The values need not even be unique, since if multiple nodes hold the target value, we can
pick out one by performing leader election again on their IDs. Leader election, particularly
when used in this way, is sometimes also referred to as Find Max.

We wish to be able to perform leader election in O(D log L) time. We note that there is a
straightforward way to do this: we can perform a binary search for the highest ID, iterating
through the bits of the IDs and having all nodes who are still “in the running” for leader, and
who have a 1 in the current position, broadcast. While we cannot use our previous broadcast
procedure with multiple sources, since these nodes need only transmit a single bit we can
still use beep-waves to ensure that the network hears something. This is sufficient for all
nodes to determine whether any have a 1 in the current position. A similar method to this
was used to perform leader election in radio networks in [2].

However, there is a problem with this approach: we would need a common linear upper
bound on D and a polynomial upper bound on L to correctly perform it. Since we do not
assume this knowledge, we instead make use of a result of Förster et al. [4] (paraphrased):

I Theorem 3. There is an algorithm ElectLeader which performs leader election in time
O(D log L) without prior knowledge of D or L.

Upon completion, all nodes have knowledge of the highest ID, and can therefore use this
as L in future operations. Förster et al. extend their algorithm to function when only some
subset of nodes wake up at time 0, removing the assumption of synchronous wake-up. Since
we employ it as a subroutine at the beginning of all our forthcoming algorithms, they can
also forgo this assumption.

4 Network Traversal

We may wish to perform operations which require an organized exploration of the entire
network. For this purpose, we give a procedure for depth-first search, and an application to
the task of gossiping.

OPODIS 2015

30:6 Communicating with Beeps

4.1 Depth-First Search

Depth first search is performed here in fundamentally the usual way. There is a network-wide
“token,” i.e., only one node is the ‘active” node at any one time. This node checks for
unexplored neighbors, passes the token to one if any exist, or sends it back to its parent
if not. Here we also wish to pass round a counter, incremented upon reaching each new
unexplored node, so that nodes know the order in which they were explored.

To detect unexplored neighbors we use a process much like the binary-search method
mentioned for leader election, in which nodes iteratively agree on each bit of an ID. Here,
though, we do not need to broadcast to the whole network between every step, since the
nodes involved are all adjacent to the current active node. To organize this process we
need predetermined constant-size control messages; this can easily be achieved by using any
sensible system of code-words.

To apply Algorithm 4 we must first have a designated leader node. This leader is the
parameter v taken as input in our description of the algorithm.

Algorithm 3 Depth-First Search(v, x, count)
number(x)← count

loop
x transmits “child-acknowledge” message
unvisited neighbors beep
if x received no beep then

break loop
end if
x transmits “child-search” message
for i = 1 to log L do

unvisited nodes still in running for highest ID beep if ith bit of ID is 1
x transmits “acknowledge 1” message if it heard a beep, “acknowledge 0” otherwise
if “acknowledge 1” received, nodes with ith bit 0 drop out

end for
y ← ID highest unvisited neighbor
x transmits the message (y,count + 1)
count← Depth-First Search(v, y, count + 1)

end loop
if v = x then

terminate procedure
else

return count (by transmitting back to parent)
end if

I Lemma 4. Depth-First Search(v, v, 1) correctly performs depth-first search within
O(n log L) time-steps.

Proof. Each round of the “child-search” loop ensures that the current token node and its
unexplored children all agree on a bit of the target ID, and since only one node has the token
there will be no interference from the rest of the network. Thus, after log L such rounds, the
ID of the next node to explore is agreed upon. This process must be performed n times to
explore the entire graph, taking n log L total time-steps. We must also consider the cost of

A. Czumaj and P. Davies 30:7

passing count, which is O(log n) time-steps each time the token moves, and so O(n log n) in
total. Since L ≥ n, total running time is O(n log L). J

4.2 DFS-Based Gossiping
An application of our depth-first search algorithm is to the task of gossiping. The premise of
gossiping is that every node has a message which must become known to the entire network.
We can achieve this in O(n log LM) time by first electing a leader, then performing depth-first
search, and finally having each node broadcast its message in the order in which it was
explored by the DFS.

This last broadcast stage is not quite as straightforward as it may seem, since in general
n different consecutive broadcasts would take O(n(D + log M)) time, exceeding our desired
O(n log LM) running time. However, since we can encode messages so that it is obvious when
they start and end (without affecting asymptotic size), and we also know that transmissions
during Beep-Wave move exactly one distance layer per time-step and never move backwards,
we can pipeline the broadcasts. That is, once a node’s message, in its entirety, has been heard
by the next node in the ordering, that next node can immediately begin its own broadcast
without waiting for the previous message to reach the entire network. The waves of beeps
will not interfere with each other, since the start of the new message cannot reach any node
quicker than the end of the old message, and the behavior of all other nodes does not change,
so they do not need to know the precise time-step when the new node starts broadcasting.

Algorithm 4 Gossip(m(V))
v ← ElectLeader
perform Depth-First Search(v, v, 1)
for i = 1 to n do

let u be such that number(u) = i

Beep-Wave(u, m(u))
end for

I Theorem 5. Gossip correctly performs gossiping within O(n log LM) time-steps.

Proof. Performing ElectLeader and Depth-First Search takes O(n log L) time in
total. Upon completion, each node knows its ordering in the DFS tree. Nodes then
broadcast in order, and a node can begin broadcasting immediately after hearing the end
of the message from its predecessor. The total time taken for all n broadcasts is then
O(
∑n

i=1(log M + dist(i, i + 1))). Since this sum of distances is no greater than the distance
traveled when traversing the DFS tree, this expression is O(n log M). Therefore total running
time is O(n log L + n log M) = O(n log LM). J

5 Auxiliary Procedures

We next define some procedures for useful auxiliary tasks, which we will need for our multi-
broadcast algorithms, but are also general enough to be useful elsewhere. Specifically, we
give protocols for:

Diameter estimation, i.e. allowing all nodes to calculate a common linear upper bound
on D.
Message collection, where a designated leader node receives the logical OR-superimposition
of bit-strings from several source nodes.

OPODIS 2015

30:8 Communicating with Beeps

Message length determination, i.e. providing all nodes with the size of the largest of a set
of bit-strings from source nodes.

5.1 Diameter Estimation
Our model assumes that nodes do not have access to any of the network parameters. In
algorithms for complex tasks, we generally wish to start with a leader election phase, and
this provides all nodes with knowledge of L. However, if we also wish to know the value of
D, we must perform an extra task for this purpose.

Our diameter estimation procedure (Algorithm 5) works as follows: we take as input a
leader node to co-ordinate the process. An initial beep from the leader propagates through
the network. Having received this beep, nodes beep to acknowledge their existence back to
the leader; a modularity restriction on when nodes can transmit ensures that these beeps
only travel backwards through the layers. While the initial beep from the leader is still
reaching further nodes, acknowledgment beeps will continue to return through the network
every three time-steps. Once all nodes have been reached, this pattern will cease, and the
leader will know that the diameter of the graph is no greater then the current time-step value.
All of the other nodes have also ceased transmission, and so an application of Beep-Wave
can safely be used to broadcast the diameter estimate.

We split the algorithm into two parts, one performed by the leader, and one performed
by all non-leader nodes, since their behavior is quite different.

Algorithm 5 EstimateDiameter(v) at leader v

v beeps in time-step 1
let i be the first time-step (greater than 2) in which v has not received a beep for 3 previous
time-steps
D̃ ← i

perform Beep-Wave(v, D̃)
output D̃

Algorithm 6 EstimateDiameter(v) at non-leader u

let j be the first time-step in which u receives a beep
u beeps in the next time-step which is equivalent to (−j) mod 3
while u has heard a beep in the last 3 time-steps do

any beep u hears in a time-step equivalent to (2 − j) mod 3, it relays in the next
time-step
end while
D̃ ← Beep-Wave(v, D̃)
output D̃

I Lemma 6. EstimateDiameter(v) correctly broadcasts an estimate D̃ satisfying D ≤
D̃ ≤ 2D + 7, and terminates within O(D) time-steps.

Proof. Let D′ be the distance from the leader to the furthest node. Then, D ≥ D′ ≥ D/2.
The leader emits a beep in time-step 1 which travels to this furthest node by time-step D′+ 1.
After at most 3 more time-steps, the node transmits its acknowledgment beep, which travels
back to the leader in a further D′ time-steps. After another 3 time-steps, the leader knows

A. Czumaj and P. Davies 30:9

that it has received the final acknowledgment beep, and takes the current time-step i as
its diameter estimate. Since 2D′ ≤ i ≤ 2D′ + 7, the estimate D̃ which is broadcast to the
network satisfies D ≤ D̃ ≤ 2D + 7. Running time of the estimation phase is no more than
2D + 7 time-steps, and the final broadcast takes O(D + log D) = O(D) time. J

Since we are only interested in asymptotic behavior, we will assume, for ease of notation,
that having performed EstimateDiameter as part of a more complex algorithm we can
then make use of the exact value of D.

5.2 Message Collection
We next introduce a sub-procedure (Algorithm 7) which will allow the leader to collect
messages m(S) from a set of sources S, receiving an OR-superimposition of all the messages.
This works similarly to the usual beep-waves procedure, except that nodes use their distance
from the leader (inferred by the time taken to receive the initial Beep-Wave(v, 1)) to ensure
that the waves only travel towards the source, and all messages arrive at the same time. We
must have an input parameter p giving an upper bound on the length of messages, so that
nodes know when the procedure is finished, and we assume that we have already performed
EstimateDiameter and so can make use of D.

Algorithm 7 CollectMessages(v, S, m(S), p) at source s ∈ S \ {v}
perform Beep-Wave(v, 1)
for i = 1 to p do

if bit m(s)i is 1 then
s beeps in time-step 3i + D − dist(s)

end if
end for

Algorithm 8 CollectMessages(v, S, m(S), p) at u /∈ S \ {v}
perform Beep-Wave(v, 1)
for j = 0 to 3p + D do

if u hears a beep in time-step j such that j ≡ 2 + D − dist(u) mod 3 then
u beeps in time-step j + 1
if u = v then

bit m(u)bj/3c ← 1
end if

end if
end for
output m(v)

We note that even if leader v is itself a source, it should perform the non-source behavior.
Since it already knows its own message, it can superimpose it with the string it receives
manually upon termination of the procedure.

I Lemma 7. CollectMessages(v, S, m(S), p) correctly informs v of the OR-superimposition
of m(S) within O(D + p) time-steps.

Proof. The modularity restriction on relaying beeps ensures that beep-waves only travel
towards the v, and the starting times for sources ensure that bits in the same position

OPODIS 2015

30:10 Communicating with Beeps

arrive simultaneously. Thus, v hears a 1 in a position iff one of the sources messages
contained a 1 in the same position. After D + 3p time-steps it must then have received the
OR-superimposition of m(S). J

5.3 Message Length Determination
One issue with using CollectMessages is the necessity of prior knowledge of a common
upper bound on message size. We give a simple method of obtaining this bound (Algorithm 9).

We perform CollectMessages using strings which are as long as the messages we
actually want to collect, but consist of entirely 1s. The superimposition of these strings is
a 1-string of equal length to the longest message. Since the leader will be able to tell that
this string has ended when it hears the substring 10, the procedure can be terminated even
without an upper bound for the CollectMessages call.

Algorithm 9 GetMessageLength(v, S, m(S))

perform p ← CollectMessages(v, S, 1m(S),∞), terminating when v hears the sub-
string 10
perform Beep-Wave(v, |p|)
output |p|

I Lemma 8. GetMessageLength(v, S, m(S)) correctly informs all nodes of
p = maxs∈S |m(s)| within O(D + p) time-steps.

Proof. CollectMessages will terminate after D + 3p steps, since v will hear the final 1
and then a 0. All other nodes will be inactive and so Beep-Wave(v, |p|) will successfully
inform the network of p (nodes will be aware that the CollectMessages phase is over and
so perform Beep-Wave correctly, since they either heard a string of contiguous 1s and then
a 0 during CollectMessages, or silence for more than D time-steps).

Running time is O(D + p) for CollectMessages and O(D + log p) for Beep-Wave,
giving O(D + p) total. J

6 Multi-Broadcast

We are now ready to approach the most general of the communication tasks we will consider,
that of multi-broadcast. As in gossiping, multiple source nodes have messages which must
become known to the entire network. However, rather than all nodes being sources, only
those belonging to some unknown subset are. We denote the number of sources as k, but
this value is not known to the network.

There are two slightly different variants of the problem we consider: multi-broadcast with
provenance, where the network must become aware of all (source ID, source message) pairs,
and multi-broadcast without provenance, where the IDs need not be known. Since we do not
assume that messages are unique, we also allow in the case without provenance that only
one copy of each distinct message must be output. That is, nodes need not be aware of how
many sources held each message.

6.1 Multi-Broadcast With Provenance
We first present an algorithm for multi-broadcast with provenance, where all nodes must be
made aware of not only the source messages, but also the IDs of the sources they originated
from.

A. Czumaj and P. Davies 30:11

The idea of the algorithm is essentially to conduct k simultaneous binary searches to
allow a leader to ascertain the IDs of all sources. The process consists of log L rounds, one
for each bit of the IDs. Each node will maintain a list of known prefixes of source IDs, and
we aim to preserve the invariant that, after round i, all nodes know the first i bits of every
source ID. We denote the number of distinct known prefixes at the start of round i by ki.

At the start of round i, sources know ki distinct i− 1-bit ID prefixes (note ki may be
less than k, since some IDs may share prefixes), and they will each construct a 2ki-bit string
in which each bit corresponds to a particular i-bit prefix. Specifically, if we denote the
known prefixes in lexicographical order by (p1, p2, . . . , pki

), then bit 2j in the new string will
represent the prefix pj0, and bit 2j + 1 will represent pj1. Each source constructs its string
by placing a 1 in the position corresponding to its own ID’s i-bit prefix, and 0 in all others.
We will denote the string constructed in this manner by source s in round i by Zs,i

Performing CollectMessages with these strings ensures that the leader receives the
OR-superimposition, which informs it of all i-bit prefixes of source IDs (since it is aware of
which prefix each position corresponds to). It then broadcasts this back out to the network
via the standard beep wave procedure, and thus the invariant is fulfilled round i. After
log L rounds, the IDs of all sources are known in entirety by all nodes. We then perform
one final CollectMessages procedure, this time to collate all of the messages the sources
wish to broadcast to the network. We construct a k log M -bit string in which the jth block
of log M bits corresponds to the message of the jth source (in lexicographical order of ID).
Each source individually fills in its own message in the appropriate block, leaving all other
bits as 0. We denote the string constructed in this manner by source s as m̃s. Performing
CollectMessages on these strings ensures that the full string of messages arrives at the
leader, who then broadcasts it back out to the network.

Algorithm 10 Multi-Broadcast With Provenance(S, m(S))
v ← ElectLeader
D ← EstimateDiameter(v)
log M ← GetMessageLength(v, S, m(S))
for i = 1 to log L do

Zi ← CollectMessages(v, S, ZS,i, 2ki)
perform Beep-Wave(v, Zi)

end for
m̃← CollectMessages(v, S, m̃S , k · logM)
perform Beep-Wave(v, m̃)

I Theorem 9. Multi-Broadcast With Provenance(S, m(S)) correctly performs multi-
broadcast with provenance within O(k log LM

k + D log L) time-steps.

Proof. The three sub-procedure calls in initial “set-up” phase take a total of O(D log L +
log M) time-steps, and provide a leader node and knowledge of D and log M .

Round i of the main loop of the algorithm takes O(D + ki) time, since it consists of
performing CollectMessages on strings of length O(ki), and then Beep-Wave on a string
of the same length. Furthermore, since the number of known prefixes at most doubles each
round, ki ≤ 2i−1. Hence, there exists some constant c such that total time for the loop is

OPODIS 2015

30:12 Communicating with Beeps

bounded by:
log L∑
i=1

c(D + ki) = cD log L + c

log k∑
i=1

ki +
log L∑

i=log k+1
ki


≤ cD log L + c

log k∑
i=1

2i−1 +
log L∑

i=log k+1
k


≤ cD log L + c(k + k(log L− log k))

= O(D log L + k log L

k
) .

The final call to CollectMessages then takes a further O(D + k log M) time, and so
total running time is O(D log L + k log L

k + k log M) = O(k log LM
k + D log L)

Correctness follows since each round of the loop informs the leader of the next bit in
each ID prefix, and it then broadcasts this information to the network. After log L rounds,
all nodes know all source IDs and each source s can correctly construct its string m̃s. The
OR-superimposition of these strings, broadcast to all nodes, is a list of messages in source
ID order, which fulfills the goal of the algorithm. J

We remark that this result yields an algorithm for gossiping with running time O(n log LM
n +

D log L), slightly improving over the O(n log LM) running time of Algorithm 4.

6.2 Multi-Broadcast Without Provenance
It may be the case that we do not need to know where messages originated from, or the
number of duplicate messages; for example when using short control messages instructing all
nodes to perform some action, for which provenance might be irrelevant. For this reason,
we also study the variant of multi-broadcast where nodes need only know one copy of each
unique source message, and no source IDs.

The main difference in concept for our multi-broadcast without provenance algorithm
(Algorithm 11) is that the concurrent binary searches are performed on the bits of the source
messages rather than the IDs. However, this turns out to be slower when k is smaller than
D, and so we first run Algorithm 10, curtailing it when our number ki of known ID prefixes
(which is a lower bound for k) exceeds D, in order to efficiently deal with these cases.

If k ≤ D then the call to Algorithm 10 will complete multi-broadcast (meeting the
requirements for the case without provenance, since they are strictly weaker than those with
provenance). Otherwise, we move onto performing binary searches on the bits of the message.
This functions in much the same way as in Algorithm 10, except that we do not need the
final CollectMessages and Beep-Wave stage since the network is already aware of all
source messages upon completion of the main loop. We will use k̃i to denote the number of
i− 1-bit message prefixes known to nodes at the start of round i of the for loop, and Z̃s,i to
be the string constructed by source s in round i by placing a 1 in the position corresponding
to the i-bit prefix of its message and 0 in all others.

I Theorem 10. Multi-Broadcast Without Provenance(S, m(S)) correctly performs
multi-broadcast without provenance within O(k log M

k + D log L) time-steps if k < M , and
O(M + D log L) time-steps if k ≥M .

Proof. By the same argument as for Theorem 10, each round of the main loop informs
all nodes of the next bit in each message prefix. Therefore, after log M rounds we have
performed multi-broadcast without provenance.

A. Czumaj and P. Davies 30:13

Algorithm 11 Multi-Broadcast Without Provenance(S, m(S))
perform Multi-Broadcast With Provenance(S, m(S)) until ki > D

if it did not complete then
for i = 1 to log M do

Z̃i ← CollectMessages(v, S, Z̃S,i, 2k̃i)
perform Beep-Wave(v, Z̃i)

end for
end if

We separate the running-time proof into four cases:
1. k ≤ D and k < M .
2. k ≤ D and k ≥M .
3. k > D and k < M .
4. k > D and k ≥M .

Case 1: k ≤ D and k < M . For the k ≤ D case, the number of unique i-bit source ID
prefixes ki will never exceed D (since it is bounded above by k), and so the call to
Multi-Broadcast With Provenance will successfully perform multi-broadcast (with
provenance, and therefore also without) in O(k log LM

k + D log L) = O(k log L + k log M
k +

D log L) = O(k log M
k + D log L) time-steps.

Case 2: k ≤ D and k ≥ M . As above, the call to Multi-Broadcast With Proven-
ance will successfully perform multi-broadcast in O(k log LM

k + D log L) = O(k log L +
D log L) = O(D log L) time-steps.

Case 3: k > D and k < M . Since k > D, the call will not complete multi-broadcast, but
its “set-up” phase will provide a leader v and knowledge of D and log M , so these steps
are not duplicated in our description of Algorithm 11. Each round of the main loop then
informs every node of the next bit in each unique message prefix, and so after log M

rounds we are done.
Let t be the round of the loop at which the call to Multi-Broadcast With Provenance
terminates. Running time for the call is then bounded above (for some constant c) by

cD log L+
t∑

i=1
c(D+ki) ≤ cD log L+

t∑
i=1

2cD ≤ cD log L+
log L∑
i=1

2cD = 3cD log L = O(D log L) ,

where the first inequality is due to the fact that ki ≤ D until termination.
Running time for the main loop of Algorithm 11 is bounded above (again for some
constant c) by:

log M∑
i=1

c(D + k̃i) = cD log M + c

log k∑
i=1

k̃i +
log M∑

i=log k+1
k̃i


≤ cD log M + c

log k∑
i=1

2i−1 +
log M∑

i=log k+1
k


≤ cD log M + c(k + k(log M − log k)) = O(D log M + k log M

k
) .

OPODIS 2015

30:14 Communicating with Beeps

Total time is therefore

O(D log L + D log M + k log M

k
) = O(D log L + D log M

k
+ D log k + k log M

k
)

= O(k log M

k
+ D log L) ,

where the last expression holds since D log k ≤ D log L and D log M
k ≤ k log M

k .
Case 4: k > D and k ≥ M . The call to Multi-Broadcast With Provenance will fail

and take O(D log L) time as before. Running time for the main loop of Algorithm 11 is
now bounded by:

log M∑
i=1

c(D + k̃i) = cD log M + c

log M∑
i=1

k̃i ≤ cD log M + c

log M∑
i=1

2i−1

≤ cD log M + cM = O(D log M + M) .

Since M ≤ k ≤ L, total running time is O(M + D log L).

Combining cases

When M > k total running time is O(k log M
k + D log L), and when M ≤ k, total running

time is O(M + D log L). J

It may seem unintuitive that Algorithm 11 achieves multi-broadcast in fewer then the
k log M time-steps required for a single node to directly transmit or hear the messages,
since this might seem to be a natural lower bound. The improvement stems from implicit
compression of the messages within the algorithm’s method. We next prove lower bounds
that match our algorithmic results, modulo the D log L additive term.

6.3 Lower Bounds
In this section we give lower bounds for the problem of multi-broadcasting. The proofs of
these bounds assume that k is greater than 1; the k = 1 case follows from the lower bounds
given for broadcasting.

I Theorem 11. Any algorithm achieving multi-broadcast with provenance must require
Ω(k log LM

k + D) time-steps.

Proof. D is an obvious lower bound, since information can only be propagated via beeps
one adjacency layer per time-step. Hence, if nodes u and v are the furthest pair in the
network, D time-steps are required for v to receive any information from u. When u is a
source, this means that at least D time-steps are required before v can know its message,
which is necessary for multi-broadcast to be successful.

Consider any node w. By the end of the multi-broadcast algorithm, w must be aware
of all (source ID, source message) pairs. It may be that w is itself a source, and already
knows its own pair, but it must still learn all k − 1 others. The number of possibilities for
this k − 1-size set of pairs is

(
L−1
k−1
)
·Mk−1, since IDs must be unique but messages need not

be. The number of bits required to distinguish one particular case is at least:

log
((

L− 1
k − 1

)
·Mk−1

)
≥ log

(
(L− 1)M

k − 1

)k−1
= (k − 1) log

(
(L− 1)M

k − 1

)
≥ k

2 log
(

M

√
L

k

)
≥ 1

4k log LM

k
.

A. Czumaj and P. Davies 30:15

Here we used the inequality L−1
k−1 ≥

√
L
k , which is true whenever L ≥ k > 1.

Since a node can only receive at most one bit of information per time-step, 1
4 k log LM

k

time-steps are required for it to receive all of the information necessary for multi-broadcast
with provenance. Therefore, total time required is at least max(D, 1

4 k log LM
k) ≥ 1

8 (D +
k log LM

k) = Ω(k log LM
k + D). J

I Theorem 12. Any algorithm achieving multi-broadcast without provenance must require
Ω(k log M

k + D) time-steps if M > k, or Ω(M + D) if M ≤ k. We assume that M > 1.

Proof. As before, D is an obvious lower bound.
We will again consider the amount of information a node w must receive for multi-

broadcast to be successful. Node w must become aware of the set of all source messages, and
it starts with knowledge of at most 1 (its own, if it is a source). The number of possibilities
for the remaining messages is at least

∑k−1
i=0

(
M−1

i

)
, since any subset of size at most k − 1 of

the remaining message space is possible (messages need not be unique, so there need not
be exactly k − 1 other messages). To distinguish a particular case, the number of bits of
information w must receive is at least log

(∑k−1
i=0

(
M−1

i

))
.

If M > k, then we have the following:

log
(

k−1∑
i=0

(
M − 1

i

))
≥ log

(
M − 1
k − 1

)
≥ log

(
M − 1
k − 1

)k−1
≥ (k − 1) log

(√
M

k

)

≥ 1
4k log

(
M

k

)
.

Similarly to the proof of Theorem 11, we used that M−1
k−1 ≥

√
M
k for M ≥ k > 1.

If M ≤ k, then we have the following:

log
(

k−1∑
i=0

(
M − 1

i

))
= log(2M−1) = M − 1 ≥ M

2 .

So, if M > k then w must receive at least 1
4 k log M

k bits, and therefore max(D, 1
4 k log M

k) ≥
1
8 (D + k log M

k) = Ω(k log M
k + D) time-steps are required.

If M ≤ k, then w must receive at least M
2 bits, and therefore max(D, M

2) ≥ 1
4 (D + M) =

Ω(M + D) time-steps are required. J

The assumption that M > 1 is essential; in the case that M = 1 and k = n, all nodes
know the only possible message already, and a multi-broadcast without provenance algorithm
can terminate immediately rather than requiring the Ω(D) time-steps the lower bound would
imply.

7 Conclusion

The beep model is interesting as a widely applicable model that requires very little of
communications devices, and can be applied even where restrictive circumstances frustrate
communication under more complex models. Furthermore, it is an interesting technical
challenge to design efficient algorithms while making the minimum possible assumptions about
the network. In this paper we have given deterministic algorithms for several fundamental
communications tasks in the beep model. The model is still young, however, and there are
many remaining avenues for fruitful research.

OPODIS 2015

30:16 Communicating with Beeps

The most pressing question our work here raises is whether the D log L additive term
in the running time of our multi-broadcasting algorithms can be reduced to D, or whether
the algorithms are in fact optimal in all cases. Since D log L is the cost of leader election,
a fundamental starting point for our algorithms, any improvement would have to begin
here. However, a faster leader election algorithm alone would not be sufficient to improve
multi-broadcast time, since it is not a bottleneck in our algorithms; they also require D log L

time elsewhere. This may suggest that D log L is indeed a lower bound, and again, it may
be wisest to focus on leader election to prove this. Multi-broadcast with provenance and
constant M is at least as hard as leader election from a set of k candidates, since after
performing the multi-broadcast with the candidates as sources, their IDs (and in particular
the highest ID) are known to all nodes.

A different possible focus for further research is to determine to what extent random-
ization can help. The leader election algorithm of [6], taking O((D + log n log log n) ·
min(log log n, log n

D)) time and succeeding with high probability, demonstrates that improve-
ments over deterministic algorithms can be made. It seems likely that randomization could
also be of use in algorithms for multi-broadcast, though as mentioned, simply employing this
randomized leader election algorithm rather than the deterministic one does not reduce the
asymptotic running time of our multi-broadcast algorithms.

References
1 Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, and F. Kuhn. Beeping a max-

imal independent set. In Proceedings of the 25th International Symposium on Distributed
Computing (DISC), pages 32–50, 2011.

2 M. Chrobak, L. Gąsieniec, and W. Rytter. Fast broadcasting and gossiping in radio net-
works. Journal of Algorithms, 43(2):177–189, 2002.

3 A. Cornejo and F. Kuhn. Deploying wireless networks with beeps. In Proceedings of the
24th International Symposium on Distributed Computing (DISC), pages 148–262, 2010.

4 K.-T. Förster, J. Seidel, and R. Wattenhofer. Deterministic leader election in multi-hop
beeping networks. In Proceedings of the 28th International Symposium on Distributed
Computing (DISC), pages 212–226, 2014.

5 M. Ghaffari, B. Haeupler, , and M. Khabbazian. Randomized broadcast in radio networks
with collision detection. In Proceedings of the 32nd Annual ACM Symposium on Principles
of Distributed Computing (PODC), pages 325–334, 2013.

6 M. Ghaffari and B. Haeupler. Near optimal leader election in multi-hop radio networks. In
Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 748–766, 2013.

7 S. Gilbert and C. Newport. The computational power of beeps. In Proceedings of the 29th
International Symposium on Distributed Computing (DISC), pages 31–46, 2015.

8 K. Hounkanli and A. Pelc. Deterministic broadcasting and gossiping with beeps. In arxiv
1508.06460, 2015.

9 D. Peleg. Time-efficient broadcasting in radio networks: A review. In Proceedings of the
4th International Conference on Distributed Computing and Internet Technology (ICDCIT),
pages 1–18, 2007.

	Introduction
	Model
	Related Work
	Our Results

	Broadcasting
	Beep Waves
	Lower Bound for Broadcasting

	Leader Election
	Network Traversal
	Depth-First Search
	DFS-Based Gossiping

	Auxiliary Procedures
	Diameter Estimation
	Message Collection
	Message Length Determination

	Multi-Broadcast
	Multi-Broadcast With Provenance
	Multi-Broadcast Without Provenance
	Lower Bounds

	Conclusion

