
 Piiroinen, P. T., & Kuznetsov, Y. A. (2005). An event-driven method to
simulate Filippov systems with accurate computing of sliding motions.

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29026274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://research-information.bristol.ac.uk/en/publications/an-eventdriven-method-to-simulate-filippov-systems-with-accurate-computing-of-sliding-motions(0bb9e414-9fa2-4a45-93e9-8fdefd97fac6).html
http://research-information.bristol.ac.uk/en/publications/an-eventdriven-method-to-simulate-filippov-systems-with-accurate-computing-of-sliding-motions(0bb9e414-9fa2-4a45-93e9-8fdefd97fac6).html

An event-driven method to simulate Filippov systems

with accurate computing of sliding motions

PETRI T. PIIROINEN

Bristol Center for Applied Nonlinear Mathematics

Department of Engineering Mathematics

University of Bristol

Bristol BS8 1TR, United Kingdom

YURI A. KUZNETSOV

Mathematisch Instituut

Universiteit Utrecht

Budapestlaan 6, 3584 CD Utrecht, The Netherlands

June 7, 2005

Abstract

This paper describes how to use smooth solvers for simulation of a class of
piecewise smooth dynamical systems, called Filippov systems, with discontin-
uous vector fields. In these systems constrained motion along a discontinuity
surface (so-called sliding) is possible and require special treatment numerically.
The introduced algorithms are based on an extension to Filippov’s method to
stabilize the sliding flow together with accurate detection of the entrance and
exit of sliding regions. The methods are implemented in a general way in Mat-

lab and sufficient details are given to enable users to modify the code to run
on arbitraray examples. Here, the method is used to compute the dynamics of
three example systems, a dry-friction oscillator, a relay feedback system and a
model of a oil well drill-string.

1 Introduction

Reliable numerical tools for simulation of mechanichal (e.g. gears and breaks) and
electrical (e.g. relay systems and DC-DC converters) systems play an important part
in the analysis and development of such systems. What characterizes these systems
is that they are often modelled by sets of ordinary differential equations (ODEs) of
varied complexity. There is a wide variety of numerical methods for solving ODEs
and many of them are routinely used in established software, e.g. Matlab [3].
However, most of these algorithms require that the ODEs are sufficiently smooth,
while real world models such as these mentioned above typically include some kind
of discontinuities. Systems with discontinuities are often referred to as piecewise
smooth (PWS) systems, where the discontinuities could be either in the states or in
the right hand sides (the vector field or its derivatives) of the ODEs (see e.g. [17]).
These kind of systems require special numerical treatment during simulation which
will be aparent below.

There are obvious differences in the treatment of systems with state jumps
(e.g. due to impacts in mechanical systems) and discontinuous vector fields (e.g. due

1

to switches in electronics). In the present paper we will focus on the latter type,
usually referred to as Filippov systems (see [17, 30]). The most important feature
of Filippov systems is the possibility of motion constrained to some subset of the
state space. Such constrained motion is often referred to as sliding [11, 13] (or
sticking in the context of friction systems [19, 18]. Furthermore, from a dynamical
systems point of view what characterizes general PWS systems is that they can
not only undergo standard bifurcations (such as fold, flip and Hopf bifurcations)
but also nonsmooth transitions (also referred to as C-bifurcations). In particular,
Filippov systems can exhibit four generic types of codimension-one nonsmooth bifur-
cations of limit cycles, namely, the adding-sliding, crossing-sliding, grazing-sliding,
and switching-sliding bifurcations [29, 13]. A particular feature of these nonsmooth
transitions is the possibility of sudden onset of chaos or jumps to nonlocal attractors,
which cannot be seen in smooth systems (see e.g. [21, 28]).

A first step towards understanding dynamics at these nonsmooth transitions is
often to perform direct numerical simulation (DNS), where it is of great importance
that the time and location of any nonsmooth events are resolved as accurately as
possible, e.g. in a nonsmooth system solver [20]. This idea can be compared with
another idea for simulating nonsmooth systems, which is to recast the nonsmooth-
ness in terms of a complimentarity system formulation [4]. Then one can use time
stepping methods accompanied with linear complemetarity problem (LCP) solvers
to similate the systems without the need for accurate event detection. That is, the
solver can only note that one or more events have occured during a time step with-
out finding the actual event time and location (see further [32, 26]). Such methods
have proven to be effective in simulating mechanical systems with a large number
of constraints. However, they suffer from from the disadvantage that they are typ-
ically only low-order algorithms and nonsmooth events can be lost. The focus of
this work is to accurately detect nonsmooth transitions and therefore we require
high order algorithms to solve the smooth vector fields, a way of stabilize the sliding
flow and accurate event detection algorithm. Such a simulator can then be used to
compute Poincaré maps and to continue limit-cycles and their sliding bifurcations
under parameter changes in general Filippov systems, as fixed points of these maps.
Up to now, most analysis of Filippov systems has been (semi-)analytic, and usu-
ally limited to small systems [13]. However, a numerical tool that has succesfully
been implemented to analyse Filippov systems is SlideCont [9]. It is based on the
widely used numerical package auto [14] that can continue solutions to nonlinear
boundary-value problems via orthogonal collocation. To some extent, SlideCont

has the ability to continue equilibria, limit cycles, and their sliding bifurcations,
but to date it still lacks the capability to perform DNS of Filippov systems and
automatically switch between sliding and nonsliding motions. In this paper an al-
gorithm for simulation of Filippov systems will be presented that precisely fills this
gap, i.e. it solves for the sliding flow directly and automatically switches between
free and constrained motion. Since only smooth systems are to be solved numeri-
cally, well known methods together with appropriate error estimates can be applied
between the switches.

The rest of the paper is organized as follows. In sec. 2 we introduce and de-
fine Filippov systems and explain what characterises them. A description of the
numerical algorithm for simulating these Filippov systems is presented in sec. 3.
Three examples, a dry-friction oscillator, a relay feedback system and a drill-string
model, are presented in sec. 4, along with instructions for users who wants to use

2

the downloadable programs. The actual Matlab files used for simulation of Filip-
pov systems are presented and explained in Appendix A, including instructions for
potential users. Finally, in sec. 5 we conclude this paper and discuss future work
on methods to locate and continue limit cycles and sliding bifurcations of Filippov
systems.

2 Filippov systems

As mentioned in sec. 1 we will consider dynamical systems with discontinuous vector
fields, so called Filippov systems. What characterizes such a system is the division
of the state space into disjoint subregions, such that in each such region the defining
vector field is smooth. The boundaries between the different regions will be referred
to as discontinuity surfaces. In this section only a brief introduction to Filippov
systems will be given, and for a more thorough exposition of this topic see [17, 30,
13, 29].

A general dynamical system can be written as

ẋ = f(x), x ∈ R
n, (1)

where the vector field f(x) can be either smooth or piecewise smooth. To begin with,
let us assume that the state space consists of only two regions, Si and Sj, separated
by a discontinuity surface Σij, which is defined by a smooth scalar function hij(x)
such that

Σij = {x ∈ R
n | hij(x) = 0} , (2)

and where

Si = {x ∈ R
n | hij(x) > 0} and Sj = {x ∈ R

n | hij(x) < 0} . (3)

Hence, (1) can be rewritten as

ẋ =

{

Fi(x), x ∈ Si,
Fj(x), x ∈ Sj ,

(4)

where Fi and Fj are sufficiently smooth. In the rest of this paper it is also assumed
that Fi and Fj are defined in the whole state space, even if they are only used in
their respective regions.

If the vector fields Fi and Fj are locally both pointing away from or towards the
discontinuity surface Σij the dynamics is assumed to be locally constrained to the
surface, as depicted in the left part of Fig. 1, and the motion is said to be sliding.
As mention in sec. 1 mechanical systems with friction one often refers to sliding as
sticking. The open subset Σ̂ij of the surface Σij where the vector fields are both
pointing towards or away from Σij is often referred to as the sliding surface. In
Fig. 1 the sliding surface Σ̂ij ⊂ Σij is a line segment between two points, Σ̂−

ij and

Σ̂+
ij. If it holds that

LFi−Fj
(hij)(x) < 0, x ∈ Σ̂ij, (5)

then Σ̂ij is stable, while if

LFi−Fj
(hij)(x) > 0, x ∈ Σ̂ij, (6)

3

Σ̂ijΣ̂ij

Sj

Σij
Σ̂
−

ij

Sj

Si

Σ̂
+

ijΣ̂
+

ij

Σij

Si

Σ̂
−

ij

Figure 1: Vector fields Fi and Fj near a stable sliding region Σ̂ij (left) and the
corresponding orbits (right).

the sliding surface is unstable. Here LF (h)(x) is given by

LF (h)(x) :=
dh

dt
(x) =

dh

dx

dx

dt
(x) =

〈

dh

dx
(x), F (x)

〉

(7)

and is sometimes referred to as the Lie derivative of h(x) along F (x) (see e.g. [1]).
Using Utkin’s eqvivalent control [37] the dynamical system (4) can be extended

to include the vector field on the sliding surface such that

ẋ = Fij(x), x ∈ Σ̂ij, (8)

where

Fij(x) =
Fi(x) + Fj(x)

2
+

Fj(x) − Fi(x)

2
µij(x), (9)

and −1 ≤ µij(x) ≤ 1. Since the motion is constrained to Σ̂ij , Fij must be tangent
to Σ̂ij, i.e. LFij

(hij)(x) = 0, which yields

µij(x) = −
LFi+Fj

(hij)(x)

LFj−Fi
(hij)(x)

. (10)

It is notable that Fij = Fi and Fij = Fj when µij(x) = −1 and µij(x) = 1,
respectively, and also LFj−Fi

(hij)(x) 6= 0 for x ∈ Σ̂ij since the vector fields always
point toward or away from the discontinuty surface. The surfaces defining the
borders of the sliding surface are thus given by

Σ̂−
ij =

{

x ∈ Σ̂ij | µij(x) = −1
}

and Σ̂+
ij =

{

x ∈ Σ̂ij | µij(x) = 1
}

. (11)

These borders are composed of so called tangent points [29] and will be referred to
as tangent surfaces (cf. the points Σ̂−

ij and Σ̂−
ij in Fig. 1).

We next define solutions of the Filippov system (4) by concatenating standard
solutions in Si and Sj and sliding solutions in Σ̂ij (see the right part of Fig. 1). To
assure the uniqueness of such a solution, it is sufficient to assume that it does not
visit points of Σ̂ij, where both vectors Fi and Fj are tangent to Σij. In what follows,
we call such solutions and their corresponding orbits generic.

Finally, let us discuss briefly a relationship between the above desribed construc-
tion and the commonly used Filippov’s convex method [17] (see further sec. 3.6). The
original Filippov approach consists of replacing (4) by the differential inclusion

ẋ ∈

{Fi(x)}, x ∈ Si,
co(Fi, Fj), x ∈ Σij,
{Fj(x)}, x ∈ Sj,

(12)

4

where co(Fi, Fj) is the minimal closed convex set containing Fi and Fj , i.e.

co(Fi, Fj) = {f ∈ R
n : f = λFi + (1 − λ)Fj , λ ∈ [0, 1]}.

A solution to this differential inclusion is an absolutely continuous function x(t)
that satisfies (12) for almost all t from its domain of definition. Under assumed
smoothness of Fij and hij , the famous Theorem 2 by [17](Chapter 2, pp. 110-111)
implies forward uniqueness of those solutions to (12), which do not visit points of Σij,
where both vectors Fi and Fj are tangent to Σij. Moreover, this unique solution
coincides with the one constructed above. It should be noted that in Filippov’s
approach solutions starting at unstable sliding surfaces are not unique, while they
generically have this property in our formulation, where they are constrained to Σ̂ij.
This differnce is not important in most applications, since solutions starting off the
unstable sliding surface can never reach it.

3 Simulation of Filippov systems

Under some circumstances (e.g. if small linear systems are considered) it is certainly
possible to find explicit expressions for the solutions of the ODE that describes
sliding if the vector fields in the non-sliding regions are given. However, the idea
here is to present a numerical algorithm where the user only provides the different
vector fields and information about the discontinuity surfaces and then the vector
fields for the sliding regions are automatically computed by a routine which uses
eqs. (2), (8)-(10). The method that has been chosen here to simulate Filippov
systems is similar to the hybrid system approach, where integrations of smooth
ODEs are mixed with discrete maps and vector field switches. In practice, it means
that an initial value problem is solved for one of the possible smooth dynamical
systems given in eq. (1) until the orbit reaches one of the predefined surfaces. At
such a point the vector field is possibly switched, depending on the state at that
time instance (see futher sec. 3.2).

It will be assumed that a suitable time stepping method is chosen to integrate
smooth ODE systems to a desired tolerance (within certain limitations). There are
numerous methods to solve different types of ODEs (see, e.g. [22, 23, 35]) and based
on them numerical solvers (e.g. [25, 5]) so the first task is, indeed, to choose one that
is suitable for the current system. One of the most frequently used time-stepping
solvers for dissipative systems is the fourth-order Runge-Kutta [6] that works very
well for nonstiff problems, but for more stiff systems a special solver is required,
based on, e.g., a BDF [5] or Radau [8, 24] method. For linear systems there also
exist special methods [15, 33, 7], which are usually faster than general solvers for
nonlinear systems. Because of our choice of strategy to integrate Filippov systems, it
is very important to have a reliable ODE solver that is accompanied by an accurate
routine to locate discontinuity and tangent surface crossings (see sec. 2). In what
follows a surface crossing will be called an event and a scalar function defining an
event surface is referred to as the event function. The existence of event detection
routines will be here assumed. For instance in Matlab event detection routines
are built-in and can easily be used toghether with the likewise built-in ODE solvers
to integrate orbits and to locate events along them as precisly as the accuracy
of Matlab allows (for more details of the Matlab ODE routines, see [36, 3]).
However, standard methods, e.g. secant type methods, can easily be implemented
and have proven to be fast and reliable. The type of events to be detected also play

5

an important role in how to numerically deal with them and how sensitive the event
detection needs to be.

In the rest of this section we will focus on special measures that have to be taken
in order to have a Filippov solver that automatically switches between different
vector fields, and that is relatively robust.

3.1 Regularizing the sliding vector field

Since a numerically constructed sliding solution might not follow the discontinuity
surface exactly, we have to consider the vector field Fij not only for x ∈ Σ̂ij but in a
neighbourhood of Σ̂ij. Under the above introduced generisity conditions, equations
(9) and (10) can be used to define the vector field Fij in such a neighbourhood, if
we formally allow |µij(x)| to be greater than 1. Note that orbits of the extended
vector field Fij pass through the boundary of the siding surface Σ̂ij, i.e. the tangent
surfaces Σ̂±

ij. This property, that is illustrated in Fig. 2 (left), is essential for the
event detection and location descibed in the next section. However, this extended

Sj

Si

Σij

Figure 2: The sliding vector fields Fij (left) and F̂ij (right) in a neighbourhood of
the discontinuity surface Σij.

vector field has a family of invariant surfaces hij = const, one of which is Σij given
by hij = 0. Therefore, for a numerical solution of the sliding equation, there is
the (unwanted) possibility of drifting away from the discontinuity surface, to one of
the other invariant surfaces. This occurs due to accumulation of numerical errors
combined with the neutral stability of the surface Σ̂ij for ẋ = Fij(x) (see the left
panel of Fig. 2). One way to avoid such a drift is to make the sliding surface Σ̂ij

attracting as long as the motion governed by the sliding vector field (9) is constrained
to it. This can be done by introducing a new sliding vector field F̂ij by adding a small
term to the original vector field Fij that makes the sliding surface locally attractive
(see the right panel of Fig. 2). For example, this vector field can be defined as

F̂ij(x) = Fij(x) − Chij(x)

(

dhij

dx
(x)

)T

, (13)

where C is a positive constant. It is clear that Σ̂ij is locally attracting since the new
term is orthogonal to Σ̂ij and points towards the surface. Furthermore, for x ∈ Σ̂ij,
we have

Chij(x)

(

dhij

dx
(x)

)T

= 0,

which is exactly what we want since the extra term does not interfere with the
sliding vector field as long as the solution stays on Σij. It is always possible to

6

choose C > 0 such that the motion in the normal direction will be faster than
sliding along the discontinuity surface. However, one should avoid choosing C too big
because in this case the ODE system ẋ = F̂ij(x) becomes stiff. Similar techniques to
make constraint surfaces attractive are used in numerical integration of differential-
algebraic equations (DAEs) (see e.g. [2]).

When |µij(x)| > 1 for x ∈ Σij, then the motion will not be locally constrained
to Σij, and we note that Fij = F̂ij = Fi if µij = −1 and Fij = F̂ij = Fj if µij = −1.
Therefore, to compute a solution passing through a point where |µij(x)| > 1, we
must switch to Fi if µij(x) < −1 and Fj if µij(x) > 1.

3.2 Event location

When simulating Filippov systems using an event driven scheme it is important to
locate events, e.g. discontinuity surface or a sliding boundary crossing, as accurately
as possible (within a given tolerance). Therefore, to make an automatic algorithm
robust, specific events need to be prediefined as region-dependant. If it is assumed
that a system has a total of m possible events in each region then an event list e(x, t)
can be defined as

e(x, t) = (e1(x, t), . . . , em(x, t)) , (14)

where each element ek(x, t) ∈ R is an event function that defines an event surface
that can be reached by the state vector or the time.

To make things more clear, we will assume that there is locally only one discon-
tinuity surface (Σij) present. However, in sec. 4.3 a system with two discontinuity
surfaces will be presented and numerically examined (see further sec. 3.6). As men-
tioned in sec. 2 the state space for a Filippov system with one discontinuity surface
is divided into three interesting regions, namely, Si, Sj, and Σij. Further, as seen
in Fig. 3, the state space can also be divided into two regions, M̂ij and Mij , by the
two extended tangent surfaces Σ−

ij and Σ+
ij, which are defined by

Σ−
ij = {x ∈ R

n | µij(x) = −1} = {x ∈ R
n | LFi

(hij) = 0} , (15)

Σ+
ij = {x ∈ R

n | µij(x) = 1} =
{

x ∈ R
n | LFj

(hij) = 0
}

, (16)

where µij is defined as in eq. (10). For later reference, by using (15) and (16) the

PSfrag replacements

Si

Sj

Σij
Σ̂ij

Mij M̂ij Mij

Σ̂−
ij Σ̂+

ij

Σ−
ij Σ+

ij

Figure 3: The different regions that the state space is divided into in a neighbour-
hood of the sliding surface Σ̂ij.

two regions M̂ij and Mij are defined as

M̂ij = {x ∈ R
n | |µij(x)| < 1} and Mij = {x ∈ R

n | |µij(x)| ≥ 1} . (17)

7

Notice the similarity with the tangent surfaces defined in eq. (11). Also, since it is
assumed that Fi and Fj are defined in the whole state space, µij is defined everywhere
except for points where both Fi and Fj are tangent to the surface hij(x) = const.
Recall that such points have been excluded from generic orbits in sec. 2.

This division into four disjoint subregions makes it relatively straightforward to
implement in a numerical algorithm and reduces the number of checks that have
to be made every time the discontinuity surface Σij is crossed. Also, since we are
always looking for the surfaces given by LFi

(hij)(x) = 0 and LFj
(hij)(x) = 0 it

makes the algorithm more robust for the location of events for orbits that hit the
discontinuity surface almost tangentially.

3.2.1 Event functions

For each region we will now introduce a number of event functions that will be used
for the location of possible surface crossings, at which the state leaves one region
and continues into another.

Event functions in Si and Sj

If x ∈ Si∨Sj there are three surfaces to look for, namely the discontinuity surface Σij,
and the extended sliding boundaries Σ−

ij and Σ+
ij (see Fig. 3). Therefore the natural

choices for event functions are hij(x) = 0, LFi
(hij)(x) = 0 and LFj

(hij)(x) = 0.
However, depending on in which region the state x is in before the surface crossing
it is enough to look for surface crossings of Σij from one direction. For instance if
x ∈ Si (x ∈ Sj) we know that hij(x) > 0 (hij(x) < 0) and thus we need only look
for crossings of Σij as hij changes from positive to negative (negative to positive).
Similarily, by keeping track of the sign of the LFi

(hij)(x) and LFj
(hij)(x) one can

determine from what direction to look for the surfaces Σ−
ij and Σ+

ij, respectively.

Event functions on the sliding surface Σ̂ij

If x ∈ Σ̂ij there are two surfaces to look for, namely Σ−
ij and Σ+

ij (see Fig. 3), and the
corresponding event functions are LFi

(hij)(x) = 0 and LFj
(hij)(x) = 0, respectively.

The search directions of these surfaces are found in the same way as the previous
case.

Event functions directions

Following the discussion above each of our original event functions ek can be seen as
one of two different kinds, namely e+

k (x, t) and e−k (x, t), where the former means that
a surface crossings is only detected when ek is increasing and decreasing, respectively.

3.2.2 Event variables

In order for the solver to know which vector field to use and which events to look
for, a number of event variables will be introduced. Thus, to keep track of which
of the regions Si, Sj, and Σ̂ij the state variable x(t) is in we introduce the event
variables s1, s2, and s3, respectively. Further, to keep track of if the state variable
is in Mij or M̂ij we introduce the event variables s4 and s5, respectively. Letting

8

s = (s1, s2, s3, s4, s5)
T und using the informations from sec. 3.2.1 we can give the

event variables the following values

s1(x) =

{

1, x ∈ Si,
−1, x /∈ Si,

s2(x) =

{

1, x ∈ Sj,
−1, x /∈ Sj,

(18)

s3(x) =

{

1, x ∈ Σ̂ij,

−1, x /∈ Σ̂ij,
(19)

s4(x) =

{

1, x ∈ Mij ,
−1, x /∈ Mij ,

s5(x) =

{

1, x ∈ M̂ij,

−1, x /∈ M̂ij,
(20)

Depending on in which region x(t) is in and to which region it will continue the event
parameters are changed at that event accordingly. For instance, assume x ∈ Si∪M̂ij

before it crosses the discontinuity surface Σij then we will have

sij = (1,−1,−1,−1, 1)

before the crossing and
sij = (−1,−1, 1,−1, 1)

after. This means that the orbit is sliding along Σ̂ij after the surface crossing and
this information is passed to the solver so that the correct vector field is used in the
solving process.

For any event variable change it is of course possible to predefine an event matrix
such that an event variable vector (just before an event) is multiplied by a event
matrix to get the new event variables (just after an event). However, this has not
been used in the present version of the algorithm.

3.3 The dynamical system

Now we are ready to write the full dynamical system with one discontinuity surface
as

ẋ =

Fi(x), x ∈ Si,

F̂ij(x), x ∈ Σ̂ij,
Fj(x), x ∈ Sj,

(21)

where the sliding vector field is given by

F̂ij(x) =
Fi(x) + Fj(x)

2
+

Fj(x) − Fi(x)

2
µij(x) − Chij(x)

d

dx
hT

ij(x), (22)

and µij(x) is defined by (10). Together with the laws (18)-(20) for the event variables
if we let the event functions be defined by

e1(x, t) := hij(x), e2(x, t) := LFi
(hij)(x), e3(x, t) := LFj

(hij)(x),

this constitutes equations to simulate a Filippov system using the event-driven ap-
proach.

In the table below we have listed what surface to look for in each region, the list
of event variables in each region and also from which direction a zero crossing of an
event function is to be looked for. A dash in the table means that there is no need
to look for this zero crossing since this event cannot happen before another event
has happened before.

9

x ∈ sij = e1 e2 e3

Si ∪ Mij (1,−1,−1, 1,−1) e−1 = 0 e±2 = 0 e±3 = 0

Si ∪ M̂ij (1,−1,−1,−1, 1) e−1 = 0 e±2 = 0 e∓3 = 0
Sj ∪ Mij (−1, 1,−1, 1,−1) e+

1 = 0 e±2 = 0 e±3 = 0

Sj ∪ M̂ij (−1, 1,−1,−1, 1) e+
1 = 0 e±2 = 0 e∓3 = 0

Σ̂ij (−1,−1, 1,−1, 1) − e±2 = 0 e∓3 = 0

3.4 User defined events

Often dynamical systems are transformed from nonautonomous to autonomous by
extending the state variables by adding the (scaled) time as a new variable. Typi-
cally, if a systems is periodic, for instance due to a periodic forcing, with period T
it might be of interest to locate the end of the period, where time could be reset to
zero. Also, a specific time is often used as a Poincaré section when analysing recur-
rent dynamics. Assume xk is the state variable of the (scaled) time and tP is the
time that is of interest. Introduce a surface ΛP defined by the function hP (x) = 0,
where hP (x) = xk − tP . Then it is only necessary to look for ΛP for incresing values
of hP (x). Notice that it is possible to introduce any other event function of the
user’s preference, for example to define other Poincaré surfaces.

3.5 Dificulties using event detection routines in sliding systems

As with any hybrid method, the proposed algorithm can be sensitive to the accuracy
of event detection. If an orbit hits a sliding surface Σ̂ij almost tangentially, the
intersection point will be found with a relatively large error in the sliding direction.
Fortunately, this error would then be corrected at the next event, i.e. switching from
the sliding to the unconstraned motion at the nearby tangent surface.

Another potentially dangerous phenomenon is chatter, i.e., the appearance of in-
finitely many switches in a finite time interval. Taken literally, the desribed method
looks inappropriate for such solutions. However, due to finite time steps, its be-
haviour in our numerical experiments turns out to be comparable to that of LPC
solvers. After successfully computing a (large) number of events, the code merely
steps over the rest of them (cf. sec. 4.2).

At points x ∈ Σij, where both vectors Fi and Fj are tangent to the discontinuity
surface, we have

LFj±Fi
(hij)(x) = 0

and the sliding vector Fij is not defined, see (10). In generic planar Filippov systems
without parameters, these singular sliding points do not appear. However, they ap-
pear in generic one-parameter families of planar Filippov systems as collisions of
tangent points (see [29]), as well as in generic n-dimensional parameter-independent
Filippov systems with n ≥ 3 and their families as intersections of the tangent sur-
faces Σ̂±

ij (see, e.g. [17](Chapter 5)). Therefore, it is also necessary to describe the
behaviour of the proposed method near such singularities.

In planar Filippov systems, non-isolated in Σ̂ij singular sliding points are not
harmfull, since the sliding vector Fij can be extended by continuity to these points
(if we neglect infinitely-degenerate cases, see [29]). Note that isolated singular slid-
ing points are usually considered as equilibria. Numerical experiments show that

10

our method, indeed, steps over non-isolated singular points correctly. In multidi-
mensional Filippov systems, the situation is more involved and requires additional
theoretical analysis. However, preliminary numerical experiments demonstrate ro-
bust behaviour of the code also in these cases.

3.6 A number of discontinuity surfaces

In the discussion above we have only considered one discontinuity surface. However,
it is straightforward to extend the methods to an arbitrary number of surfaces.
The only thing one has to do is to assure uniqueness of orbits constrained to the
discontinuity surfaces. This is done by only considering a special class of Filippov
systems where the vector fields in the different regions of state space are linearly
dependent (see further below). To simulate orbits along the various discontinuity
surfaces we will here use Filippov’s convex method instead of Utkin’s equivalence
method (as was the case in sec. 2) to show how that approach can be implemented
but also since it is slightly more straight forward. Notice also that the notation in
this section therfore differs somewhat from the one-surface case.

Assume we have a general dynamical system (1) and M discontinuity surfaces
Σi defined by M functions hi(x) = 0. These surfaces divide the state space into a
number of disjoint sets, where the vector fields are different. As mentioned above
we have specific rules on how the vectorfields can look like to quarantee uniqueness
of orbits constrained to the disconinuity surfaces. The idea we propose here is to
introduce a base vector field that is valid when hi(x) > 0 for all i and for each
surface crossing we make an addition ∆i to the base vector field that is used after
the surface crossing. Using this idea and Filippov’s convex method the vector field
for the whole domain, including the sliding regions, can be written as

F (x) = Forig(x) +
M
∑

i=1

∆i(x)µi(x), (23)

where

µi(x) =

1, hi(x) > 0,
[0, 1] hi(x) = 0,
0, hi(x) < 0.

(24)

For each surface we have thus defined a function µi(x), in a similar way as in the
single surface case, that determines the active vector field (cf. eqs. (9) and (12)).

In the same way as described earlier in secs. 3.2-3.5 the program has to keep
track of if surfaces have been crossed or not so that the the correct values of the µis
are used, and thus the correct vector field is integrated. The only difference from
the one-surface case is that each discontinuity surface requires its own set of event
variables and event functions.

Since sliding can occur along more the one discontinuity surface simultaneously
the values of the corresponding µi ∈ [0, 1] have to be determined. This can be done
by using the same approach as in the one-surface case. To give an example, and
without lack of generality, assume that the orbit will slide along the surfaces Σi

and Σj then we know that hi(x) = 0 and hj(x) = 0, respectively, and we want
LF (hi)(x) = 0 and LF (hj)(x) = 0 to hold. By using these conditions, eqs. (23) and
(24) we get that

(

µi(x)
µj(x)

)

= −

(

L∆i
hi(x) L∆j

hi(x)
L∆i

hj(x) L∆j
hj(x)

)−1 (

LF̃ (hi)(x)
LF̃ (hj)(x)

)

, (25)

11

where

F̃ (x) = Forig(x) +
M
∑

k=1, k 6=i,j

∆k(x)µk(x). (26)

Furthermore, a similar regularization of the sliding vector field as in sec. 3.1 (see
especially eq. 13) is possible by introducing M constants Ci, where each such con-
stant has a positive value if the systems is sliding along the ith surface and is zero
otherwise.

The main disadvantage with this approach is that the number of surfaces and
event locations grows quickly with the number of discontinuity surfaces which natu-
rally increses the simulation time. However, this approach for two surfaces has been
implemented in the drill-string example in sec. 4.3.

4 Examples

In this section we will present some results of using the implemented programs
described in this paper, and presented in appendix A, to simulate three different
systems. These systems have been chosen to highlight the variety of Filippov sys-
tems and different dynamical behaviour that the simulation tool can handle. The
first system is a nonlinear dry-friction oscillator with one discontinuity surface that
has a rich dynamics and chartacteristic stick-slip motion. The second system is
a linear relay feedback system with one discontinuity surface that exhibit chaotic
behaviour. The third example is a nonlinear drill-string system with two discon-
tinuity surfaces. For these examples we will give all necessary information so that
the Matlab simulation routines in appendix A can be used. In all examples the
ODE-solver ode45 (4th order Runge-Kutta) has been used with Matlab’s built-in
event detection routines. Also, all files used in these examples can be downloaded
from http://seis.bris.ac.uk/~enptp/Filippov/.

4.1 A dry-friction oscillator

Sick-slip motion is a well-known, but not fully understood, behaviour in many me-
chanical systems with friction. The most simple examples showing this kind of
behaviour are dry-friction oscillators. Therefore they have drawn a lot of attention
and been widely studied. Here we will focus on an undamped dry-friction oscillator
with one degree of freedom given by

ÿ + y = sin(ωt) − F sign(ẏ), (27)

where ω is the forcing frequency and F is the size of the Coloumb friction force.
This system has been described by [16] and extensively analysed in [27, 10, 34].

To be able to use the proposed strategy for integrating (27) we will consider the
equivalent autonomous first order system

ẋ =

ẋ1

ẋ2

ẋ3

 =

x2

−x1 + sin(x3) − F sign(x2)
ω

 , (28)

where x = (x1, x2, x3)
T = (y, ẏ, ωt mod 2π)T . This implies that the discontinuity

surface Σ12 is defined as

Σ12 =
{

x ∈ R
3 | H12(x) = 0

}

,

12

which divides the state space into two disjoint regions

S1 =
{

x ∈ R
3 | H12(x) > 0

}

, S2 =
{

x ∈ R
3 | H12(x) < 0

}

,

where
H12(x) = x2.

Now it is easy to rewrite (28) as

ẋ =

{

F1(x), x ∈ S1

F2(x), x ∈ S2,
(29)

where

F1 =

x2

−x1 + sin(x3) − F
ω

 , F2 =

x2

−x1 + sin(x3) + F
ω

 .

The first approach to analyse the dynamics of a system of this kind is often to
make a parameter sweep and create a brute-force bifurcation diagram, which could
reveal stable attractors for the given parameter ranges. In Fig. 4(a) a brute-force
bifurcation diagram of the system (29) is depicted, where the parameter F was kept
fixed at 0.4 and the frequency ω varied. For each value of the frequency the system
was integrated 500 forcing periods (corresponding to an integration time 500×2π/ω)
and for the final 100 periods the variable x2 was recorded and plotted every time
the orbit reached the Poincaré section defined by the function

hP (x) = x3 − 2π.

It is clear from Fig. 4(a) that we have a big peak at ω = 1 due to resonance, as
expected. Further we see that there are drastic changes in the bifurcation diagram
at 1/ω ≈ 1.8 and 1/ω ≈ 4.8. To understand how the dynamics differ from one
parameter range to the next the limit cycles corresponding to the frequencies at the
Roman numerals ’I’, ’II’ and ’III’ in Fig. 4(a) was located and are shown in Fig. 4(b),
(c) and (d), respectively. In Fig. 4(b), where 1/ω = 0.5, we see a limit cycle without
any sliding segments, but as we increase 1/ω to 3 (point ’II’ in Fig. 4(a)) we clearly
see in Fig. 4(c) that the limit cycle has two segments of sliding motion. Finally,
as we increase 1/ω further to 6 (point ’III’ in Fig. 4(a)) the limit cycle include an
even greater number of sliding segments, as seen in Fig. 4(d). These results indicate
that at least two nonsmooth transitions (or sliding bifurcations [29, 13], see sec. 1)
has occured along the parameter sweep. The proposed sumulation algorithm can
now be extended to accurately detect where these transitions occur. In fact, in
[10] the transitions points of this particular system are accurately detected and the
sliding bifurcations are continued under parameter variations, and a two-parameter
bifurcation diagram (in F and ω) is presented to show how the sliding bifuractions
organize the global dynamics. The continuation methods used in [10] are presented
in great detail in [34].

This particular example shows that the proposed algorithm cannot only be used
for direct numerical simulations of systems with sliding motion but also as a building
block for continuation algorithms that follow branches of sliding bifurcations. The
results have helped us to understand what happens to the dynamics in mechanical
systems with sliding segments (also referred to as stick-slip motion).

13

0 2 4 6 8
−1

0

1

x
2

PSfrag replacements (a)

F

1/ω

I

II III

(b)
(c)
(d) 0

−0.8

0

0.8

π 2πx
3

x
2

PSfrag replacements

(a)

F
1/ω

I
II

III

(b)

(c)
(d)

0
−0.8

0

0.8

π 2πx
3

x
2

PSfrag replacements

(a)

F
1/ω

I
II

III
(b)

(c)

(d) 0
−0.4

0

0.4

π 2πx
3

x
2

PSfrag replacements

(a)

F
1/ω

I
II

III
(b)
(c)

(d)

Figure 4: (a) A brute-force bifurcation diagram for recurrent motion, where x2 is
plotted against 1/ω at the Poincaré section x3 = 2π. The parameter values at the
indicated points ’I’, ’II’ and ’III’ are (F = 0.4, ω = 0.5), (F = 0.4, ω = 3) and
(F = 0.4, ω = 6), respectively. The panels (b), (c) and (d) show the limit cycles
corresponding respectively to the points ’I’, ’II’ and ’III’.

4.2 A relay feedback system

Relay feedback is one of the most commonly used control techniques in practical
applications, such as temperature control and mechanical and electro-mechanical
systems. A single-input single-output relay feedback system can be written as

ẋ = Ax + Bu, (30)

y = Cx, (31)

u = −sgn(y), (32)

or

ẋ =

{

Ax − B, Cx > 0
Ax + B, Cx < 0

(33)

where x ∈ R
n is the state vector, and A ∈ R

n×n, B ∈ R
n×1, C ∈ R

1×n are constant
matrices. Here we will take a closer look at a particular system analysed in [12],
where

A =

−(2ζω + 1) 1 0
−(2ζω + ω2) 0 1

−ω2 0 0

 , B =

1
−2σ

1

 and C =

1
0
0

 , (34)

14

and where x = (x1, x2, x3)
T is the state vector and k ∈ R is the control parameter.

From this we can also conclude that the discontinuty surface Σ12 is defined by

Σ12 =
{

x ∈ R
3 | H12(x) = 0

}

, (35)

and the two disjoint regions are thus given by

S1 =
{

x ∈ R
3 | H12(x) > 0

}

and S2 =
{

x ∈ R
3 | H12(x) < 0

}

, (36)

where
H12(x) = x1. (37)

To be able to use our method we write the dynamical system (33) as

ẋ =

{

F1(x), x ∈ S1,
F2(x), x ∈ S2,

(38)

where the two vector fields are

F1(x) =

−(2ζω + 1)x1 + x2 − 1
−(2ζω + ω2)x1 + x3 + 2

−ω2x1 + x2 − 1

 , F2(x) =

−(2ζω + 1)x1 + x2 + 1
−(2ζω + ω2)x1 + x3 − 2

−ω2x1 + x2 + 1

 .

(39)
In Fig. 5(a) we see the dynamics, and eventually the limit cycle, for a particular

−2
0

2

−4

0

4
−0.015

0

0.015PSfrag replacements
x1

x1

x3 x2

(a)

(b)

t 100 105 110
−0.015

0

0.015
PSfrag replacements

x1
x1

x3

x2

(a)

(b)

t

Figure 5: (a) A state space diagram and (b) a time-history diagram of the state
variable x1 showing the eventual stable periodic motion, for ζ = 0.05 and ω = 25.

parameter combination (ζ = 0.05, ω = 25) showing both unconstrained and sliding
motions. The initial condition is on the sliding surface, as seen in Fig. 5. This does
not represent a problem for the simulator. Note also the large number of events that
take place per period including 18 separate departures from the sliding surface.

A brute force bifurcation diagram, where ζ = −0.07 was held fixed and σ varied,
is shown in Fig. 6(a). There we see a period-adding sequence where high periodic
motion or chaos is observed between periodic windows, and where each period in-
clude many intervals of sliding motion. Similar period-adding behaviour can also be
seen in impacting systems and piecewise linear maps. In Fig. 6(b) chaotic motion is
depicted for ζ = −0.07 and σ = 10 to highlight the great complexity of the motion.

Here we have shown that the simulation method can be used to analyse systems
with a high number of sliding segments per period by calculating bifurcation dia-
grams. Together with a continuation code, as discussed in sec. 4.1, a bifurcation
diagram constitute a powerful tool to analyse linear Filippov system that arise in
many electronical systems.

15

5 10 15 20
0

0.15

0.3

PSfrag replacements

(a)

(b)

x1

x1

x3

x2

ω −2
0

2

−4

0

4
−0.1

0

0.1

PSfrag replacements

(a)

(b)

x1

x1

x3 x2

ω

Figure 6: (a) A bifurcation diagram showing x1 versus ω for ζ = −0.07, where
the Poincaré surface is given by LF1

(H)(x) = 0. (b) A state space diagram for
ζ = −0.07, ω = 10), where the initial condition is taken to be on the sliding surface.

4.3 A drill-string system

A simple model of the motion of a drill-string consists of two discs separated by a
string with a brake connected to the lower disc. The upper disc represents a rotary
table to which a drive motor is connected via a gear box and the string. The lower
disc represents the drill-string with the bottom-hole-assembly at the drill-rig and
the additional break implements the friction forces between the drill bit and the
bore whole. Such a drill-string system is described in [31] and modelled by

Juθ̈u + kθ (θu − θl) + Tfu (θu) = kmu, (40)

Jlθ̈l − kθ (θu − θl) + Tfl (θl) = 0, (41)

where θu (θl), Ju (Jl) and Tfu (Tfl) are respectively the angle, the moment of
inertia and friction torque of the upper (lower) disc. Furthermore, kθ is the torsional
stiffness of the drill string, u is the input voltage and km is a motor constant. Making
the assumption used in [31] on the friction laws at the upper an lower discs we have

Tfu(θ̇u) =

{

T+
fu = Tsup + bupθ̇u, θ̇u > 0

T−
fu = −Tsun + bunθ̇u, θ̇u < 0

(42)

and

Tfl(θ̇l) =

T+
fl = Tsl + T1

(

1 +
2

1 + eβ1θ̇l

)

+ T2

(

1 +
2

1 + eβ2 θ̇l

)

, θ̇l > 0,

T−
fl = −Tsl − T1

(

1 +
2

1 + e−β1θ̇l

)

− T2

(

1 +
2

1 + e−β2θ̇l

)

, θ̇l < 0,

(43)
where bup, bun, Tsup, Tsun, Tsl, T1, T2, β1 and β2 are all constants. By letting

x = (x1, x2, x3)
T = (θu − θl, θ̇u, θ̇l)

T

the drill-string system (40-(41) can be written as

ẋ =

x2 − x3

km

Ju

u −
kθ

Ju

x1 −
1

Ju

Tfu(x2)

kθx1 −
1

Jl

Tfl(x3)

. (44)

16

From (42) and (43) we can determine that there are two discontinuity surfaces Σ1

and Σ2 defined by

Σ1 =
{

x ∈ R
3 | H1(x) = 0

}

, Σ2 =
{

x ∈ R
3 | H2(x) = 0

}

, (45)

where
H1(x) = x2 and H2(x) = x3. (46)

Notice that we are using the methodology and notation introduced in sec. 3.6. Now
it is straight forward to write (44) in our preferred format:

ẋ = F1(x) + ∆1(x)µ1(x) + ∆2(x)µ2(x), (47)

where

F1(x) =

x1 − x2

km

Ju

u −
kθ

Ju

x1 − T+
fu(x2)

kθ

Jl

x1 − T+
fl(x3)

, (48)

∆1(x) =

0
T+

fu(x2) − T−
fu(x2)

0

 and ∆2(x) =

0
0

T+
fl(x2) − T−

fl(x2)

 . (49)

Here it is important to point out that the four possible vector fields are linearly
dependent, so that we have a uniquely defined sliding vector field in the intersection
between discontinuity surfaces. Since this system has two dicontinuity surfaces, due
to the Coloumb friction models at the upper and lower discs, it it possible for the
discontinuity surfaces to cross, which practically means that the upper and lower
disc can get stuck at the same time. However, for the example examined here

−6 0 6
0

10

20

I

II

III

IV

PSfrag replacements

(a)

(b)

x3

x1 −4 0 4

0

0.5

1

IV III II I

PSfrag replacements

(a)

(b)
x3

x1

Figure 7: (a) A projection of the state diagram showing x3 against x1 of four limit
cycles ’I’, ’II’, ’III’ and ’IV’ corresonding to u = 1, u = 2, u = 3 and u = 5,
respectively. (b) A close up of panel (a) to show the transformation from the non-
sliding limit cycle to sliding limit cycles via two sliding bifurcations. The rest of
the system parameters are km = 3.5693, kθ = 0.078, Ju = 0.4765, Jl = 0.0326,
Tsup = 0.3216, Tsun = 0.3026, bup = bun = 1.9667, Tsl = 0.0940, T1 = 0.0826,
T2 = −0.2910, β1 = 6.3598 and β2 = 0.0786

limit cycles with sliding along one surface (Σ2) only has been found. In Fig. 7 we

17

show four limit cycles ’I’, ’II’, ’III’ and ’IV’ corrsponding to output voltages u = 1,
u = 3, u = 3 and u = 5, respectively. The limit cycle ’I’ does not have any sliding
segments but as the voltage is increased to 2 the limit cycle has undergone a grazing-
sliding bifurcation and both the periodic solutions ’II’ and ’III’ clearly have a sliding
segment. As the voltage is increased further the limit cycle changes its character
via a switching-sliding bifurcation. As seen in Fig. 7(b) the limit cycle has an extra
discontinuity surface crossing, but the number of sliding segments remain the same.

This is a good example where numerical experiments show how dynamics change
under parameter variations, thus giving an impulse for further analytical and nu-
merical investigation.

5 Conclusions and outlook

The introduced methods give a simple way to automatically simulate generic orbits
of Filippov systems using a hybrid system approach, and where the user only has to
introduce information about the vector fields and discontinuity surfaces. Although
many reserch groups have developed simulation environments for specific nonsmooth
problems, the authors are unaware of a general Filippov system solver, as the one
proposed here. Therefore we hope that this software, and the ideas upon which
it is built, will be used by both applied mathematicians and engineers for such
simulations, and hopefully make the whole community to think of these problems
in a more general setting.

The obvious strength of the proposed simulation code is that it is relatively
simple to use, as long as the user has some knowledge of Matlab. One problem
with the hybrid system approach though is that the combinatotic complexity of the
code grows quickly as the number of discontinuity surfaces are incread. Also, we
choose Matlab since it is relatively simple to test ideas, implement code and use
the final product. The down side is of course that Matlab is much slower than an
equivalent program written in, for instance, C, C++ or FORTRAN. So if the code
is to be used for larger scale problems, e.g. with many discontinuity surfaces, such
an implementation is prefereable. Also, for even more efficient calcultaions it would
useful to have a script that intially generates a code for the user-specific problem,
in terms of the state space dimension and the number of discontinuity surfaces.

As mentioned earlier, the algorithm can also be used as a building block for
a continuation algorithm that follow both periodic orbits in one parameter and
codimension-one bifurcations in two parameters, using Poincaré maps (i.e. shooting).
Such an implementation will be discussed in future works [34, 10]. We also hope to
develop a general simulation and continuation interactive environment that supports
both discontinuous vector fields and state jumps, so that the user specifies a surface
as continuous, Filippov or impacting.

Acknowledgment

This work was supported by the EU FP5 Project SICONOS (Grant no. IST-2001-
37172). The authors would like to thank Alan Champneys and Arne Nordmark
for valuable comments.

18

References

[1] V. I. Arnol’d. Ordinary Differential Equations. MIT Press, Cambridge, MA,
1973.

[2] U. M. Ascher and L. R. Petzold. Computer Methods for Ordinary Differen-
tial Equations and Differential-Algebraic Equations. SIAM, Philadelphia, USA,
1998.

[3] R. Ashino, M. Nagase, and R. Vaillancourt. Behind and beyond the MATLAB
ODE suite. Comput. Math. Appl., 40:491–512, 2000.

[4] B. Brogliato. Some perspectives on the analysis and control of complementarity
systems. IEEE Transactions on Automatic Control, 48:918–935, 2003.

[5] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh. VODE: a variable-coefficient
ODE solver. SIAM J. Sci. Statist. Comput., 10:1038–1051, 1989.

[6] J. C. Butcher, editor. Special issue celebrating the centenary of Runge-Kutta
methods. North-Holland Publishing Co., Amsterdam, 1996. Appl. Numer.
Math. 22 (1996), no. 1-3.

[7] E. Celledoni. Discrete QMR and BGC in the numerical solution of linear sys-
tems of ODEs. J. Comput. Appl. Math., 91:159–177, 1998.

[8] J. J. B. de Swart. A simple ODE solver based on 2-stage Radau IIA. J. Comput.
Appl. Math., 84:277–280, 1997.

[9] F. Dercole and Yu. A. Kuznetsov. SlideCont: An Auto97 driver for sliding
bifurcation analysis. Department of Mathematics, Universiteit Utrecht, The
Netherlands, 2002.

[10] M. di Bernardo, S. J. Hogan, P. Kowalczyk, and P. T. Piiroinen. Numerical
detection and continuation of sliding bifurcations in a dry-friction oscillator. In
preparation., 2005.

[11] M. di Bernardo, K. H. Johansson, and F. Vasca. Sliding orbits and their bifur-
cations in relay feedback systems. In Proc. 38th IEEE Conference on Decision
and Control, Phoenix, AZ, 1999.

[12] M. di Bernardo, K. H. Johansson, and F. Vasca. Self-oscillations and sliding in
relay feedback systems: Symmetry and bifurcations. International Journal of
Bifurcations and Chaos, 11(4):1121–1140, 2001.

[13] M. di Bernardo, P. Kowalczyk, and A. Nordmark. Bifurcations of dynamical
systems with sliding: derivation of normal-form mappings. Physica D, 170:175–
205, 2002.

[14] E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Yu. A. Kuznetsov, B. Sand-
stede, and X.-J. Wang. Auto97: Continuation and bifurcation software for
ordinary differential equaitions (with HomCont). Computer Science, Concor-
dia University, Montreal, Canada, ftp.cs.concordia.ca/doedel/doc/auto,
1997.

19

[15] W. Enright. On the efficient and reliable numerical solution of large linear
systems of ODE’s. IEEE Trans. Automat. Control, 24:905–908, 1979.

[16] M. I. Feigin. Forced Oscillations in Systems With Discontinuous Nonlinearities.
Nauka, Moscow, 1994. In Russian.

[17] A. F. Filippov. Differential Equations with Discontinuous Righthand Sides.
Kluwer Academic Publishers, Dortrecht, 1988.

[18] U. Galvanetto. Some discontinuous bifurcations in a two block stick-slip system.
Journal of Sound and Vibration, 284(4):653 – 669, 2001.

[19] U. Galvanetto and S. R. Bishop. Dynamics of a simple damped oscillator
undergoing stick-slip vibrations. Meccanica, 34:337–347, 2000.

[20] C. W. Gear and O. Østerby. Solving ordinary differential equations with dis-
continuities. ACM Trans. Math. Software, 10:23–44, 1984.

[21] J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems,
and Bifurcations of Vector Fields. Springer–Verlag, New York, 1983. Applied
Mathematical Sciences, Volume 42.

[22] E. Hairer, S. P. Nørsett, and G. Wanner. Solving ordinary differential equations.
I Nonstiff problems, volume 8 of Springer Series in Computational Mathematics.
Springer-Verlag, Berlin, second edition, 1993.

[23] E. Hairer and G. Wanner. Solving ordinary differential equations. II Stiff and
differential-algebraic problems, volume 14 of Springer Series in Computational
Mathematics. Springer-Verlag, Berlin, second edition, 1996.

[24] E. Hairer and G. Wanner. Stiff differential equations solved by Radau methods.
J. Comput. Appl. Math., 111:93–111, 1999.

[25] A. C. Hindmarsh. ODEPACK, a systematized collection of ODE solvers. In
Scientific computing (Montreal, Que., 1982), IMACS Trans. Sci. Comput., I,
pages 55–64. IMACS, New Brunswick, NJ, 1983.

[26] M. Jean. The non-smooth contact dynamics method. Computer Methods in
Applied Mechanics and Engineering, 177(3-4):235–257, 1999.

[27] P. Kowalczyk. Analytical and Numerical Investigations of Sliding Bifurcations
in n-dimensional piecewise- smooth systems. PhD thesis, Department of Engi-
neering Mathematcics, University of Bristol, Bristol, UK, 2003.

[28] Yu. A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer–Verlag,
New York, 3rd edition, 2004. Applied Mathematical Sciences, Volume 112.

[29] Yu. A. Kuznetsov, S. Rinaldi, and A. Gragnani. One-parameter bifurcations in
planar Fillipov systems. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 13:2157–
2188, 2003.

[30] R. I. Leine. Bifurcations in Discontinuous Mechanical Systems of Filippov-Type.
PhD thesis, Teknische Universiteit Eindhoven, The Netherlands, 2000.

20

[31] N. Miajlovic, A. A. van Veggel, N. van de Wouw, and H. Nijmeijer. Analysis
of friction-induced limit cycling in an experimental drill-string system, 2004.
Preprint.

[32] J. J. Moreau. Numerical aspects of the sweeping process. Computer Methods
in Applied Mechanics and Engineering, 177(3-4):329–349, 1999.

[33] B. V. Pavlov and O. E. Rodionova. Numerical solution of systems of linear
ordinary differential equations with constant coefficients. Comput. Math. Math.
Phys., 34:535–539, 1994.

[34] P. T. Piiroinen. Numerical detection and continuation of sliding bifurcations in
Filippov systems using an event-driven simulator, 2005. In preparation.

[35] L. F. Shampine. Numerical solution of ordinary differential equations. Chap-
man & Hall, New York, 1994.

[36] L. F. Shampine and M. W. Reichelt. The MATLAB ODE suite. SIAM J. Sci.
Comput., 18:1–22, 1997.

[37] V. I. Utkin. Sliding Modes in Control Optimization. Springer–Verlag, New
York, 1992.

21

A How to use the code

The method described in the present paper in the case of a single discontinuity sur-
face has been implemented in Matlab. Here we will give some details on how to use
the the programs. Templates for the files can be found at http://seis.bris.ac.uk/~enptp/Filippov/.
There one can also find the files used for the examples in sec. 4, including the drill-
string example with two discontinuity surfaces.

The program consists of three files,

run_oscillator.m

filippov.m

vectorfields.m

and possibly the optional files

pfunction.m

jacobians.m

The file run_oscillator.m is the main program in which integration time, param-
eters, initial conditions, names of the vector field, Jacobian matrix, and Poincaré
function files, the name of the ODE solver and its properties are introduced by the
user. This file also calls the file filippov.m, which takes care of the event han-
dling and also calls the Matlab built-in ODE solver and event detector. In the
vector field file vectorfields.m, which is used by filippov.m, the user adds the
different vector fields, the function defining the discontinuity surface, the normal
to the discontinuity surface, and possibly the function defining a Poincaré surface.
In pfunction.m the user defines the action to be taken at the Poincaré surface.
Finally, to make grazing location in the sliding surface more robust the Jacobian
matrices corresponding to the different vector fields can be added.

It has to be noted that no particular effort has been done to optimize the code
at this stage. The main reason is to make it as transparent as possible so that users
can do suitable changes themselves.

Let us now show explicitly what to write in the different files specified by the
user. The system we will use in this exposition is the same dry-friction oscillator as
described in sec. 4.1, where a more thorough introduction to this system is done.
Let the dynamical system be given by

ẋ =

{

F1(x), x2 > 0,
F2(x), x2 < 0,

(50)

where x = (x1, x2, x3)
T ,

F1(x) =

x2

−x1 + sin(x3) − F
ω

 , F2(x) =

x2

−x1 + sin(x3) + F
ω

 , (51)

and F and ω are constants. The user needs to adjust the different files as follows.

run oscillator.m

The following has to be given by the user:

ODE-solver

22

solver = ’ode45’; (The choice of Matlab ODE solver)
Matlab’s ODE-solver properties

opts = odeset(’RelTol’,1e-6,’AbsTol’,1e-6,’MaxStep’,0.1);

Name of the vector field file

vfields = ’vectorfields’;

Name of the Jacobians file

vfields = ’jacobians’;

Name of the Poincaré function file

pfunction = ’pfunction’;

Filippov parameter

C = 1;

Parameter list

F = 0.4; omega = 3; params = [F,omega];

Initial conditions

y0 = [1,2,0];

Integration time

T = 2*pi/omega; tspan = [0,T];

The output that will be given by filippov.m is a list of the time t, and the corre-
sponding values of the states y, the times te at the events, the state vector ye at
the events, an index list ie of the events, and the event variables se at the events
(cf. the event handling in Matlab).

vectorfields.m

In this file the user has to specify the following:

Parameters

F = params(1); omega = params(2);

The two vector fields

F1 = [y(2);-y(1)-sin(y(3))-F;omega]; (H > 0)
F2 = [y(2);-y(1)-sin(y(3))+F;omega]; (H < 0)

The function defining the discontinuity surface

H = y(2);

The gradient of H

dH = [0,1,0];

The Poincare surface

h = y(3)-2*pi; (The system is 2π-periodic in x3.)
Location direction for the Poincare section

dir = 1;

jacobians.m

In this file the user has to specify the following:

Parameters

(No parameters needed)
The two Jacobians

J1 = [0,1,0; -1,0,-cos(y(3)); 0,0,0]; (H > 0)
J2 = J1; (H < 0)

23

The second derivative of H

d2H = zeros(3,3);

pfunction.m

In this file the user has to specify the following:

Parameters

(No parameters needed)
Action at Poincaré section

y1 = [y(1),y(2),0]; (Reset of the scaled time.)

24

