598 research outputs found

    Improving grasping forces during the manipulation of unknown objects

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksMany of the solutions proposed for the object manipulation problem are based on the knowledge of the object features. The approach proposed in this paper intends to provide a simple geometrical approach to securely manipulate an unknown object based only on tactile and kinematic information. The tactile and kinematic data obtained during the manipulation is used to recognize the object shape (at least the local object curvature), allowing to improve the grasping forces when this information is added to the manipulation strategy. The approach has been fully implemented and tested using the Schunk Dexterous Hand (SDH2). Experimental results are shown to illustrate the efficiency of the approach.Peer ReviewedPostprint (author's final draft

    Asymmetric Dual-Arm Task Execution using an Extended Relative Jacobian

    Full text link
    Coordinated dual-arm manipulation tasks can be broadly characterized as possessing absolute and relative motion components. Relative motion tasks, in particular, are inherently redundant in the way they can be distributed between end-effectors. In this work, we analyse cooperative manipulation in terms of the asymmetric resolution of relative motion tasks. We discuss how existing approaches enable the asymmetric execution of a relative motion task, and show how an asymmetric relative motion space can be defined. We leverage this result to propose an extended relative Jacobian to model the cooperative system, which allows a user to set a concrete degree of asymmetry in the task execution. This is achieved without the need for prescribing an absolute motion target. Instead, the absolute motion remains available as a functional redundancy to the system. We illustrate the properties of our proposed Jacobian through numerical simulations of a novel differential Inverse Kinematics algorithm.Comment: Accepted for presentation at ISRR19. 16 Page

    Telepresence control of a dual-arm dexterous robot

    Get PDF
    Telepresence is an approach to teleoperation that provides egocentric, intuitive interactions between an operator and a remote environment. This approach takes advantage of the natural cognitive and sensory-motor skills of an on-orbit crew and effectively transfers them to a slave robot. A dual-arm dexterous robot operating under telepresence control has been developed and is being evaluated. Preliminary evaluation revealed several important observations that suggest the directions of future enhancement

    Manipulation of unknown objects to improve the grasp quality using tactile information

    Get PDF
    This work presents a novel and simple approach in the area of manipulation of unknown objects considering both geometric and mechanical constraints of the robotic hand. Starting with an initial blind grasp, our method improves the grasp quality through manipulation considering the three common goals of the manipulation process: improving the hand configuration, the grasp quality and the object positioning, and, at the same time, prevents the object from falling. Tactile feedback is used to obtain local information of the contacts between the fingertips and the object, and no additional exteroceptive feedback sources are considered in the approach. The main novelty of this work lies in the fact that the grasp optimization is performed on-line as a reactive procedure using the tactile and kinematic information obtained during the manipulation. Experimental results are shown to illustrate the efficiency of the approachPeer ReviewedPostprint (published version

    Ground Robotic Hand Applications for the Space Program study (GRASP)

    Get PDF
    This document reports on a NASA-STDP effort to address research interests of the NASA Kennedy Space Center (KSC) through a study entitled, Ground Robotic-Hand Applications for the Space Program (GRASP). The primary objective of the GRASP study was to identify beneficial applications of specialized end-effectors and robotic hand devices for automating any ground operations which are performed at the Kennedy Space Center. Thus, operations for expendable vehicles, the Space Shuttle and its components, and all payloads were included in the study. Typical benefits of automating operations, or augmenting human operators performing physical tasks, include: reduced costs; enhanced safety and reliability; and reduced processing turnaround time

    Coordinated control of a dual-arm dexterous robot using full immersion telepresence and virtual reality

    Get PDF
    Telepresence is an approach to teleoperation that provides egocentric, intuitive interactions between an operator and a remote environment. This approach takes advantage of the natural cognitive and sensory motor skills of an on-board crew and effectively transfers them to a slave robot. A dual alarm dexterous robot operating under telepresence control has been developed and initial evaluations of the system performing candidate EVA, IVA and planetary geological tasks were conducted. The results of our evaluation showed that telepresence control is very effective in transferring the operator's skills to the slave robot. However, the results also showed that, due to the kinematic and dynamics inconsistencies between the operator and the robot, a limited amount of intelligent automation is also required to carry out some to the tasks. Therefore, several enhancements have been made to the original system to increase the automated capabilities of the control system without losing the benefits of telepresence

    Advanced grasping with the Pisa/IIT softHand

    Get PDF
    This chapter presents the hardware, software and overall strategy used by the team UNIPI-IIT-QB to participate to the Robotic Grasping and Manipulation Competition. It relies on the PISA/IIT SoftHand, which is underactuated soft robotic hand that can adapt to the grasped object shape and is compliant with the environment. It was used for the hand-in-hand and for the simulation tracks, where the team reached first and third places respectively

    Mechanical design optimization for multi-finger haptic devices applied to virtual grasping manipulation

    Get PDF
    This paper describes the design of a modular multi-finger haptic device for virtual object manipulation. Mechanical structures are based on one module per finger and can be scaled up to three fingers. Mechanical configurations for two and three fingers are based on the use of one and two redundant axes, respectively. As demonstrated, redundant axes significantly increase workspace and prevent link collisions, which is their main asset with respect to other multi-finger haptic devices. The location of redundant axes and link dimensions have been optimized in order to guarantee a proper workspace, manipulability, force capability, and inertia for the device. The mechanical haptic device design and a thimble adaptable to different finger sizes have also been developed for virtual object manipulation
    corecore