5,090 research outputs found

    Boost Matrix Converters in Clean Energy Systems

    Get PDF
    This dissertation describes an investigation of novel power electronic converters, based on the ultra-sparse matrix topology and characterized by the minimum number of semiconductor switches. The Z-source, Quasi Z-source, Series Z-source and Switched-inductor Z-source networks were originally proposed for boosting the output voltage of power electronic inverters. These ideas were extended here on three-phase to three-phase and three-phase to single-phase indirect matrix converters. For the three-phase to three-phase matrix converters, the Z-source networks are placed between the three-switch input rectifier stage and the output six-switch inverter stage. A brief shoot-through state produces the voltage boost. An optimal pulse width modulation technique was developed to achieve high boosting capability and minimum switching losses in the converter. For the three-phase to single-phase matrix converters, those networks are placed similarly. For control purposes, a new modulation technique has been developed. As an example application, the proposed converters constitute a viable alternative to the existing solutions in residential wind-energy systems, where a low-voltage variable-speed generator feeds power to the higher-voltage fixed-frequency grid.Comprehensive analytical derivations and simulation results were carried out to investigate the operation of the proposed converters. Performance of the proposed converters was then compared between each other as well as with conventional converters. The operation of the converters was experimentally validated using a laboratory prototype

    Z Source Inverter Topologies-A Survey

    Get PDF
    Need for alternative energy sources to satisfy the rising demand in energy consumption elicited the research in the area of power converters/inverters. An increasing interest of using Z source inverter/converter in power generation involving renewable energy sources like wind and solar energy for both off grid and grid tied schemes were originated from 2003. This paper surveys the literature of Z source inverters/converter topologies that were developed over the years

    Emerging Converter Topologies and Control for Grid Connected Photovoltaic Systems

    Get PDF
    Continuous cost reduction of photovoltaic (PV) systems and the rise of power auctions resulted in the establishment of PV power not only as a green energy source but also as a cost-effective solution to the electricity generation market. Various commercial solutions for grid-connected PV systems are available at any power level, ranging from multi-megawatt utility-scale solar farms to sub-kilowatt residential PV installations. Compared to utility-scale systems, the feasibility of small-scale residential PV installations is still limited by existing technologies that have not yet properly address issues like operation in weak grids, opaque and partial shading, etc. New market drivers such as warranty improvement to match the PV module lifespan, operation voltage range extension for application flexibility, and embedded energy storage for load shifting have again put small-scale PV systems in the spotlight. This Special Issue collects the latest developments in the field of power electronic converter topologies, control, design, and optimization for better energy yield, power conversion efficiency, reliability, and longer lifetime of the small-scale PV systems. This Special Issue will serve as a reference and update for academics, researchers, and practicing engineers to inspire new research and developments that pave the way for next-generation PV systems for residential and small commercial applications

    Three-phase AC-AC hexagonal chopper system with heterodyne modulation for power flow control enhancement

    Get PDF
    This paper proposes a three-phase AC chopper system for the interconnection of various distributed generation (DG) farms or main utilities to enhance the active and reactive power flow control. The absence of large energy storage component in direct AC-AC converter makes the system footprint small and reliable. As the interface for different AC sources, the presented converter can be configured as star or delta. However, delta connection is preferred as it can trap the potential zero-sequence current and reduce the current rating of the switching devices. In this way, the proposed converter resembles the hexagonal chopper, and it offers an inherent degree of freedom for output voltage phase-shifting. Considering the scalability in high voltage applications, a new version of the hexagonal chopper with half-bridge cell modular multilevel structure is developed. The modular multilevel AC hexagonal chopper (M2AHC) is operated in quasi-2-level mode to suppress the electro-magnetic interference (EMI) caused by high voltage switching. Quasi-2-level operation divides the voltage level transition into multi-steps, diminishing the voltage rising and falling rates (dv/dt) in high voltage condition. Then, heterodyne modulation is adopted for the presented chopper system, supplying a new degree of freedom to decouple the phase and amplitude regulation. Based on this idea, system control strategy is developed in synchronous reference frame (SRF). Simulations and experimentations have confirmed the validity of the proposed approaches

    Model Predictive Control for Power Converters and Drives: Advances and Trends

    Get PDF
    Model predictive control (MPC) is a very attractive solution for controlling power electronic converters. The aim of this paper is to present and discuss the latest developments in MPC for power converters and drives, describing the current state of this control strategy and analyzing the new trends and challenges it presents when applied to power electronic systems. The paper revisits the operating principle of MPC and identifies three key elements in the MPC strategies, namely the prediction model, the cost function, and the optimization algorithm. This paper summarizes the most recent research concerning these elements, providing details about the different solutions proposed by the academic and industrial communitiesMinisterio de Economia y Competitividad TEC2016-78430-RConsejeria de Innovacion, Ciencia y Empresa (Junta de Andalucia) P11-TIC-707

    Modeling and Control of Impedance Source Converters for Grid-Connected PV Systems

    Get PDF

    Enhanced Performance Bidirectional Quasi-Z-Source Inverter Controller

    Get PDF
    A novel direct control of high performance bidirectional quasi-Z-source inverter (HPB-QZSI), with optimized controllable shoot-through insertion, to improve the voltage gain, efficiency and to reduce total harmonic distortion is investigated. The main drawback of the conventional control techniques for direct current to alternating current (DC-AC) conversion is drawn from the multistage energy conversion structure, which implies complicated control, protection algorithms and reduced reliability due to the increased number of switching devices. Theoretically, the original Z-source, Quasi-Z-source, and embedded Z-source all have unlimited voltage gain. Practically, however, a high voltage gain (>2 or 3), will result in a high voltage stress imposed on the switches. Every additional shoot-through state increases the commutation time of the semiconductor switches, thereby increasing the switching losses in the system. Hence, minimization of the commutation time by optimal placing of the shoot-through state in the switching time period is necessary to reduce the switching loss. To overcome this problem, a combination of high performance bidirectional quasi-Z-source inverter with a sawtooth carrier based sinusoidal pulse width modulation (SPWM) in simple operation condition for maximum boost control with 3rd harmonic injection is proposed. This is achieved by voltage-fed quasi-Z-source inverter with continuous input current, implemented at the converter input side which can boost the input voltage by utilizing the extra switching state with the help of shoot-through state insertion technique. This thesis presents novel control concepts for such a structure, focusing mainly on the control of a shoot-through insertion. The work considers the derivation and application of direct controllers for this application and scrutinizes the technical advantages and potential application issues of these methodologies. Based on the circuit analysis, a small signal model of the HPB-QZSI is derived, which indicates that the circuit is prone to oscillate when there is disturbance on the direct current (DC) input voltage. Therefore, a closed-loop control of shoot-through duty cycle is designed to obtain the desired DC bus voltage. The DC-link boost control and alternating current (AC) side output control are presented to reduce the impacts of disturbances on loads. The proposed strategy gives a significantly high voltage gain compared to the conventional pulse width modulation (PWM) techniques, since all the zero states are converted into shoot-through states. The simulated results verify the validity and superiority of the proposed control strategies
    corecore