97 research outputs found

    DIY Human Action Data Set Generation

    Full text link
    The recent successes in applying deep learning techniques to solve standard computer vision problems has aspired researchers to propose new computer vision problems in different domains. As previously established in the field, training data itself plays a significant role in the machine learning process, especially deep learning approaches which are data hungry. In order to solve each new problem and get a decent performance, a large amount of data needs to be captured which may in many cases pose logistical difficulties. Therefore, the ability to generate de novo data or expand an existing data set, however small, in order to satisfy data requirement of current networks may be invaluable. Herein, we introduce a novel way to partition an action video clip into action, subject and context. Each part is manipulated separately and reassembled with our proposed video generation technique. Furthermore, our novel human skeleton trajectory generation along with our proposed video generation technique, enables us to generate unlimited action recognition training data. These techniques enables us to generate video action clips from an small set without costly and time-consuming data acquisition. Lastly, we prove through extensive set of experiments on two small human action recognition data sets, that this new data generation technique can improve the performance of current action recognition neural nets

    RGB-D datasets using microsoft kinect or similar sensors: a survey

    Get PDF
    RGB-D data has turned out to be a very useful representation of an indoor scene for solving fundamental computer vision problems. It takes the advantages of the color image that provides appearance information of an object and also the depth image that is immune to the variations in color, illumination, rotation angle and scale. With the invention of the low-cost Microsoft Kinect sensor, which was initially used for gaming and later became a popular device for computer vision, high quality RGB-D data can be acquired easily. In recent years, more and more RGB-D image/video datasets dedicated to various applications have become available, which are of great importance to benchmark the state-of-the-art. In this paper, we systematically survey popular RGB-D datasets for different applications including object recognition, scene classification, hand gesture recognition, 3D-simultaneous localization and mapping, and pose estimation. We provide the insights into the characteristics of each important dataset, and compare the popularity and the difficulty of those datasets. Overall, the main goal of this survey is to give a comprehensive description about the available RGB-D datasets and thus to guide researchers in the selection of suitable datasets for evaluating their algorithms

    Real-time RGB-Depth preception of humans for robots and camera networks

    Get PDF
    This thesis deals with robot and camera network perception using RGB-Depth data. The goal is to provide efficient and robust algorithms for interacting with humans. For this reason, a special care has been devoted to design algorithms which can run in real-time on consumer computers and embedded cards. The main contribution of this thesis is the 3D body pose estimation of the human body. We propose two novel algorithms which take advantage of the data stream of a RGB-D camera network outperforming the state-of-the-art performance in both single-view and multi-view tests. While the first algorithm works on point cloud data which is feasible also with no external light, the second one performs better, since it deals with multiple persons with negligible overhead and does not rely on the synchronization between the different cameras in the network. The second contribution regards long-term people re-identification in camera networks. This is particularly challenging since we cannot rely on appearance cues, in order to be able to re-identify people also in different days. We address this problem by proposing a face-recognition framework based on a Convolutional Neural Network and a Bayes inference system to re-assign the correct ID and person name to each new track. The third contribution is about Ambient Assisted Living. We propose a prototype of an assistive robot which periodically patrols a known environment, reporting unusual events as people fallen on the ground. To this end, we developed a fast and robust approach which can work also in dimmer scenes and is validated using a new publicly-available RGB-D dataset recorded on-board of our open-source robot prototype. As a further contribution of this work, in order to boost the research on this topics and to provide the best benefit to the robotics and computer vision community, we released under open-source licenses most of the software implementations of the novel algorithms described in this work

    Context-aware gestural interaction in the smart environments of the ubiquitous computing era

    Get PDF
    A thesis submitted to the University of Bedfordshire in partial fulfilment of the requirements for the degree of Doctor of PhilosophyTechnology is becoming pervasive and the current interfaces are not adequate for the interaction with the smart environments of the ubiquitous computing era. Recently, researchers have started to address this issue introducing the concept of natural user interface, which is mainly based on gestural interactions. Many issues are still open in this emerging domain and, in particular, there is a lack of common guidelines for coherent implementation of gestural interfaces. This research investigates gestural interactions between humans and smart environments. It proposes a novel framework for the high-level organization of the context information. The framework is conceived to provide the support for a novel approach using functional gestures to reduce the gesture ambiguity and the number of gestures in taxonomies and improve the usability. In order to validate this framework, a proof-of-concept has been developed. A prototype has been developed by implementing a novel method for the view-invariant recognition of deictic and dynamic gestures. Tests have been conducted to assess the gesture recognition accuracy and the usability of the interfaces developed following the proposed framework. The results show that the method provides optimal gesture recognition from very different view-points whilst the usability tests have yielded high scores. Further investigation on the context information has been performed tackling the problem of user status. It is intended as human activity and a technique based on an innovative application of electromyography is proposed. The tests show that the proposed technique has achieved good activity recognition accuracy. The context is treated also as system status. In ubiquitous computing, the system can adopt different paradigms: wearable, environmental and pervasive. A novel paradigm, called synergistic paradigm, is presented combining the advantages of the wearable and environmental paradigms. Moreover, it augments the interaction possibilities of the user and ensures better gesture recognition accuracy than with the other paradigms

    A Survey of Applications and Human Motion Recognition with Microsoft Kinect

    Get PDF
    Microsoft Kinect, a low-cost motion sensing device, enables users to interact with computers or game consoles naturally through gestures and spoken commands without any other peripheral equipment. As such, it has commanded intense interests in research and development on the Kinect technology. In this paper, we present, a comprehensive survey on Kinect applications, and the latest research and development on motion recognition using data captured by the Kinect sensor. On the applications front, we review the applications of the Kinect technology in a variety of areas, including healthcare, education and performing arts, robotics, sign language recognition, retail services, workplace safety training, as well as 3D reconstructions. On the technology front, we provide an overview of the main features of both versions of the Kinect sensor together with the depth sensing technologies used, and review literatures on human motion recognition techniques used in Kinect applications. We provide a classification of motion recognition techniques to highlight the different approaches used in human motion recognition. Furthermore, we compile a list of publicly available Kinect datasets. These datasets are valuable resources for researchers to investigate better methods for human motion recognition and lower-level computer vision tasks such as segmentation, object detection and human pose estimation

    mmBody Benchmark: 3D Body Reconstruction Dataset and Analysis for Millimeter Wave Radar

    Full text link
    Millimeter Wave (mmWave) Radar is gaining popularity as it can work in adverse environments like smoke, rain, snow, poor lighting, etc. Prior work has explored the possibility of reconstructing 3D skeletons or meshes from the noisy and sparse mmWave Radar signals. However, it is unclear how accurately we can reconstruct the 3D body from the mmWave signals across scenes and how it performs compared with cameras, which are important aspects needed to be considered when either using mmWave radars alone or combining them with cameras. To answer these questions, an automatic 3D body annotation system is first designed and built up with multiple sensors to collect a large-scale dataset. The dataset consists of synchronized and calibrated mmWave radar point clouds and RGB(D) images in different scenes and skeleton/mesh annotations for humans in the scenes. With this dataset, we train state-of-the-art methods with inputs from different sensors and test them in various scenarios. The results demonstrate that 1) despite the noise and sparsity of the generated point clouds, the mmWave radar can achieve better reconstruction accuracy than the RGB camera but worse than the depth camera; 2) the reconstruction from the mmWave radar is affected by adverse weather conditions moderately while the RGB(D) camera is severely affected. Further, analysis of the dataset and the results shadow insights on improving the reconstruction from the mmWave radar and the combination of signals from different sensors.Comment: ACM Multimedia 2022, Project Page: https://chen3110.github.io/mmbody/index.htm

    AFFECT-PRESERVING VISUAL PRIVACY PROTECTION

    Get PDF
    The prevalence of wireless networks and the convenience of mobile cameras enable many new video applications other than security and entertainment. From behavioral diagnosis to wellness monitoring, cameras are increasing used for observations in various educational and medical settings. Videos collected for such applications are considered protected health information under privacy laws in many countries. Visual privacy protection techniques, such as blurring or object removal, can be used to mitigate privacy concern, but they also obliterate important visual cues of affect and social behaviors that are crucial for the target applications. In this dissertation, we propose to balance the privacy protection and the utility of the data by preserving the privacy-insensitive information, such as pose and expression, which is useful in many applications involving visual understanding. The Intellectual Merits of the dissertation include a novel framework for visual privacy protection by manipulating facial image and body shape of individuals, which: (1) is able to conceal the identity of individuals; (2) provide a way to preserve the utility of the data, such as expression and pose information; (3) balance the utility of the data and capacity of the privacy protection. The Broader Impacts of the dissertation focus on the significance of privacy protection on visual data, and the inadequacy of current privacy enhancing technologies in preserving affect and behavioral attributes of the visual content, which are highly useful for behavior observation in educational and medical settings. This work in this dissertation represents one of the first attempts in achieving both goals simultaneously

    A Sampling Approach to Generating Closely Interacting 3D Pose-pairs from 2D Annotations

    Get PDF
    We introduce a data-driven method to generate a large number of plausible, closely interacting 3D human pose-pairs, for a given motion category, e.g., wrestling or salsa dance. With much difficulty in acquiring close interactions using 3D sensors, our approach utilizes abundant existing video data which cover many human activities. Instead of treating the data generation problem as one of reconstruction, either through 3D acquisition or direct 2D-to-3D data lifting from video annotations, we present a solution based on Markov Chain Monte Carlo (MCMC) sampling. With a focus on efficient sampling over the space of close interactions, rather than pose spaces, we develop a novel representation called interaction coordinates (IC) to encode both poses and their interactions in an integrated manner. Plausibility of a 3D pose-pair is then defined based on the ICs and with respect to the annotated 2D pose-pairs from video. We show that our sampling-based approach is able to efficiently synthesize a large volume of plausible, closely interacting 3D pose-pairs which provide a good coverage of the input 2D pose-pairs

    Deep Learning and Trigonometric Adjustment in Estimation of Lower Extremity Angles

    Get PDF
    An Anterior Cruciate Ligament (ACL) injury can cause a severe burden, especially for athletes participating in relatively risky sports. This risk raises a growing incentive for designing injury-prevention programs. For this purpose, for example, the analysis of the drop vertical jump test can provide a useful asset for recognizing those who are more likely to sustain knee injuries. Landing Error Score System (LESS) provides an excellent opportunity to predict the level of vulnerability for each individual who participates in the drop jump test process. Knee flexion angle plays a key role within these test scenarios. Multiple research efforts have been conducted on engaging existing technologies such as the Microsoft Kinect sensor and Motion Capture (MoCap) to investigate the connection between the lower limb angle ranges during jump tests and the injury risk associated with them. Even though these technologies provide sufficient capabilities to researchers and clinicians, they need certain levels of knowledge to enable them to utilize these facilities in an effective manner. Moreover, these systems demand special requirements and setup procedures, which make them limiting. Due to recent advances in the area of Deep Learning, numerous powerful pose estimation algorithms have been developed over the last few years. Having access to relatively reliable and accurate 3D body keypoint information can lead to the successful detection and prevention of injury. The idea of combining temporal convolutions in video sequences with deep Convolutional Neural Networks (CNNs) offers a substantial opportunity to tackle the challenging task of accurate 3D human pose estimation. Utilizing a fast and accurate 2D pose estimation approach has also enabled us to develop a better and real-time solution for the problem of 3D knee flexion angle estimation. Using the Microsoft Kinect sensor as our ground truth, we analyzed the performance of CNN-based 3D human pose estimation and our proposed method based on a CNN-based 2D pose estimation method in everyday settings. The qualitative and quantitative results are convincing to give an incentive to pursue further improvements, especially in the task of lower extremity kinematics estimation. In addition to the performance comparison between Kinect and CNN, we have also verified the high-margin of consistency between two Kinect sensors
    • 

    corecore