71,408 research outputs found

    Penalized additive regression for space-time data: a Bayesian perspective

    Get PDF
    We propose extensions of penalized spline generalized additive models for analysing space-time regression data and study them from a Bayesian perspective. Non-linear effects of continuous covariates and time trends are modelled through Bayesian versions of penalized splines, while correlated spatial effects follow a Markov random field prior. This allows to treat all functions and effects within a unified general framework by assigning appropriate priors with different forms and degrees of smoothness. Inference can be performed either with full (FB) or empirical Bayes (EB) posterior analysis. FB inference using MCMC techniques is a slight extension of own previous work. For EB inference, a computationally efficient solution is developed on the basis of a generalized linear mixed model representation. The second approach can be viewed as posterior mode estimation and is closely related to penalized likelihood estimation in a frequentist setting. Variance components, corresponding to smoothing parameters, are then estimated by using marginal likelihood. We carefully compare both inferential procedures in simulation studies and illustrate them through real data applications. The methodology is available in the open domain statistical package BayesX and as an S-plus/R function

    Most Likely Transformations

    Full text link
    We propose and study properties of maximum likelihood estimators in the class of conditional transformation models. Based on a suitable explicit parameterisation of the unconditional or conditional transformation function, we establish a cascade of increasingly complex transformation models that can be estimated, compared and analysed in the maximum likelihood framework. Models for the unconditional or conditional distribution function of any univariate response variable can be set-up and estimated in the same theoretical and computational framework simply by choosing an appropriate transformation function and parameterisation thereof. The ability to evaluate the distribution function directly allows us to estimate models based on the exact likelihood, especially in the presence of random censoring or truncation. For discrete and continuous responses, we establish the asymptotic normality of the proposed estimators. A reference software implementation of maximum likelihood-based estimation for conditional transformation models allowing the same flexibility as the theory developed here was employed to illustrate the wide range of possible applications.Comment: Accepted for publication by the Scandinavian Journal of Statistics 2017-06-1

    Two-dimensional shapes and lemniscates

    Full text link
    A shape in the plane is an equivalence class of sufficiently smooth Jordan curves, where two curves are equivalent if one can be obtained from the other by a translation and a scaling. The fingerprint of a shape is an equivalence of orientation preserving diffeomorphisms of the unit circle, where two diffeomorphisms are equivalent if they differ by right composition with an automorphism of the unit disk. The fingerprint is obtained by composing Riemann maps onto the interior and exterior of a representative of a shape in a suitable way. In this paper, we show that there is a one-to-one correspondence between shapes defined by polynomial lemniscates of degree n and nth roots of Blaschke products of degree n. The facts that lemniscates approximate all Jordan curves in the Hausdorff metric and roots of Blaschke products approximate all orientation preserving diffeomorphisms of the circle in the C^1-norm suggest that lemniscates and roots of Blaschke products are natural objects to study in the theory of shapes and their fingerprints

    BayesX: Analysing Bayesian structured additive regression models

    Get PDF
    There has been much recent interest in Bayesian inference for generalized additive and related models. The increasing popularity of Bayesian methods for these and other model classes is mainly caused by the introduction of Markov chain Monte Carlo (MCMC) simulation techniques which allow the estimation of very complex and realistic models. This paper describes the capabilities of the public domain software BayesX for estimating complex regression models with structured additive predictor. The program extends the capabilities of existing software for semiparametric regression. Many model classes well known from the literature are special cases of the models supported by BayesX. Examples are Generalized Additive (Mixed) Models, Dynamic Models, Varying Coefficient Models, Geoadditive Models, Geographically Weighted Regression and models for space-time regression. BayesX supports the most common distributions for the response variable. For univariate responses these are Gaussian, Binomial, Poisson, Gamma and negative Binomial. For multicategorical responses, both multinomial logit and probit models for unordered categories of the response as well as cumulative threshold models for ordered categories may be estimated. Moreover, BayesX allows the estimation of complex continuous time survival and hazardrate models

    The chebop system for automatic solution of differential equations

    Get PDF
    In MATLAB, it would be good to be able to solve a linear differential equation by typing u = L\f, where f, u, and L are representations of the right-hand side, the solution, and the differential operator with boundary conditions. Similarly it would be good to be able to exponentiate an operator with expm(L) or determine eigenvalues and eigenfunctions with eigs(L). A system is described in which such calculations are indeed possible, based on the previously developed chebfun system in object-oriented MATLAB. The algorithms involved amount to spectral collocation methods on Chebyshev grids of automatically determined resolution
    • ā€¦
    corecore