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Abstract

This thesis deals with robot and camera network perception using RGB-Depth data.
The goal is to provide efficient and robust algorithms for interacting with humans. For
this reason, a special care has been devoted to design algorithms which can run in
real-time on consumer computers and embedded cards.

The main contribution of this thesis is the 3D body pose estimation of the human
body. We propose two novel algorithms which take advantage of the data stream of a
RGB-D camera network outperforming the state-of-the-art performance in both single-
view and multi-view tests. While the first algorithm works on point cloud data which is
feasible also with no external light, the second one performs better, since it deals with
multiple persons with negligible overhead and does not rely on the synchronization
between the different cameras in the network.

The second contribution regards long-term people re-identification in camera net-
works. This is particularly challenging since we cannot rely on appearance cues, in
order to be able to re-identify people also in different days. We address this problem
by proposing a face-recognition framework based on a Convolutional Neural Network
and a Bayes inference system to re-assign the correct ID and person name to each new
track.

The third contribution is about Ambient Assisted Living. We propose a prototype
of an assistive robot which periodically patrols a known environment, reporting un-
usual events as people fallen on the ground. To this end, we developed a fast and
robust approach which can work also in dimmer scenes and is validated using a new
publicly-available RGB-D dataset recorded on-board of our open-source robot proto-
type.

As a further contribution of this work, in order to boost the research on this topics
and to provide the best benefit to the robotics and computer vision community, we
released under open-source licenses most of the software implementations of the novel
algorithms described in this work.





Sommario

Questa tesi tratta di percezione per robot autonomi e per reti di telecamere da dati RGB-
Depth. L’obiettivo è quello di fornire algoritmi robusti ed efficienti per l’interazione
con le persone. Per questa ragione, una particolare attenzione è stata dedicata allo
sviluppo di soluzioni efficienti che possano essere eseguite in tempo reale su computer
e schede grafiche consumer.

Il contributo principale di questo lavoro riguarda la stima automatica della posa
3D del corpo delle persone presenti in una scena. Vengono proposti due algoritmi che
sfruttano lo stream di dati RGB-Depth da una rete di telecamere andando a migliorare
lo stato dell’arte sia considerando dati da singola telecamera che usando tutte le tele-
camere disponibili. Il secondo algoritmo ottiene risultati migliori in quanto riesce a
stimare la posa di tutte le persone nella scena con overhead trascurabile e non richiede
sincronizzazione tra i vari nodi della rete. Tuttavia, il primo metodo utilizza solamen-
te nuvole di punti che sono disponibili anche in ambiente con poca luce nei quali il
secondo algoritmo non raggiungerebbe gli stessi risultati.

Il secondo contributo riguarda la re-identificazione di persone a lungo termine in
reti di telecamere. Questo problema è particolarmente difficile in quanto non si può
contare su feature di colore o che considerino i vestiti di ogni persona, in quanto si
vuole che il riconoscimento funzioni anche a distanza di giorni. Viene proposto un
framework che sfrutta il riconoscimento facciale utilizzando una Convolutional Neural
Network e un sistema di classificazione Bayesiano. In questo modo, ogni qual volta
viene generata una nuova traccia dal sistema di people tracking, la faccia della persona
viene analizzata e, in caso di match, il vecchio ID viene riassegnato.

Il terzo contributo riguarda l’Ambient Assisted Living. Abbiamo proposto e im-
plementato un robot di assistenza che ha il compito di sorvegliare periodicamente un
ambiente conosciuto, riportando eventi non usuali come la presenza di persone a terra.
A questo fine, abbiamo sviluppato un approccio veloce e robusto che funziona anche
in assenza di luce ed è stato validato usando un nuovo dataset RGB-Depth registrato a
bordo robot.

Con l’obiettivo di avanzare la ricerca in questi campi e per fornire il maggior bene-
ficio possibile alle community di robotica e computer vision, come contributo aggiun-
tivo di questo lavoro, abbiamo rilasciato, con licenze open-source, la maggior parte
delle implementazioni software degli algoritmi descritti in questo lavoro.
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Chapter 1

Introduction

Perception provides an essential feedback for autonomous robots and artificial in-
telligences to interact with the environment. A machine which is not able to see what
is happening around itself, is also not able to interact safely with the environment and
to make intelligent decisions. Moreover, perception is a very important feedback to
recover from the inevitable failures an autonomous system will encounter when it has
to interact with the real-world.

The goal of this thesis is to provide efficient algorithms to solve or to strengthen
the perception of autonomous robots and camera networks when humans are involved.
Designing algorithms that allow interaction with humans is particularly challenging,
since the focus is not just on the quality of the outcome, but also on the achievable
framerate.

Let us consider an assembly line of the future, where robots and humans will coop-
erate without security fences. It is of paramount importance that the robot will be able
to recognize humans and the movements they are making in real-time. In this way, it
will be able to take fast decisions and movements to prevent collisions with them. For
similar reasons, also Human-Computer-Interaction (HCI) scenarios can benefit from
such algorithms. Indeed, in order to enable an effective interaction, only a short-time
response from the system can be tolerated. For those reasons, one of the main focus
of this thesis is to solve different real-world perception problems in which humans are
involved, while providing not just effective solutions, but also efficient ones.

The visual data considered as input for the algorithms described are composed of
the color image, also called RGB image, and the depth image. The depth image en-
codes the distance with respect to the sensor of each real world point projected to the
camera image plane. Such data enables to disambiguate many real-world situations
that cannot be addressed using just color information. Indeed, while a color image
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is very informative, it sensibly changes with the scene illumination (e.g. let us think
about a picture shot during the night). Moreover, some false positives are impossible
to be detected using just 2D data, since there is no way to understand whether an infor-
mation is real or just printed. This situation is depicted in Figure 2.1, where a person
is holding a picture depicting a person. Depth information gives us enough informa-
tion to discriminate such false positives and, moreover, when using active sensor to
compute it, it is reliable also in presence of little or no light in the scene. To deal with
such problems, our algorithms take advantage of RGB-D data. More formally, an input
frame F , is composed of a synchronized couple of images, the color image (RGB) and
the depth (D).

Since the topics we addressed are very important for the robotics and computer
vision community, we released most of the implemented algorithms in an open-source
Human-Computer-Interaction library: OpenPTrack1.

The remainder of the thesis and the problems addressed are summarized as follows:

• Chapter 2 briefly describes how to compute the depth data. Moreover, we present
an efficient system able to generate 3D data structures (i.e. Point Cloud) when
using a Kinect v2 together with a GPU-enabled computer or embedded-card.

• Chapters 3 and 4 describe two novel algorithms we developed for solving the
3D Body Pose Estimation (3D-BPE) problem in RGB-D camera networks. The
target is to find the 3D body joint locations of the people in the scene, without
the aid of any marker. Chapter 3 addresses this problem by fusing information
at the depth level. In this way, it is possible to create a synthetic frontal-view for
the depth image from which a state-of-the-art single-view 3D-BPE is applied.
On the other hand, Chapter 4 takes advantage of the recent advances using Con-
volutional Neural Networks (CNNs) to compute the single-view 3D-BPE from
each camera and fuse them by means of Kalman filtering. While the contribu-
tion presented in Chapter 3 works also with no light, since it rely only on the
point cloud, Chapter 4 outperforms it with respect to two aspects. Indeed, it can
compute the poses of multiple people in the scene with negligible overhead and
the synchronization between the different cameras is no longer required. In this
way, each user can build the different network nodes following his needs and
possibilities.

• Chapter 5 addresses the problem of the long-term re-identification of people in
RGB-D camera networks. Nowadays, several state-of-the-art tracking libraries

1https://github.com/openptrack/open_ptrack_v2

https://github.com/openptrack/open_ptrack_v2
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are able to detect and track people smoothly. However, in presence of heavy
occlusions or when a person re-enters the Field-of-View (FoV) of the network,
those system are not able to recognize persons, initializing new tracks for them.
In order to overcome this problem, we propose a system that exploits a CNN-
based solution for face recognition and a Bayesian-inference classifier to recog-
nize whether a person has already been seen by the network. Whenever a person
is classified as already seen, the previous track ID is assigned to its track.

• Chapter 6 describes a contribution in the field of Ambient Assisted Living. Un-
detected falls are one of the main risk of early deaths for elder people living
lonely at home. This Chapter shows a novel contribution to detect fallen people
from a mobile robotic platform that is in charge of patrolling the home.

• Finally, Chapter 7 draws the conclusions of this thesis.

Moreover, Appendices A and B present additional contributions. In particular, Ap-
pendix A describes the open-source prototype for Ambient Assisted Living (AAL) we
used to validate the algorithm proposed in Chapter 6. On the other hand, Appendix B
presents a RGB-D dataset we recorded and publicly released about detection of fallen
persons. The dataset is composed of several frames taken from two different environ-
ments on-board our mobile assistive robot.

1.1 Publications

The works we will describe in this thesis have been presented in the following
International Conferences and Journals publications:

• M. Carraro, M. Munaro, J. Burke and E. Menegatti, Real-time marker-less
multi-person 3D pose estimation in RGB-Depth camera networks, arXiv Preprint,

arxiv:1710.06235, 2017. [15]

• Y. Zhao, M. Carraro, M. Munaro and E. Menegatti, Fast Multiple Object Track-
ing in RGB-D Camera Networks, in Intelligent Robots and Systems (IROS), 2017

IEEE/RSJ International Conference on, IEEE, 2017. [130]

• M Antonello, M Carraro, M Pierobon and E Menegatti, Fast and Robust De-
tection of Fallen People from a Mobile Robot, in Intelligent Robots and Systems

(IROS), 2017 IEEE/RSJ International Conference on, IEEE, 2017. [3]
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• R. Illum, M. Carraro, E. Menegatti and J. Burke, OpenPTrack: Real-time,
Multi-camera Computer Vision Infrastructure for Artists, In Workshop on To-

wards an artist-in-the-lab framework in conjunction with IEEE/RSJ Interna-

tional Conference on Intelligent Robots and Systems (IROS), 2017. [47]

• K. Koide, E. Menegatti, M. Carraro, M. Munaro and J. Miura, People Tracking
and Re-Identification by Face Recognition for RGB-D Camera Networks, In
Mobile Robots (ECMR), 2017 European Conference on, 2017. [57]

• M Carraro, M Munaro and E Menegatti Cost-efficient RGB-D smart camera
for people detection and tracking, Journal of Electronic Imaging 25 (4), 041007-

041007 (JEI-2016) [16]

• M Carraro, M Munaro and E Menegatti, A powerful and cost-efficient human
perception system for camera networks and mobile robotics, International Con-

ference on Intelligent Autonomous Systems, 485-497 (IAS-14), 2016 [17]

• M Carraro, M Munaro, A Roitberg and E Menegatti, Improved skeleton estima-
tion by means of depth data fusion from multiple depth cameras, International

Conference on Intelligent Autonomous Systems, 1155-1167 (IAS-14), 2016 [18]

• M. Carraro, M. Antonello, L. Tonin and E. Menegatti, An Open Source Robotic
Platform for Ambient Assisted Living. AIRO@ AI* IA, 3-18, 2015 [14]



Chapter 2

RGB and Depth data

Figure 2.1: An example of the application of a state-of-the-art body pose estimation
algorithm [13] on an image. As it can be seen, the algorithm finds proposals also in the
picture kept by the real person even if there is no actual person there.

Depth information is required to build the data structures that enables computers
and robots to directly reason in 3D. The majority of works in the Computer Vision
and Robotics community rely on RGB-only information. While many state-of-the-art
Deep Learning techniques [13, 37, 93–95] demonstrated to achieve impressive results
using only this type of data, such systems do not work in common robotics situations
as when there is absence of information (i.e. images shot during the night with no illu-
mination). Moreover, given the nature of the method used, they generate false positives
caused by mirror reflections or pictures held by persons as depicted in Figure 2.1. In
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order to overcome this problem, the RGB information is often enriched with the depth
information; this type of data is called RGB-D. The goal of this chapter is to explain
the major techniques to compute the depth information and the sensors we used in our
works to compute such data. We also describe a novel contribution (see Section 2.2)
regarding the creation of an efficient library to compute point cloud data structures
using depth and images from a Kinect v2 sensor.

2.1 RGB-D sensors

Figure 2.2: Perspective geometry of the pinhole camera model. Image courtesy of [84]

Figure 2.2 depicts the 3D perspective projection of the pinhole camera model.
Given a real world point X, this is projected to the pixel xc obtained by intersection
of the X−C ray and the camera image plane. Given the world to camera transforma-
tion matrix [R|t], also known as the extrinsic parameters, and the intrinsics parameters
K, which converts from metric units to pixels, Equation 2.1 shows how X and xc are
correlated.
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Using Equation 2.1 is possible to project a 3D point X to the image point xc. To be
able to find the depth, we need to solve the inverse problem, i.e. given an image point
xc find the real 3D world point X that generated xc. Equation 2.1 does not give enough
constraints to solve this problem, given that all the points which lie on the X−C ray
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Figure 2.3: Stereo geometry. Image courtesy of [84]

and the image plane would be possible solutions. However, recent advances in Deep
Learning using CNNs [59, 109] are demonstrating the effectiveness of such methods
to fulfill the lack of mathematical constraints with experience. Such methods provide
impressive results, nonetheless, they work on RGB data and they are therefore affected
by the same problems discussed before, so they are not considered in the remainder of
this chapter.

In order to add a constraint to solve this problem, a passive solution is to use an
additional camera. The couple of cameras compose a stereo system and the depth
image is calculated starting from the two synchronized RGB images. Figure 2.3 shows
how a common world point is correlated to the two images captured by the stereo
couple. In particular, the distance Z of the world point is inversely proportional to the
disparity d calculated as d = xc− x′c = f B/Z where f is the focal length and B is the
distance between the cameras (i.e. the baseline). While stereo cameras theoretically
solve the problem, they present three disadvantages:

• we need to be sure to find correspondences in the two images which are pro-
jected to the same 3D point. It is computationally expensive to find such corre-
spondences;

• when there is no or little texture the number of correspondences are low, resulting
in missing depth information;

• the depth estimation error increases quadratically with the inverse of the baseline.

Active sensors are able to overcome the texture problems of the passive sensors by
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creating texture using a projector. There are two main categories of active sensors:
(i) structured-light sensors and (ii) Time-of-Flight (ToF) sensors. The structured-light
sensors compute the depth by projecting an infrared pattern on the scene and then
capturing how this pattern deforms. The most famous sensor which uses this technique
is the Microsoft Kinect 360 launched in 2010 and depicted in Figure 2.4. On the other
hand, Time-of-flight based sensors compute the depth information by using a matrix
of emitters/receivers and measuring the phase shift between an emitted infrared signal
and the reflected one. The most famous sensor in this category is the Microsoft Kinect
One also known as Microsoft Kinect v2 (see Figure 2.4). Given the importance of such
sensors for research purposes, the two Kinect sensors have been thoroughly compared
in different state-of-the-art works [100, 127]. Overall, the second generation Kinect
performs better in terms of reconstruction quality and error estimation with respect to
increasing distances, even presenting the typical ToF problems such as flying pixels
generated by sharp edges or vertexes and missing depth information due to infrared
absorption of some materials. The majority of the works described in this thesis use
the data provided by the Kinect v2.

While active sensors normally perform better than passive ones in indoor environ-
ments, they present some major drawbacks. In particular, stereo cameras have to be
preferred in outdoor environments and generally when the maximum distance with re-
spect to the sensor has not to be bounded. Indeed, the technology used with active
sensors suffers from infrared interference in presence of solar light and it has a maxi-
mum working distance.

Figure 2.4: The two generation Kinect sensors. On the left the first generation, while
on the right the Kinect v2.

Given a synchronized and extrinsically calibrated depth image D and color image
I is possible to create a point cloud P = {(x,y,z,r,g,b) ∈ R6}. This is a data structure
commonly used in robotics [18,69,70,74,97] which encodes the three-dimensionality
of the scene. Given the nature of the point cloud creation (see Equation 2.1), this could
be efficiently generated using massive parallel architectures as Graphical Processing
Units (GPUs). To this end, Section 2.2 describes an efficient library to compute point
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clouds with a smart camera composed of a Microsoft Kinect v2 and a NVidia Jetson
TX1.

2.2 An efficient perception node for mobile robotics

In the last years, human detection and tracking algorithms proved to be useful not
only in surveillance, but also in different applications like service robotics, Ambient
Assisted Living (AAL), culture and arts installations.

People perception was boosted by the introduction of new low cost RGB-D sen-
sors such as the Microsoft Kinect v1 and v2 (see Figure 2.4). While Kinect v2 per-
formances are better than the one achievable with the first-generation, it is even more
computationally demanding of its predecessor, because of the large amount of data of
each frame (tens of megabytes per frame at 30 frames per second). To keep the pace
with the sensor maximum frame rate, a dedicated graphic card is required by its Linux
driver. As a result, this sensor is not likely to be used on mobile robots fitted with
embedded computers and requires powerful laptop (or industrial) computers.

In this chapter, we demonstrate the use of an NVidia Jetson TK1 embedded com-
puter as an acquisition and processing unit for the Kinect v2 sensor. This is enabled by
the new software library we propose in this work. The complete system is tested and
demonstrated by using a ROS (Robot Operating System) [90] perception node for peo-
ple detection and tracking from RGB-D data. We show that the integrated hardware
and software system is well suited for application in service robots and also in dis-
tributed perception networks composed by dozens of nodes. The main advantage of the
proposed solutions are high data processing throughput and the low power consump-
tion of the Jetson embedded platform. The proposed system is tested and validated
in distributed RGB-D camera network which uses OpenPTrack [70] (the open-source
people tracking library). In summary, the contribution described in this chapter is two-
fold:

• We propose a new library which permits the usage of the Kinect v2 with CUDA-
capable embedded systems and we demonstrate the validity of this work ob-
taining suitable frame-rates for real-world applications as people detection and
tracking.

• We release this library as open-source1 together with a ROS bridge 2 to make it

1https://github.com/OpenPTrack/libfreenect2
2https://github.com/OpenPTrack/kinect2_bridge

https://github.com/OpenPTrack/libfreenect2
https://github.com/OpenPTrack/kinect2_bridge
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work out-of-the-box with the most popular framework for the robotics commu-
nity.

The remainder of the chapter is organized as follows: Section 2.2.1 reviews the state-
of-the-art of RGB-D sensors. Section 2.2.2 explains the features of the new library we
developed. In Section 2.2.3, experiments are reported and results are shown in terms of
acquisition and people tracking frequency. Finally, Section 2.2.4 draws the conclusions
of this work.

2.2.1 State-of-the-art

RGB-D sensors

When dealing with mobile robots or complex surveillance scenarios, two dimen-
sional information is not always sufficient to obtain reliable results of detection and
tracking in real time. Furthermore, passive 3D solutions such as stereo cameras re-
quire additional processing for computing depth information and they are not able to
estimate depth for lowly textured areas. For these reasons, the advent of active and
low-cost 3D sensors, such as Microsoft Kinect, significantly improved the research on
autonomous mobile robotics and computer vision. The first-generation Kinect is an
RGB-D sensor that provides both color and depth data at VGA resolution. Depth is
estimated by means of an active triangulation process [54] between an infrared pattern
projector and an infrared camera, i.e., the position of each 3D point is the intersection
of the optical rays corresponding to a dot of the projector and the one of the considered
pixel in the infrared camera.

The Kinect is widely used in computer vision and robotics for Simultaneous Local-
ization and Mapping (SLAM) [27], people detection and tracking [70, 71, 76], short-
term and long-term people re-identification [31, 73, 79], AAL [14, 28, 35] and many
other applications. Besides the wide usage of this sensor, it has the drawback of not
being able to estimate depth information outdoors because the infrared component of
the sunlight interferes with the pattern projected by Kinect. Furthermore, the depth
estimation error increases quadratically with the distance [6]. To overcome these prob-
lems, in late 2013, Microsoft released the second generation of the Kinect sensor. This
new RGB-D camera relies on the continuous wave time-of-flight [38] technology to
infer depth, that is an array of emitters sends out a modulated signal that travels to the
measured point, gets reflected and is received by the CCD of the sensor.

The sensor acquires a 512 x 424 depth map and a 1920 x 1080 color image at 15 to
30 fps depending on the lighting condition, since the sensor exploits an auto-exposure
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algorithm. Kinect v2 outperforms its predecessor on several aspects. In particular, it
works outdoor up to four meters and depth accuracy remains constant while increasing
the distance [127]. However, since the data resolution is higher than for Kinect v1,
processing Kinect v2 data is computationally more demanding and turns out to be
unsuitable for embedded systems.

In the work described in this chapter, in order to overcome this problem, we pro-
vided a new Linux driver and ROS wrapper for the Kinect v2 so that they allowed
to obtain color and point cloud data at more than 20 fps with the NVidia Jetson, a
CUDA-capable embedded system.

While Kinect v2 is directly supported in Microsoft Windows with a free driver and
SDK provided by Microsoft, the only driver available in Linux is unofficial and open
source and is called libfreenect23.

In this chapter, we also used NVidia CUDA [80], a scalable library for exploiting
the General Purpose GPU (GP-GPU) computing on NVidia GPUs. Our work improved
a first working library [122] developed in CUDA. The numerical comparisons between
the different versions of these libraries are presented in Section 2.2.3.

People detection and tracking in camera networks

The ability to autonomously detect and track humans in camera networks is one of
the most important issues in robotics and computer vision applications. The problem
can be split into two different sub-problems: (1) perform people detection and tracking
within a view of a single camera and (2) maintain the same ID for the same person
seen by different cameras [117].

For solving (1), a wide set of works in literature relies on RGB data alone [53,112],
while, recently, new methods were developed for using RGB-D data to perform this
task [49, 69, 70]. The problem of associating the correct ID among different cameras
(2) is often solved based on the knowledge of camera poses and by exploiting features
extracted from the person motion and appearance. OpenPTrack is an open source
software for multi-camera calibration and people tracking in RGB-D camera networks.
It allows scalable, robust and real-time person tracking using affordable off-the-shelf
components, such as Kinect v2, and an open source codebase. It constitutes a powerful
tool for enabling interactive experiences for education, arts and culture, but it is also
exploited for guaranteeing people safety in industrial environments [75].

The OpenPTrack nodes which use the Kinect v2 are usually equipped with a pow-
erful computer with a dedicated GPU because the sensor is eager of performance. The

3https://github.com/OpenKinect/libfreenect2

https://github.com/OpenKinect/libfreenect2
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Figure 2.5: High level representations of the two data flows. On the left, the state-
of-the-art data flow of the OpenPTrack system using the Kinect v2 and the Jetson
embedded system. The 3D point cloud is computed outside the libfreenect2 library by
the ROS nodelet cloud generation node. On the right, the proposed data flow of
the same system. The 3D point cloud is now directly computed within the new version
of libfreenect2 and streamed by the new version of kinect2 bridge, thus the external
nodelet is no longer required.

use of these computers causes space problems, high costs and high power consump-
tion. Moreover, the OpenPTrack network can potentially be made of dozens of nodes,
thus amplifying these problems. Therefore, the use of embedded systems as the NVidia
Jetson can fix these issues, allowing the building of large networks.

2.2.2 Methodology

Our objective is to acquire data from the Kinect v2 sensor with the NVidia Jet-
son TK1 at high frame rate and integrate the camera into an OpenPTrack network to
perform people detection and tracking.

The state-of-the-art Linux driver for the Kinect v2, libfreenect2, is not able to per-
form the operation needed by OpenPTrack at a framerate suitable for people tracking.
For this reason, in order to improve the performance, we use NVidia CUDA, shifting
computational burden from the ARM CPU to the GPU of the embedded system.

In Figure 2.5a, the overall state-of-the-art system needed to perform people detec-
tion with Kinect v2 is shown. At first, the Linux driver for Kinect v2, libfreenect2, is
used to obtain the raw data from the sensor. OpenPTrack is based on the ROS mid-
dleware, thus, in order to interface the Kinect camera with this people tracking library,
we need a ROS wrapper of the libfreenect2 driver. This wrapper is implemented in
the kinect2 bridge ROS package, that reads sensory data obtained from the driver and
streams them to ROS topics whenever a ROS node requests them. In this work, we
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adapt also this wrapper to be compatible with the proposed version of libfreenect2.
The algorithm exploited by the standard version of the driver for computing depth im-
age, infrared (IR) image and point cloud is reported in Algorithm 1 at lines 0-8, while
lines 8-18 show the proposed one. The same algorithm is also illustrated in Figure 2.6.

The RGB information that comes from the sensor does not need any additional
computation, so we store it directly without passing it to the GPU. The operations
needed to transform the raw depth and infrared data in the final data needed by the
tracking library are all pixel-wise or consist of operations on the neighborhood of each
pixel. These types of functions are implementable in CUDA, thus lowering the final
computational complexity from O(N) to O(1), with N number of pixels. Further-
more, in our approach, the generation of the point cloud from IR and depth data is not
computed any more by the ROS wrapper, but directly within the driver, thus shifting
computational burden from the ARM CPU to the GPU of the embedded system. Each
parallel function we implemented requires as input the number of CUDA threads that
will concurrently operate. Since the dimension of the depth and infrared images is
512x424, we designed a grid of 512 threads per block with

⌊
512∗424+(512−1)

512

⌋
= 424

blocks [99].

OpenPTrack, the library we use for performing people detection, requires as input
from the Kinect v2 a point cloud filled with 3D points colored with the corresponding
intensity obtained from the infrared image. Here, the infrared is preferred to the RGB
because the former is constant also in the dark. However, to help the people detection
module, an intensity rescaling operation has to be performed on the intensity image
in order to improve its contrast, thus helping people detection. Also this computation
is performed in our version of the libfreenect2 driver by exploiting the parallelization
achievable with CUDA. In the next sections, we detail the important steps developed
in this work.

Memory management

When exploiting GPU processing, the typical bottleneck is the overhead due to the
data transfer between the central memory and the GPU memory [98]. To prevent these
passages to affect the overall performance of our algorithm, we pre-allocate in the GPU
memory the exact space needed by the infrared and depth images and the point cloud.
This way, we avoid new allocations whenever a new frame is acquired by the sensor,
thus making the GPU only overwrite the previous frame information.

The memory passages performed by our algorithm consist of the copy of the input
data from CPU to GPU (only IR and depth raw images) and of those needed to transfer
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Algorithm 1 The point cloud generation algorithm implemented in libfreenect2 and
the efficient one

INPUT: a frame F = (I,D,K) where I is the raw infrared image, D is the raw depth
image and M is the camera calibration matrix
OUTPUT: The final infrared image Î, the final depth image D̂ and the point cloud P

1: procedure POINT CLOUD GENERATION(F = (I,D,K))
2: P← /0
3: for each pixel p ∈ D and the correspondent p̂ ∈ D̂ do
4: p̂← computeDepth(p)
5: for each pixel p ∈ I and the correspondent p̂ ∈ Î do
6: p̂← computeIR(p)
7: for each pixel pd ∈ D̂ and the correspondent pixel pi ∈ Î do
8: P← P ∪ compute3DPoint(pd , pi, M)
9: procedure EFFICIENT POINT CLOUD GENERATION(F = (I,D,K))

10: P← /0
11: Image size← 512∗424
12: Block size← 512
13: Grid size←

⌊
Image size+(Block size−1)

Block size

⌋

14: memoryCopyFromCPUToGPU(D,I)
15: D̂← computeDepth〈〈〈Grid size,Block size〉〉〉(D)
16: Î← computeIR〈〈〈Grid size,Block size〉〉〉(I)
17: P← computePointCloud〈〈〈Grid size,Block size〉〉〉(D̂,Î,K)
18: memoryCopyFromGPUToCPU(D̂, Î,P)
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Figure 2.6: The processing flow performed by our library for each single frame. At
start-up, the space for the needed data is allocated once in the GPU memory, then, for
each frame, the data coming from the CPU memory are processed to achieve the final
data. The data transferred from CPU to GPU consist of the raw IR and depth data,
while the data transferred from GPU to CPU consists of the final IR, depth and point
cloud obtained after the parallel computations have been made.

the output data from GPU to CPU central memory at the end of GPU processing.
Figure 2.6 highlights the memory transfers performed by our algorithm. In particular,
the memory transfers are less than 500 KB for the first transfer (from CPU to GPU)
and the same quantity plus 7 MB (the point cloud) for the transfer-back. The maximum
data transfer required by the application is then 7.5∗30 = 225MB/s which is about the
1.51% of the total Jetson GPU bandwidth and the 0.067% of a NVidia Geforce GTX
Titan Black total GPU bandwidth.

Point Cloud generation

A 3D point cloud is the typical input of several algorithms in 3D computer and
robot vision [1, 44]. This data structure is needed also by OpenPTrack to perform
people detection while being robust to light changes. This data type is built from three
pieces of information: the depth map, the infrared image and the intrinsic parameters
of the sensor. The point cloud is computed at each new frame after that the depth data
have been processed and become available. Given the equations of 3D perspective
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Figure 2.7: The infrared point clouds are obtained from the depth and infrared images
and by exploiting the intrinsic parameters of the sensor. Example of six views of the
resulting cloud are reported on the right.

projection (simplified from Equation 2.1):
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where (x,y) are the coordinates of a pixel in the depth image, d is the measured depth,
fx, fy,cx,cy are the intrinsic parameters of the sensor and represent the focal lengths
and the optical centers of the camera, we can obtain (X ,Y,Z), the 3D coordinates of
the correspondent point in the point cloud.

For what concerns color information, in order to maintain the same structure as
for point cloud colored with RGB information, we consider all the three R, G and B
channels and fill them with i, that is the infrared intensity of the pixel (x,y), in the IR
image. Indeed, people detection performed on infrared information is more robust to
changes in visible light. We fill the three R, G and B channels with the same i values in
order to have the same algorithms working both on real RGB-colored point clouds and
intensity-colored clouds. It is worth noting that, the additional computational burden
due to the filling and use of three identical intensity channels is actually negligible.
The space in memory allocated for the cloud is then filled in with P = (X ,Y,Z,R,G,B)

points. Once the point cloud is filled, it is transferred back to the CPU (bottom part of
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libraries used Point Cloud topic framerate (Hz) OpenPTrack detection framerate (Hz)
ours with the Jetson TX1 30 23
ours with the Jetson TK1 22 13.7

[122] 8 7

Table 2.1: Frame rate comparison with a Jetson TK1 embedded system and a Jetson
TX1 embedded system.

libraries used Point Cloud topic framerate (Hz) OpenPTrack detection framerate (Hz)
ours 30 25.4
[122] 30 22

Table 2.2: Frame rate comparison with a high-end laptop.

Figure 2.6). An illustration of this process and some examples of the resulting point
cloud are shown in Figure 2.7.

The kinect2 bridge wrapper

The kinect2 bridgewrapper is an executable which streams data from the libfreenect2
driver library to the ROS topics whenever these data are requested. We had to adapt
this wrapper because our version of the driver directly generates the point cloud that
was computed by an external ROS node with the standard versions of the driver and
the wrapper (see Figure 2.5). This choice allowed to save time avoiding to allocate,
transfer and fill each point cloud.

2.2.3 Experiments

To show the improvements of the proposed system with respect to the state-of-
the-art, we compared the outputs of two implementations of our system with a people
detection and tracking system presented in scientific literature [122]. Table 2.1 com-
pares the output of the software library proposed in [122] with two implementations
of our system which used as processing unit respectively: the NVidia Jetson TK1 and
the more recent (and much more powerful) NVidia Jetson TX1. The analysis is per-
formed in terms of the following parameters: numbers of processed point clouds per
second and people detection frequency. As reported in Table 2.1, the publishing rate
of the point cloud gets to 22 point clouds streamed per second with an improvement of
a factor 3. The people detection frame rate doubles with our approach reaching 13.7
frames per second, that enables real-time people tracking with continuous tracks.

The same test has also been performed by substituting the Jetson embedded system
with an high-end laptop, with an Intel i5-4210M CPU and a NVidia Quadro K1100M
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Figure 2.8: Output of OpenPTrack people tracking algorithm. Two people are moving
in the environment and are simultaneously observed by the two tracking systems:a
Kinect v2 attached to a high-end laptop (green tracks) and a Kinect v2 attached to
the embedded system NVidia Jetson TK1 (red tracks). The data of the two tracks are
perfectly overlapped, a small offset of the two tracks is introduced afterwards in the
picture only for visualization purposes.

GPU. The frame rates reported in Table 2.2 prove that the proposed system increases
the overall performance also on a machine with CUDA-enabled graphics card. A qual-
itative comparison of the output of the people detection module of OpenPTrack run by
the embedded system and by the laptop computer has been performed by comparing
the tracks of two moving people (see Figure Figure 2.8in which the two people are
correctly detected by both nodes). The track generated by the embedded node (in red)
is slightly less dense than the one generated by the laptop (in green) because of the
differences in frame rate outlined in Tab 2.1 and 2.2. The tracking output data from
the two systems are perfectly overlapped, a small offset of the two tracks is introduced
afterwards in the picture only for visualization purposes.

These tests confirm that the hardware and software system proposed creates a com-
pact, powerful and cost-efficient perception system (here tested as a people tracking
system) based on a Kinect v2 attached to an embedded computer with CUDA process-
ing capability. The hardware and software system we proposed in this work is of major
interest also for the mobile robotics community, because on board of a mobile robot
weight and power consumption are an issue. Indeed, processing data on board of a mo-
bile robot with an embedded computer (which can be powered with 12V) instead of a
laptop (which needs to be powered with a 220V) while keeping real-time performance
is a great advantage. Moreover, the software library we developed outputs all the in-
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formation needed by state-of-the-art robust navigation algorithms and it is compatible
with ROS, the de-facto standard used in the robotics community.

2.2.4 Conclusion

In this chapter, we presented a hardware and software perception system which
is powerful and cost-efficient. It has been designed for use in camera networks and
mobile robotics. We tested the proposed system with people detection and tracking
algorithms. It is composed of an embedded computer (i.e. the NVidia Jetson TK1), an
RGB-D camera (i.e. the Kinect v2), and a multi-camera people tracking system (i.e.
OpenPTrack, an open-source ROS-based software library).

The main contribution of this chapter is a novel software library to process at high
frame-rate the heavy stream of data coming from a Kinect One exploiting the GPU
capabilities of the Jetson TK1. A second major contribution is the wrapper which
makes the libfreenect2 library compatible with the ROS middleware. The proposed
system was tested performing people detection in a RGB-D camera network using
OpenPTrack. The results shows that our system allowed to triple the rate of generation
of point clouds and to double the people detection frame rate with respect to the state-
of-the-art library [122].

This work is not only fundamental for distributed perception systems composed of
many perception units, where each unit has to be as powerful and cheap as possible,
but also as perception unit for mobile robots, given its compatibility with ROS.

To provide the best benefit for the computer vision and robotics community, but
also for developers of human-computer interaction applications, we released all the
code implemented as open source within the OpenPTrack repository4 [16].

Given the possibility to efficiently generate point cloud data as demonstrated, Chap-
ter 3 will present a contribution about the efficient 3D human body pose estimation
using just point cloud information obtained by an RGB-D camera network.

4https://github.com/OpenPTrack/libfreenect2/tree/jetson-dev

https://github.com/OpenPTrack/kinect2_bridge/tree/jetson-dev

https://github.com/OpenPTrack/libfreenect2/tree/jetson-dev
https://github.com/OpenPTrack/kinect2_bridge/tree/jetson-dev




Chapter 3

Markerless 3D body pose estimation
fusing depth information between
RGB-D cameras

The capability to segment the body parts or, more generally, to estimate a skeleton
of a person in an unsupervised way is fundamental for many applications: from health-
care to ambient assisted living, from surveillance to action-recognition and people re-
identification. The introduction of affordable RGB-D cameras as the Microsoft Kinect,
has given a boost to the research in this area and many marker-less skeleton estimation
algorithms were born, as Shotton’s human pose recognition [102] and Buys’ body
pose detection [12]. However, all these systems perform better when the subject is
seen frontally with respect to the depth camera, mainly because most of the training
examples they were trained with referred to this pose.

In this chapter, we want to overcome this problem when multiple cameras are avail-
able, thus generating a virtual depth image of the subject warped in frontal view after
having fused the depth information coming from the cameras. Moreover, we propose
an improvement to Buys’ body pose detector [12], here used for skeleton estimation,
by adding a preliminary people detection phase for background removal and perform-
ing an alpha-beta tracking on the final skeleton joints. The system has been tested
on sequences of two freely moving persons imaged by a network composed of two
first-generation Microsoft Kinect sensors.

Summarizing, the contribution of this chapter is two-fold:

• We introduce a novel multi-view method to estimate the skeleton of a person
based on the fusion of the 3D information coming from all the sensors in the
network and a subsequent warping to a frontal pose;
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• We improve the body pose detector in [12] by removing background points from
the input depth image with a people detection phase and by adding a joint track-
ing filter to the output of the detector.

The remainder of the chapter is organized as follows: Section 3.1, reviews the state-
of-the-art of both single-camera and multi-camera skeleton tracking algorithms, while
Section 3.2 gives an overview of our system. In Section 3.3, we describe the multi-
view data fusion part of our system, while in Section 3.4 we describe the skeleton
estimation algorithm we used and how we improved it. Finally, Section 3.5 details the
experiments we performed and the results we achieved and in Section 3.6 conclusions
are drawn.

3.1 Related Work

The skeleton of a person gives important cues on what the person is doing (action-
recognition) [96,115], who is the person viewed (people re-identification) [68,72,73],
what are his/her intentions (surveillance) [45] and how are his/her health conditions
(health-care) [25]. Furthermore, the wide literature on people tracking [69, 75, 76]
demonstrates its usefulness for both security applications and human-robot interaction.
One of the most important works on skeleton tracking is the one by Shotton et al.
[102], which trains a random forest to recognize the body parts of a person with a huge
training dataset composed of real and synthetic depth images of people. The classifier,
licensed by Microsoft for entertainment applications, achieves good performance and
works in real-time. The system is released within the Microsoft Kinect SDK and only
works with Windows-based computers. Another work released as open-source within
the Point Cloud Library [97] is the work of Buys et al. [12], which uses an approach
similar to Shotton’s. In our work, we use this latter body-part detector, that we also
improved by adding a people detection pre-processing phase and an alpha-beta tracking
algorithm.

Intelligent surveillance systems rely more and more on camera network coopera-
tion. Indeed, more cameras are able to cover more space and from multiple views,
obtaining better 3D shapes of the subject and decreasing the probability of occlusions.

Recent works relies on camera collaboration in network to enhance skeletal esti-
mation. In [52], the skeleton obtained by single RGB images is fused with the skeleton
estimated from a 3D model composed with the visual hull technique. The visual hull
is used for refining the pose obtained from the single images. In [62], a skeleton is
computed for every camera from a single image and then these estimates are projected
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to 3D and intersected in space. The work by Gao et al. [33] addresses this problem by
registering a 3D model to the scanned point cloud obtained by two Kinects. This work
is very accurate but unfeasible for real-time purposes given the 6 seconds needed to
process each frame. The work of Yeung et al. [125] proposes a solution to the same
problem with two Kinects that can be used in real-time. In particular, they uses two
orthogonal Kinects and fuse the skeletons obtained from the Microsoft SDK with a
constrained optimized framework.

In this work, we exploit the multi-view information at the depth level, leaving the
skeleton estimation as the last part of the pipeline. In this way, we are able to obtain
better skeletons also when the single ones are potentially noisy or when they have some
not tracked joints. Moreover, we minimize the skeleton estimation error by warping
the fused data to a frontal view, given that the skeleton estimation is best performed
from frontally viewed persons.

3.2 System Overview

Figure 3.1 provides an overview of our system. A network composed of two first-
generation Microsoft Kinect is considered, but the extension to a higher number of
cameras is straightforward. At each new frame, the Kinects compute the 3D point
cloud of the scene and the people detector segments only the points belonging to the
persons in the scene. Afterwards, we transform the point clouds to a common refer-
ence frame given that the network is calibrated and we fuse the point cloud data after
performing a fine registration with the Iterative Closest Point(ICP) algorithm [9]. The
multi-view cloud obtained is then rotated and reprojected to a virtual image plane so as
to generate a depth map of the persons seen from a frontal view. Then, body parts de-
tection is performed on this virtual depth map and the joint position is computed from
the body segmentation and tracked with an alpha-beta tracking filter. The obtained
skeleton can then be reprojected to either of the original images. In Sections 3.3 and
3.4, we will better review each step of the proposed method.

3.3 Multi-view data fusion

State-of-the-art body part detectors [12, 102] perform poorly in presence of occlu-
sions. This case often occurs when a person is side-viewed by a camera, and having
more cameras in the scene does not ensure that one of them sees the person frontally.
For this reason, our system exploits the perception network to perform data fusion and
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Figure 3.1: Overview of the proposed system.

frontal view generation in order to provide to the body part detector a more complete
depth image of the person in the scene, thus improving the final performance.

3.3.1 People detection for background removal

The body part detector in [12] poorly estimates the lower body parts of a person
when the ground plane is visible under the feet of the person or when the person is too
close to the background. To overcome this problem, we added a people detection phase
as a preprocessing for background removal. In this way, we build a new depth image
where all the background points are set to a big depth value (e.g. 10 meters), so that
the Random Forest in [12] can easily discard them from belonging to the foreground
person. As for the people detector, we exploit the RGB-D people detection in [69,
76], that is publicly available in the Point Cloud Library and allows to robustly detect
people and provide the point cloud points belonging to them. Then, these 3D points
are reprojected to 2D to create a masked image which can be used instead of the entire
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depth image, improving the output of the original body part detector.

3.3.2 Point cloud fusion

(a) (b) (c)

Figure 3.2: An example of the depth data fusion process. In a) the point cloud obtained
from the C1 camera, in b) the point cloud obtained from the C0 camera and in c) the
final fused cloud.

The information coming from multiple cameras is here exploited at the depth level,
fusing the point clouds by means of the Iterative Closest Point algorithm. In particular,
considering the network of two cameras C0,C1 we used for the experiments, we first
obtain the segmented point clouds P0,P1 by means of the people detector and then,
given the extrinsic parameters of the network, we refer these point clouds to a common
world reference frame. After this transformation, the resulting point clouds Pw

1 and
Pw

0 are finely registered by means of an ICP algorithm in order to account for depth
estimation errors intrinsic of the sensors [127] or possible inaccuracies in the extrinsic
calibration of the network. In formulas, we obtain the point clouds:

Pw
0 = Tw

0 (P0) (3.1)

Pw
1 = Tw

1 (P1) (3.2)

Pw
total = Pw

0 ⊕TICP(Pw
1 ) (3.3)

where, T j
i represents the transformation from the i reference frame to the j reference

frame and TICP is the transformation obtained by performing ICP with the point cloud
Pw

0 as the target cloud and the Pw
1 as the source cloud. In Figure 3.2, an example of
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this process is shown. In order to lower the time to compute TICP, we calculate this
transformation by using two downsampled versions of Pw

0 and Pw
1 and by limiting to

30 the number of iterations.

3.3.3 Frontal view generation

The best skeleton estimation comes from frontal-viewed persons. For this reason,
we want to warp the total point cloud Pw

total obtained at Section 3.3.2 to be frontal with
respect to the camera we chose as a reference, here C0. In order to obtain this result,
as shown in Figure 3.3, we project the points of Pw

total to the ground, that is the xOy

plane of the world reference frame, thus obtaining a 2D shape that usually resembles
an ellipsoid O of points.

Pw
total

Z
X

Y

v̂

θ

Figure 3.3: The frontal view generation phase. On the left there are the reference
system of our Kinects and the common world reference system, the collaborative cloud
obtained with ICP after the people detection phase and the same cloud projected on the
xy plane of the world reference frame (visible in red). On the right, it is shown a top-
view of the world reference frame, the vector representing the principal component v̂
and the angle θ which is used for the frontal view warping. Best viewed in color.

We then calculate the principal components [91] of O in order to find a vector v̂

with the same direction of the major axis of O, that is then used to rototranslate the
original Pw

total with M:

M =




R t

01x3 1




(3.4)

where R is the rotation matrix which rotates a cloud of θ around the world z-axis and
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T the translation to bring the final point cloud to be centered on the world reference
frame. In order to compute R, we need to compute θ , which is the angle between v̂ and
ux = (1,0,0). In formulas, we have:

θ = arccos
(

v̂ ·ux

|v̂||ux|

)
(3.5)

R =




cosθ sinθ 0
−sinθ cosθ 0

0 0 1


 (3.6)

t =−




kx

ky

0


 , K = (kx,ky,kz) =

∑
|Pw

total|
i=0 Pw

total(i)
|Pw

total|
(3.7)

where K is the centroid of the total point cloud before the rototranslation. We can
now obtain the desired frontal-view point cloud as:

Pw
fv = {p = (xp,yp,zp)

T | ∃q ∈ Pw
total, p = Mq} (3.8)

3.4 Body skeleton estimation

In this chapter, we use the algorithm described in [12] to perform body part detec-
tion that is open source and available in the Point Cloud Library. This detector takes
as input a depth image, that is then classified by a Random Forest. For this reason, the
multi-view and frontal point cloud Pw

fv obtained in Section 3.3.3 has to be projected to
2D in order to create a virtual depth-image Dvirtual that could be processed by the body
part detector.

3.4.1 Virtual depth image generation

The virtual depth image Dvirtual is estimated by projecting the points in Pw
fv to the

image plane of the C0 camera, that has been taken as a reference. However, this process
often leaves some holes in the generated image. We thus implemented a hole-filling
procedure that fills the holes with the nearest valid points until a threshold distance. In
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formulas:

Dvirtual = {di j = (i, j) ∈ N2|i ∈ (0,480), j ∈ (0,640)} (3.9)

di j =





P0
f v(i, j), (i, j) provides a valid point in P0

f v

P0
f v(i, j), (i, j) = argmin{||(i, j)− (î, j)||< t|P0

f v(î, j) is valid}

10000, otherwise

(3.10)

In Figure 3.4, a comparison of a sample image with and without the hole-filling
procedure is shown. This hole-filled depth map is then provided as input of the body
part detector.

Figure 3.4: On the left, the resultant point cloud re-projection to the image plane of the
reference camera. On the right, the re-projection after the hole-filling procedure.

3.4.2 Joint estimation

The body part detector [12] assigns one of the 24 labels defined at training time to
each pixel of the depth map and calculates the blobs of the coherent voxels with the
same label.

From this preliminary segmentation, we then compute the positions of the skeleton
joints in two steps. At first, we address the problem of the possibility of a single
label being assigned to multiple coherent groups of voxels. This issue can be solved
by combining the coherent voxel groups into a single blob or sorting them by their
size with the largest one being selected for the joint calculation. Although the results
of these simple methods were satisfying, the body part positions were imprecise in
certain cases, especially as it comes to the smaller body parts such as hands and elbows.
An improvement was achieved by building an optimal tree of the body parts, starting
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from the Neck as the root blob and further recursively estimating the child-blobs. This
method is based on a pre-defined skeleton structure, which settles whether two body
parts are connected as well as certain constraints regarding the expected size of the
limbs.

In the second phase, the 3-D position of the joint is calculated from the selected
blob. In most cases, the 3D centroid of the corresponding blob point cloud provides a
good estimate for the joint position. An exception to this is the Hip blob, which also
contains a large part of the torso. Besides, the Shoulder and Elbow joints are special
cases which are described below.

Shoulders The shoulder position is calculated from the corresponding chest blob.
Inside the blob point cloud, we estimate the voxel Vy max with the maximum Y-value.
We further build a sub-group of voxels belonging to the chest blob and having the
distance to the Vy max below a certain threshold (10 cm) and use the centroid of this
sub-blob as the final position.

Elbows If the elbow blob was detected, we use the normal approach calculating
the centroid of the blob. Otherwise, we estimate the point inside the arm blob, which
has the longest distance from the previously estimated Shoulder joint.

Hips We define a certain threshold and build a sub-group of voxels belonging to the
lower part of the hip blob. The centroid of this sub-group is used as the result position.

3.4.3 Joint tracking over time

The Alpha-Beta filter detailed in Algorithm 2 was implemented on top of the stan-
dard joint calculation to assure a consistent and continuous motion over time. This
deterministic approach estimates the new position based on the predicted and mea-
sured position, with the weight of the measured position given by the parameter α ,
while β shows the weight of the velocity update.

Careful tuning of the α and β parameters is necessary to achieve the best results.
Additionally, we have modified the update parameters for the hand joints, which usu-
ally have higher velocities then other body parts.

3.5 Experiments

We tested the different steps of the proposed approach with two series of RGB-
D frames recorded from a network of two first-generation Microsoft Kinect. In these
sequences, two different freely-moving persons were performing different movements.
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Algorithm 2 Applying the Alpha-Beta filter for joint tracking at a timestep t.

INPUT:

• Xm = [Xm1, ...,Xmn] - measured values of m body joints;

• X p = [X p1, ...,X pn] - previous values of m body joints;

• V = [V1, ...,Vn] - velocities of the body joints

OUTPUT:

• X = [X1, ...,Xn] - estimated joint positions;

• V = [V1, ...,Vn] - updated velocities:

1: procedure FILTERING(Xm,X p,V )
2: Calculate the predicted position: Xk = X pk +Vk ∗dt
3: Difference between measured and predicted: Rk = Xmk−Xk
4: New joint position value: Xk = Xk +α ∗Rk
5: New joint velocity value: Vk =Vk +(β ∗Rk)/dt

For measuring the accuracy, we considered the following skeleton estimation error:

ε =
∑ f rames

∑ joints ||posestim−posactual ||
N joints

N f rames
(3.11)

where the ground truth for joint position posactual has been manually annotated. The
system used for testing the methods proposed is an Ubuntu 14.04 machine with an Intel
core i7-4770 CPU and a NVidia Geforce GTX 670 GPU. In Table 3.1, we reported
a quantitative comparison of skeleton estimation with our methods and the original
one in terms of Equation 3.11. In this table, we report also a baseline multi-view
approach at the skeleton level in which each fused skeleton Ŝ is the average of the
single-view skeletons S0 and S1. While the original method [12] is independent from
the background for the body pose estimation, the joint estimation algorithm is not
and this cause the large ε obtained in our tests. Adding a people detection step, thus
improve exponentially the performance gained by the joint estimator and our joint-
tracking filter maintains the performance while smoothing the joints estimated.

Our novel multi-view approach outperforms both the single-view skeleton estima-
tion and the baseline multi-view method we used. The results achieved are from 20% to
33% better than the single ones and up to 24% better than the baseline skeleton-based
multi-view approach. The computational burden needed for computing a skeleton us-
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first person second person
[12] 97.82 139.50

ours single-view with PD 34.35 35.01
ours single-view with PD and JT 34.50 35.35
baseline multi-view at the skeleton level 30.50 29.65
proposed multi-view approach at the depth level 23.26 28.22

Table 3.1: The performance achieved by the original method [12] and our method. PD
stands for people detection and JT for joint tracking.

ing a consumer i7-based computer is around 100 ms (60 ms for computing the virtual
depth image plus 40 ms for the PCL skeleton computation) using a non-optimized
version of the code. In Figure 3.5, we reported a qualitative comparison of skeleton
estimation with these techniques.

3.6 Conclusions

In this chapter, we addressed the problem of human skeleton estimation and track-
ing in camera networks. We proposed a novel system to fuse depth data coming from
multiple cameras and to generate a frontal view of the person in order to improve the
skeleton estimation that can be obtained with state-of-the-art algorithms operating on
depth data. Furthermore, we improved single-camera skeletal tracking by exploiting
people detection for background removal and joint tracking for filtering joint trajec-
tories. We tested the proposed system on hundreds of frames taken from two Kinect
cameras, obtaining a great improvement with respect to state-of-the-art skeletal track-
ing applied to each camera. The proposed approach can be also applied to real-time
scenarios given the low computational burden required.

The presented solution is effective, but it still presents problems when the per-
son is partially seen by the camera network, resulting in a partial virtual depth image.
Moreover, the approach is not scalable with the number of people, resulting in longer
computational time required with multiple persons in the scene. To overcome this lim-
itation, Chapter 4 will show an alternative solution to the same problem addressed.
Last years, have seen impressive deep learning solutions that drastically enhanced the
single-view quality of body pose estimators even with non-frontal views on RGB im-
ages. Chapter 4 takes advantage of this technology proposing a body pose estimation
system that computes the 2D skeleton of all the people in the scene in one-shot. Then,
the proposed system computes the 3D pose of all the persons with negligible overhead
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by fusing the outcomes of the single cameras by means of Kalman filtering. In this way,
there is also no need of synchronization between the different network nodes allowing
low-cost and heterogeneous camera networks. However, when the RGB image is not
informative enough as during the night with no external light, the solution presented in
this chapter is still to be preferred over the one presented in Chapter 3.



3.6. CONCLUSIONS 33

(a) (b) (c) (d)

Figure 3.5: Some sample frames of the dataset we used for testing the proposed ap-
proach. Each row represents a frame. The different columns represent:
a) [12] on the C0 stream;
b) ours with PD and JT on the C0 stream;
c) ours with PD and JT on the C1 stream;
d) our multi-view approach re-projected on the C0 camera.





Chapter 4

Real-time and multi-person 3D Body
Pose Estimation

Figure 4.1: An example of a single-frame output provided by the system we are propos-
ing. In the figure, five persons are seen from a network composed of four Microsoft
Kinect v2. The system computes the body pose estimation of the persons in the scene
with respect to a common world reference frame, set during the extrinsic calibration of
the network.

The human body pose is rich of information. Many algorithms and applications,
such as action recognition [42,114,126], people re-identification [36], Human-Computer-
Interaction (HCI) [50] and industrial robotics [66,67,105] rely on this type of data. As
already seen in Chapter 2, the recent availability of smart cameras [16, 17, 131] and
affordable RGB-Depth sensors as the first and second generation Microsoft Kinect, al-
low to estimate and track body poses in a cost-efficient way. However, using a single
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Figure 4.2: The system overview. The camera network is composed of several RGB-D
sensors (from 1 to N). Each single-view detector takes the RGB and Depth images as
input and computes the 3D skeletons of the people in the scene as the output using the
calibration parameters K. The information is then sent to the multi-view central node
which is in charge of computing the final pose estimation for each person in the scene.
First, a data association is performed to decide which pose detection is belonging to
which pose track, then a filtering step is performed to update the pose track given the
detection.

sensor is often not reliable enough because of occlusions and Field-of-View (FOV)
limitations. For this reason, a common solution is to take advantage of camera net-
works. Nowadays, the most reliable way to perform human Body Pose Estimation
(BPE) is to use marker-based motion capture systems. These systems show great re-
sults in terms of accuracy (usually, less than 1mm), but they are very expensive and
require the users to wear many markers, thus requiring a long set-up time and im-
pairing a natural interaction because the user feels ”instrumented”. Moreover, these
systems usually require offline computations and possibly long computational times,
especially in complex scenarios with many markers and people, while the system we
propose provides immediate results. A real-time response is usually needed in security
applications, where person actions should be detected in time, or in industrial appli-
cations, where human motion is predicted to prevent collisions with robots in shared
workspaces. Aimed by those reasons, the research on marker-less motion capture sys-
tems has been particularly active in recent years.

In this chapter, we propose a novel system to estimate the 3D human body pose
in real-time. To the best of our knowledge, this is the first open-source and real-time
solution to the multi-view, multi-person 3D body pose estimation problem. Figure 4.1
depicts our system output. The system relies on the feed of multiple RGB-D sensors
(from 1 to N) placed in the scene and on an extrinsic calibration of the network. In this
work, this calibration is performed with the calibration toolkit [5]1. The multi-

1https://github.com/iaslab-unipd/calibration_toolkit

https://github.com/iaslab-unipd/calibration_toolkit
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view poses are obtained by fusing the single view outcomes of each detector, that runs
a state-of-the-art 2D body pose estimator [13,118] and extend it to 3D by means of the
sensor depth. The contribution of the chapter is two-fold: i) we propose a novel system
to fuse and update 3D body poses of multiple persons in the scene and ii) we enriched
a state-of-the-art single-view 2D pose estimation algorithm to provide 3D poses. As a
further contribution, the code of the project has been released as open-source as part of
the OpenPTrack [70, 74] repository. The proposed system is:

• multi-view: The fused poses are computed taking into account the different poses
of the single-view detectors;

• asynchronous: The fusion algorithm does not require the different sensors to be
synchronous or have the same frame rate. This allows the user to choose the
detector computing node accordingly to his needs and possibilities;

• multi-person: The system does not make any assumption on the number of per-
sons in the scene. The overhead due to the different number of persons is negli-
gible;

• scalable: No assumptions are made on the number or positions of the cameras.
The only request is an offline one-time extrinsic calibration of the network;

• real-time: The final pose framerate is linear to the number of cameras in the
network. In our experiments, a single-camera network can provide from 5 fps
to 15 fps depending on the Graphical Processing Unit (GPU) exploited by the
detector. The final framerate of a camera network composed of k nodes is about
the sum of their single-view framerate;

• low-cost: The system relies on affordable low-cost RGB-D sensors controlled
by consumer GPU-enabled computers. No specific hardware is required.

The remainder of the chapter is organized as follows: in Section 4.1 we review
the literature regarding human BPE from single and multiple views, while Section 4.2
describes our system and the approach used to solve the problem. In Section 4.3 ex-
perimental results are presented, and, finally in Section 4.4 we present our final con-
clusions.



38 CHAPTER 4. REAL-TIME AND MULTI-PERSON 3D BPE

4.1 Related Work

4.1.1 Single-view body pose estimation

Since a long time, there have been a great interest about single-view human BPE,
in particular for gaming purposes or avatar animation. Shotton et al. [102] proposed
the skeletal tracking system licensed by Microsoft used by the XBOX console with
the first-generation Kinect. This approach used a random forest classifier to classify
the different pixels as belonging to the different body parts. This work inspired an
open-source approach that was released by Buys et al. [12]. This same work was
then improved by adding the OpenPTrack people detector module as a preprocessing
step [18]. Still, the performance of the detector remained very poor for non frontal
persons.

In these last years, many challenging Computer Vision problems have been finally
resolved by using Convolutional Neural Networks (CNNs) solutions. Also single-view
BPE has seen a great benefit from these techniques [13,19,48,86]. The impressive pose
estimation quality provided by those solution is usually paid in terms of computational
time. Nevertheless, this limitation is going to be leveraged with newer network layouts
and Graphical Processing Units (GPU) architectures, as proved by some recent works
[13, 19]. In particular, the work of Cao et. al [13] was one of the first to implement
a CNN solution to solve people BPE in real-time using a bottom-up approach. The
authors were able to compute 2D poses for all the people in the scene with a single
forward pass of their CNN. This work has been adopted here as part of our single-view
detectors.

4.1.2 Multi-view body pose estimation

Multiple views can be exploited to be more robust against occlusions, self-occlusions
and FOV limitations. In [26] a Convolutional Neural Network (CNN) approach is pro-
posed to estimate the body poses of people by using a low number of cameras also in
outdoor scenarios. The solution combines a generative and discriminative approach,
since they use a CNN to compute the poses which are driven by an underlying model.
For this reason, differently of the work presented here, the collaboration of the users is
required for the initialization phase.

In our previous work [18], we solved the single-person human BPE by fusing the
data of the different sensors and by applying an improved version of [12] to a vir-
tual depth image of the frontalized person. In this way, the skeletonization is only
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Figure 4.3: The single-view pipeline followed for each sensor. At each new frame
composed of a color image (RGB), a depth image and the calibration parameters, the
3D pose of each person in the scene is computed from the 2D one. Then, the results
are sent to the central computer which will compute the multi-view result.

performed once, on the virtual depth map of the person in frontal pose.

In [33], a 3D model is registered to the point clouds of two Kinects. The work
provides very accurate results, but it is computationally expensive and not scalable to
multiple persons.

The authors of [62] proposed a pure geometric approach to infer the multi-view
pose from a synchronous set of 2D single-view skeletons obtained using [123]. The
third dimension is computed by imposing a set of algebraic constraints from the trian-
gulation of the multiple views. The final skeleton is then computed by solving a least
square error method. While the method is computationally promising (skeleton com-
puted in 1s per set of synchronized images with an unoptimized version of the code),
it does not scale with the number of persons in the scene.

In [55] a system composed of common RGB cameras and RGB-D sensors are used
together to record a dance motion performed by a user. The fusion method is obtained
by selecting the best skeleton match between the different ones obtained by using a
probabilistic approach with a particle filter. The system performs well enough for its
goal, but it does not scale to multiple people and requires an expensive setup.

In [52] the skeletons obtained from the single images are enriched with a 3D model
computed with the visual hull technique.

In [125] two orthogonal Kinects are used to improve the single-view outcome of
both sensors. They used a constrained optimization framework with the bone lengths
as hard constraints. While the work provides a real-time solution and there are no
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hard assumption on the Kinect positions, it was tested just with one person and two
orthogonal Kinect sensors.

Similarly to many recent works [52, 55, 62], we use a single-view state-of-the-art
body pose estimator [13], but we augment its results with the third dimension and we
then combine the multiple views to improve the overall quality. To the best of our
knowledge, no previous work was able to deal with multiple persons in the scene,
while providing real-time outcomes.

4.2 System Design

Figure 4.2 shows an overview of the proposed system. It can be split into two
parts: i) the single view detector, which is the same for each sensor and it is executed
locally and ii) the multi-view part which is executed just by a central node of the
network called master computer. In the single-view part (see Figure 4.3), each detector
estimates the 2D body pose of each person in the scene using an open-source state-of-
the-art single-view body pose estimator. In this work, we use the OpenPose2 [13, 118]
library, but the overall system is totally independent of the single-view algorithm used.
The last operation made by the detector is to compute the 3D positions of each joint
returned by OpenPose. This fusion is done by exploiting the depth information coming
from the RGB-D sensor used. The 3D skeleton is then sent to the master computer
for the fusion phase. This is done by means of multiple Kalman Filters used on the
detection feeds, as explained in Section 4.2.3.

4.2.1 Camera Network setup

The camera network can be composed of several RGB-D sensors. In order to know
the relative position of each camera, we calibrate the system using a solution similar
to our previous works [70, 74]. From this passage we fix a common world reference
frame W and we obtain a transformation T W

C , for each camera C in the network,
which transforms points in the camera coordinate system C to the W reference system.

4.2.2 Single-view Estimation of 3D Poses

Each node in the network is composed of an RGB-D sensor and a computer to
elaborate the images. Let RF = {RC,RD} be a frame captured by the detector R and
composed of the color image C and the depth image D all in the R reference frame.

2https://github.com/CMU-Perceptual-Computing-Lab/openpose

https://github.com/CMU-Perceptual-Computing-Lab/openpose
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Figure 4.4: The human model used in this work.

The color and depth images in F are considered as synchronized. We then apply Open-

Pose to RC obtaining the raw two dimensional skeletons S = {S0,S1, ...,Sk}. Each
S = { ji |0≤ i≤m} ∈S is a set of 2D joints which follows the human model depicted
in Figure 4.4. The goal of the single-view detector is to transform S in the set of
skeletons Ŝ= {Ŝ0, Ŝ1, ..., Ŝk} where each Ŝ ∈S is a three dimensional skeleton. Given
the RGB image I, let’s consider a point p = (xp,yp) ∈ I and its corresponding depth
d = pro j(xp,yp) where the function pro j(·) is obtained by means of extrinsic calibra-
tion of the depth and camera imagers of the RGB-D sensor. Considering ( fx, fy) and
(cx,cy) respectively the focal length and the optical center of the sensor, the relation-
ship to compute the 3D point RP = (RX ,RY,RZ) in the camera reference system R is
explained in Equation 4.1.

p =




xp

yp

d


=




fx 0 cx

0 fy cy

0 0 1






RX
RY
RZ


= K ·RP (4.1)

Since the depth data is potentially noisy or missing, instead of directly considering
pro j(·) as the depth value, we refine it by calculating the median of the set D(p). The
calculation of the depth d associated to the point p = (xp,yp) is shown in Equations 4.2
and 4.3.

D(p = (xp,yp)) = {(x,y) | ||(x,y)− (xp,yp)||< ε} (4.2)

d = φ(p) = median
α 6=0

{α = pro j(x,y) |(x,y) ∈D(p)} (4.3)
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Given S, we then proceed to the calculation of Ŝ as shown in Equation 4.4.

∀0≤ j < k, S j = { ji = (xi,yi) |0≤ i < m} ∈S,

Ŝ j =





ĵi =



|K−1 · ji|x
|K−1 · ji|y

φ( ji)


 , 0≤ i < m




∈ Ŝ

(4.4)

Once the set Ŝ is available, the detector sends it to the master computer for the
multi-view fusion computation.

4.2.3 Multi-view fusion of 3D poses

The master computer fuses the different information it receives from the single-
view detectors in the network. One of the common limitations in motion capture sys-
tems is the necessity to have synchronized cameras. Moreover, off-the-shelves RGB-D
sensors, such as the Microsoft Kinect v2, do not have the possibility to trigger the im-
age acquisition. In order to overcome this limitation, our solution merges the different
data streams asynchronously. This allows the system to work also with other RGB-D
sensors or other low-cost embedded machine which can provide different frame-rates.
At time t, the master computer maintains a set of tracks T= {T0,T1, ...,Tl} where each
pose tracked Ti is composed of the set of states obtained by m different Kalman Filters,
one per each joint, i.e: Ti = {S (Ki0),S (Ki1), ...,S (Kim)}. The additional Kalman
Filter Kim is needed for the data association algorithm. Indeed, the first operation the
master performs is to associate the different skeleton observations to its T. At time
t + 1, it may arrive a detection Ŝi = {Ŝ0, Ŝ1, ..., Ŝk} from the sensor i of the network.
The master computer first refers the detection to the common world coordinate system
W (see Section 4.2.1) using the following transformation:

W Ŝi = T W
i · Ŝi = {T W

i ·S j |∀S j ∈ Ŝi} (4.5)

Then, it associates the different skeletons in W Ŝi as new observations for the different
tracks in T if they belong to them, or initializes new tracks if some of the skeletons do
not belong to any Ti ∈ T. At this stage, the system also decides if a track is old and has
to be removed from T. This step is important to prevent T to grow big causing time
computing problems with systems which are running for long time. We refer to this
phase as data association. Algorithm 3 shows how it is performed.

The data association is done by considering the centroid of each skeleton S con-
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Algorithm 3 The algorithm performed by the master computer to decide the associa-
tion between the different skeletons in a detection and the current tracks.

INPUT:

• W Ŝi = {S0,S1, ...,Sk−1} - a new detection set from sensor i expressed in the
world reference frame

• T= {T0,T1, ...,Tl−1} - the current set of tracked person poses.

• ε - maximum distance for a detection to be considered for the association

OUTPUT:

• M = {(Si,Tj) ∈W Ŝi×T} - the association between the pose tracked and the
new observations

• N ⊆W Ŝi - the detections without an association. They will initialize a new
track.

• To ⊆ T - the tracks without an associated observations. They will be considered
for removal if they remain without an observations for a long time.

1: procedure DATA ASSOCIATION(W Ŝi, T,ε)
2: To← /0
3: C← 0k×l
4: for each Ti ∈ T do
5: for each S j ∈W Ŝi do
6: xt( j)← centroid(S j)
7: zt(i, j)← *v that Ti would have if S j were associated to it*
8: ẑt|t−1(i)← *prediction step of Kim*
9: Σt(i)← Σt(Kim)

10: z̃t(i, j)← zt(i, j)− ẑt|t−1(i)
11: Ci j← z̃T

t (i, j) ·Σt(i)−1 · z̃t(i, j)

12: X ← solve Munkres(C)
13: for i ∈ [0, l−1] do
14: for j ∈ [i+1,k−1] do
15: if Xi j = 1 and Ci j < ε then
16: M ←M ∪{(S j,Ti)}
17: * update Kim with S j *

18: N ←{Si |@Tj, (Si,Tj) ∈M }
19: To←{Ti |@S j, (S j,Ti) ∈M }
20: return M , N , To
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tained in the detection W Si. The centroid is calculated as the chest joint j14 ∈ S, if
this is valid, otherwise it is replaced with a weighted mean of the neighbor joints.
Lines [6-9] of Algorithm 3 refers to the calculation of a cost associated to the case if
the detection pose S j would be associated to the track Ti. To calculate this, we consider
the Mahalanobis distance (Line 11) between the likelihood vector at time t z̃t(i, j) and
Σt(Ki,xt ): the covariance matrix of the Kalman filter associated to the centroid of Ti.
At this point, we are trying to solve the assignment problem with C as the cost ma-
trix. This is solved by the Hungarian algorithm run on C; Line 11 refers to the use
of the Munkres algorithm which efficiently computes the optimal matrix X with a 1
on the optimal couples and a 0 on the rest of them. Nevertheless, this algorithm does
not consider a maximum distance between tracks and detections. Thus, it may happen
that a couple is wrongly associated in the optimal assignment. For this reason, when
inserting the optimal couples in M , we check also if the cost of the couple in the initial
cost matrix C is below a threshold.

Once solved the data association problem, we can assign the tracks ID to the differ-
ent skeletons. Indeed, we know which are the detection at the current time t belonging
to the tracks in the system and, additionally, we know also which tracks need to be
created (i.e. new detections with no associated track) and the tracks to consider for
the removal. Let n be the number of people in the scene, we used a set of Unscented
Kalman Filters K= {Ki j, 0≤ i< n, 0≤ j≤m}where the generic Ki j ∈K is in charge
of computing the new position of the joint j of the person i at time t, given the new
detection received from one of the detectors at time t and the prediction of the filter
Ki j computed from the previous position at time t−1 of the same joint j.

The state of each Kalman Filter Ki j is six-dimensional: S (Ki j)= {x,y,z,vx,vy,vz}∈
R6 composed by the position and the velocity of the track. As motion model we used
a constant velocity model, since it is good to predict joint movements in the small
temporal space between two good detections of that joint.

4.3 Experiments

The algorithm described in this chapter does not require any synchronization be-
tween the cameras in the networks. This fact makes particularly difficult to find a
fair comparison between our proposed system and other state-of-the-art works. Thus,
in order to provide useful indication on how our system performs, we recorded and
manually annotated a set of RGB-D frames while a person was freely moving in the
field-of-view of a 4-sensors camera network. Although our system is able to track
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r-shoulder r-elbow r-wrist r-hip r-knee r-ankle

single-camera network
MAF30 >100 >100 >100 >100 >100 >100
MAF40 >100 >100 >100 >100 >100 >100
Ours 54.9 ± 58.6 42.4 ± 47.4 42.4 ± 40.0 51.7 ± 43.7 54.5 ± 31.0 63.3 ± 34.2

2-camera network
MAF30 62.0 ± 33.0 62.9 ± 32.0 63.1 ± 34.5 76.4 ± 30.6 75.9 ± 27.4 88.3 ± 35.6
MAF40 83.7 ± 41.8 84.0 ± 40.9 83.1 ± 43.7 99.2 ± 40.4 96.3 ± 38.0 >100
Ours 20.7 ± 17.2 21.0 ± 17.5 24.3 ± 17.5 22.4 ± 16.7 42.8 ± 17.2 59.7 ± 28.6

4-camera network
MAF30 28.7 ± 16.4 31.0 ± 16.9 32.2 ± 22.5 40.2 ± 15.0 48.7 ± 12.8 58.6 ± 21.2
MAF40 38.4 ± 21.2 40.8 ± 21.7 41.6 ± 26.3 50.7 ± 19.4 56.2 ± 16.7 66.0 ± 24.5
Ours 22.7 ± 18.9 21.3 ± 18.5 26.3 ± 19.9 23.9 ± 18.0 46.5 ± 19.7 55.9 ± 25.1

l-shoulder l-elbow l-wrist l-hip l-knee l-ankle

single-camera network
MAF30 >100 >100 >100 >100 >100 >100
MAF40 >100 >100 >100 >100 >100 >100
Ours 77.7 ± 74.4 79.1 ± 82.7 70.0 ± 61.8 97.8 ± 30.3 57.5 ± 38.9 69.2 ± 37.6

2-camera network
MAF30 83.3 ± 33.4 85.8 ± 37.8 94.8 ± 45.4 >100 85.4 ± 35.5 93.3 ± 37.0
MAF40 >100 >100 >100 >100 >100 >100
Ours 32.1 ± 23.0 33.4 ± 26.3 39.8 ± 35.1 98.3 ± 21.2 39.9 ± 18.3 58.6 ± 27.1

4-camera network
MAF30 41.5 ± 17.9 39.9 ± 19.6 44.7 ± 29.5 94.1 ± 26.1 52.1 ± 17.8 57.8 ± 27.9
MAF40 53.0 ± 23.2 52.7 ± 24.6 57.6 ± 33.1 96.6 ± 30.8 61.2 ± 23.1 67.5 ± 31.6
Ours 22.5 ± 22.1 26.7 ± 25.9 31.8 ± 29.7 95.4 ± 22.0 45.1 ± 20.5 49.1 ± 25.2

Table 4.1: The results of the experiments. Each number represents the mean and the
standard deviation of the re-projection error on a reference camera (see Equation 4.6)

.

multiple persons in the scene, it is particularly time-consuming to manually annotate
a dataset, therefore, for the experimental setup we considered a dataset involving just
one person.

We compare our algorithm with a baseline method called MAF (Moving Average
Filter), in which the outcome of the generic joint i at time t is computed as an average
of the last k frames. In order to be as fair as possible, we fixed k ≥ 30 to provide
comparable results in terms of smoothness. This baseline operates the same identical
data association performed by our algorithm and explained in Section 4.2.3.

We also demonstrated the effectiveness of the multi-view fusion by comparing our
results with the poses obtained by considering just one and two cameras of the same
network. As metrics, we report the average reprojection error with respect to one of the
cameras, C0. Equation 4.6 shows how this error is calculated with W P as the generic
joint expressed in the world reference system and p∗ as the corresponding, manually
annotated, ground truth:

erepr = |p∗−K ·T C0
W ·

W P| (4.6)

Table 4.1 shows the results we achieved. As depicted, the proposed method outper-
forms the baseline in all the cases: single-view, 2-camera network and 4-camera net-
work. In the first two cases (single and 2-camera network) the improvement is from
50% to 60%, while, when multiple views are available, it is from 18% to 32%. It is
also interesting to note that the most noisy joints are the ones relative to the legs as
confirmed by other state-of-the-art works [13, 48, 86].
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4.3.1 Implementation Details

The system has been implemented and tested with Ubuntu 14.04 and Ubuntu 16.04
operating system using the Robot Operating System (ROS) [90] middleware. The code
is entirely written in C++ using the Eigen, OpenCV and PCL libraries.

4.4 Conclusions and Future Works

In this chapter we presented a framework to compute the 3D body pose of each
person in a RGB-D camera network using only its extrinsic calibration as a prior. The
system described outperforms the one shown in Chapter 3 by the fact that it works
with multiple people at the same time with negligible overhead and there is no need of
synchronization between the data stream coming from the cameras. Indeed, the system
does not make any assumption on the number of cameras, on the number of persons in
the scene, on their initial poses or clothes and the nature of the tracker presented does
not require the cameras to be synchronous. In our experimental setup we demonstrated
the validity of our system over both single-view and multi-view approaches. In order
to provide the best service to the Computer Vision community and to provide also a
future baseline method to other researchers, we released the source code under the
BSD license as part of the OpenPTrack library3.

As future works, we plan to add a human dynamic model to guide the prediction
of the Kalman Filters to further improve the performance achievable by our system (in
particular for the lower joints) and to further validate the proposed system on a new
RGB-Depth dataset annotated with the ground truth of the single links of the persons’
body pose. The ground truth will be provided by a marker based commercial motion
capture system.

While 3D human body pose estimation is a great feature for allowing rich HCI sys-
tems, camera networks should also be able to detect and recognize the single persons.
Indeed, this is a very important capability for assistive robots or for security purposes.
Chapter 5 goes in this direction by presenting a solution to re-identify persons in RGB-
D camera networks over days.

3https://github.com/openptrack/open_ptrack_v2

https://github.com/openptrack/open_ptrack_v2


Chapter 5

People re-identification by means of
face recognition in camera networks

Since several years, people detection and tracking is a very hot research topic that
has attracted much attention in the computer vision community. This is due to the
particular importance of this task in different domains such as surveillance as well as
autonomous systems and culture. People tracking is used mostly for security reasons
(e.g. detect and avoid collisions with pedestrians) or for artistic creation (e.g. animate
interactive walls whenever a human is passing by). For different applications, though,
the identity of each person becomes important. For example, an Ambient Assisted
Living (AAL) robot, in charge of following a certain person, is supposed to always
recognize that specific person, also among many other people and in presence of oc-
clusions that may cause the robot to temporarily loose its track.

When multiple cameras are available in a network, it is also possible to share the
knowledge between the nodes, building distribute algorithms that boost the recognition
performance. Many works proposed a solution to similar scenarios [7, 64, 79]. They
achieved good performance by using appearance features robust to pose and illumi-
nance together with sophisticated feature comparison methods. However, those works
provide a good solution using only the RGB information relative to the clothes of the
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Figure 5.1: System overview.
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subjects in the scene. Therefore, they cannot identify people over days as requested by
many long-term service scenarios.

People re-identification1 research has historically used several soft biometrical fea-
tures (e.g. skeletal lengths [72], gait recognition [8, 58]). Such features are good to
identify people in different days, since they are not invariant over time. However,
when dealing with large number of persons with similar physiques, they may fail to
correctly identify each person. In order to boost the reliability of the re-identification,
the chosen features should be discriminative and robust to changes in illumination and
viewpoint. Given that the face provides the most discriminative and reliable features
to identify persons [129], this work proposes a new approach to leverage them in order
to re-identify people.

Face recognition is one of the most studied field in Computer Vision [4, 11, 83,
87, 106, 107] . Nevertheless, the face has not been used as well for re-identification
purposes in large camera networks, where faces are not always completely visible and
there are pose, illumination and expression (PIE) changes. One of the most famous
work that tried to use faces for this purpose was [7]. Nonetheless, faces were used as an
additional assistance to appearance features and always for short-term re-identification
purposes. Our goal is to propose a system that can re-identify people over days.

PIE issues represented a big challenge and they were very difficult to solve with tra-
ditional methods (e.g. EigenFaces [110], Local Binary Patterns [128], Scale-Invariant
Feature Transform (SIFT) [34]). Recently, Deep Learning based techniques [83, 101,
106, 107] show big improvements in this sense, almost approaching the perfection in
accuracy (99.6%) using one of the most challenging dataset for face recognition, the
Labelled Faces in the Wild (LFW) [46]. Face visibility is still considered as an open
problem, though.

In this chapter, we propose a novel system for re-assigning people ID in a peo-
ple tracking framework using face recognition exploiting multiple RGB-D cameras.
Indeed, camera networks could provide multiple point of views, reducing the face visi-
bility issues. As people tracking system we used OpenPTrack [70], an RGB-D camera
network-based people tracking framework. Our proposed system learns faces online
and re-identifies (or identifies for the first time) people whenever they appear in the
Field-of-View (FoV) of the camera network. The design of our network is similar to
the OpenPTrack one, where a master computer is in charge of fusing the different peo-
ple detection coming from the network nodes. In our work, the master computer is

1In this work, we used the term re-identification to refer to the recognition of persons over days
considering the camera network as a whole. Historically, the same term has also been used to refer to
the recognition of persons between different cameras, usually with non-overlapping FoVs.
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also in charge of re-assigning ID to the tracks, using the face recognition results from
the distributed nodes.

The chapter’s contribution can be summarized as two-fold:

• we proposed a Bayesian inference-based face classification method. It reliably
recognize a person using the confidences obtained by a Deep Neural Network
(DNN)-based face recognition library. In our experiments we demonstrated how
this type of inference is better than the baseline;

• we released the code of the project as open-source. The project is completely
modular and uses the ROS [90] middleware. We also demonstrated this by mak-
ing the network collaborate with a mobile robot (described in Appendix A).

The remainder of the chapter is organized as follows: Section 5.1 shows an overview
of the system, while Section 5.2 describes the proposed face recognition framework.
In Section 5.3 the integration of our system with a robotic platform is shown. Finally,
Sections 5.4 and 5.5 show the experiments we made to validate the system and the
conclusions, respectively.

5.1 System Overview

Figure 5.1 depicts the system overview. We track people by means of OpenPTrack [74]
(Figure 5.2 shows a snapshot of the system) and, in order to recognize people faces, we
exploit an open-source DNN-based face representation described in the work of Amos
et. al. [11].

Each distributed node is in charge of providing to the master node a set of single-
frame people detections and face features. For this reason, for each person tracked,
each node extracts a Region of Interest (ROI) using a fixed-proportional window on
top of the bounding box of the person considered. The face is then found inside this
ROI and its signature calculated using OpenFace [11]. In this way, the network com-
munication is efficient, since the data each node is sending (people detection and face
signatures) is very light and our system can grow up to a large and dense network
without occurring in bandwidth problems.

While the master node of the network computes people tracks by applying the
OpenPTrack algorithm, our proposed system re-identifies people by comparing the
signatures it is receiving. In order to achieve this goal, we exploit the concept of track,
that connects several detections and face signatures of the same person (potentially
unknown) in different time slots. Thus, by integrating this information, our algorithm
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builds a discriminative online descriptor for each person in the system. Finally, by
comparing the descriptor to the known faces gallery it decides whether the person is
known (the system re-assigns to the track the ID of the person in the system and updates
his/her descriptor) or unknown. In this case, the system adds the computed descriptors
and person ID to the gallery for future re-identification.

As an additional feature, the system also provides an offline people identification
capability. Indeed, it is possible to add a set of people faces together with their names
to the gallery in order to start the system using previous knowledge. This capability
is very useful to build rich Human-Robot-Interaction (HRI) systems as well as AAL
robots [14].

5.2 Proposed Method

5.2.1 People Detection and Tracking

In order to compute the tracks of the different people in the scene using a RGB-D
camera network, we used OpenPTrack [70], an open-source people tracking library, as
a barebone of our system.

The algorithm first segments and removes the ground plane from a point cloud
and then clusters the remaining points. Finally, a classification phase discriminates
each cluster in person or not person. The classification is performed by means of a
Support Vector Machine (SVM) trained on the Histograms-of-Gradients (HOG) com-
puted on the re-projected cluster on the original depth image. The people detection
is performed by each sensor in the network. Then, the outcomes are sent to a master
computer which is in charge of adding/updating/removing the people tracks in the sys-
tem. This is performed by combining the outcomes solving the global nearest neighbor
data association and using Kalman Filtering.

In Figure 5.2 an example of an artistic OpenPTrack installation is shown. The
library provides real-time tracks of people as long as each person is visible. On the
other hand, whenever the system looses a person track and then the same person re-
appears, he acquires a new track ID. The goal of this work is to enable the network
to recognize whenever such case happens and solve it by re-assigning the old ID to
the new track. The only method to perform such task is by using long-term people re-
identification, since a short-term re-id approach would not recognize people in different
days.
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Figure 5.2: An example of OpenPTrack, a people detection and tracking framework
using a RGB-D camera network. The system provides robust people tracking. How-
ever, person re-identification capability is necessary to recover the track of a person
left from the camera view. [74]

5.2.2 Face Detection

The goal of our work is to provide a system that can work in real-time. For this
reason, to detect faces we used a top-down approach. Firstly, we calculate the face
ROIs exploiting the bounding boxes returned by OpenPTrack together with the people
detection results. The ROIs are obtained by projecting a rectangle with fixed metric di-
mension (0.2m) to the top of each bounding box. Secondarily, we apply a Histograms-
Of-Gradients (HOG) and cascaded SVM-based face detector [56] just on the ROIs.
This method can find faces even when they are partially occluded, but it is quite slow
if run on an entire image. Once the face is found, we then obtain the face features by
using OpenFace. Figure 5.3 depicts an example of the face detection strategy we used.
The different boxes indicate the ROIs and the detected faces respectively in green and
in red.

5.2.3 Deep Neural Network-based Face Features

We use the OpenFace [11] library to generate face features to use in our algorithm.
The library is an open-source implementation of FaceNet [101]. The goal of FaceNet
is to compute a 128-dimensional feature vector which describes a face. The deep
neural network behind the library is trained using a triplet loss function. It takes three
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Figure 5.3: The result of the face detection approach on a frame. ROIs (visible in green
boxes), are calculated from the people detections. The regions classified as faces are
shown in red. As it can be seen, some faces are not detected due to occlusion. How-
ever, by integrating this information the number of unseen faces in a camera network
remains low.

training data as input composed of a training data as an anchor, a negative data (i.e.
with different identity as the anchor) and a positive data. The triplet loss function used
minimizes the distance between the anchor-positive pair, while maximizing the one
between the anchor-negative pair. As a result, features of faces of the same person will
have a close L2 distance, while faces of different people will be far away from each
other.

(a) Network Architecture. (b) Triplet loss function.

Figure 5.4: FaceNet framework [101]. This framework employs a deep convolutional
neural network and the triplet loss function to obtain discriminative face representa-
tions.
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5.2.4 People Re-identification by Face Recognition

Algorithm 4 describes how the re-identification works. face list represents the list
of known faces in the system (i.e. faces which are learnt online and added offline),
while track list represents the people tracks currently seen by the system. If a person
is not recognized by the system (i.e. just entered in the FoV of the camera network)
his/her face features are accumulated and classified into the online learnt faces. If
the confidence obtained is high enough, the algorithm finishes, since the person is
considered as re-identified. Otherwise, we consider him/her as a new person seen for
the first time. For the time the track is active, the faces are continuously updated and
his/her ID is removed from face list to avoid false positives. The ID is then added back
to face list when the person leaves the FoV of the network.

Algorithm 4 The people re-identification by face recognition algorithm.

INPUT:

• face list - a set of known faces

• track list - a set of tracks in the system

1: procedure REIDENTIFICATION(face list, track list)
2: for each track ∈ track list do
3: track.face images← track.face images ∪ observed face images
4: if track.face ID has not been assigned then
5: result← classify(track.face images, face list)
6: if result.confidence < threshold then
7: continue
8: else
9: if result is known person then

10: track.face ID← result.face ID
11: result.face images← result.face images ∪ track.face images
12: face list← face list \ result
13: else
14: track.face ID← new face ID
15: if track is not alive then
16: track list← track list \ track
17: face list← face list ∪ (track.face ID, track.face images)
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5.2.5 Bayesian Inference-based Face Classification

In order to reject failures, the system integrates recognition results as they come
from the nodes in the network. The simplest way to perform the integration is thresh-
olding, i.e. accumulate results for a fixed number of frames using as decision algo-
rithm a majority voting. However, this simple approach does not take into account the
differences in confidence of the single observations, affecting the final classification
accuracy.

In this work, we propose a reliable classifier of the observed faces based on a
Bayesian inference-based face classification. We used p(xi j) as the probability of the
i-th track to be of the same identity as the known face j. As special cases, p(xi0) is
considered as the probability that the i-th track is a person seen for the first time from
the system, while p(x0 j) is considered as the probability that the person with identity j

is not yet tracked by the system. In this way, we can define the following constraints:

N

∑
k=0

p(xk j) = 1 ( j 6= 0) (5.1)

M

∑
k=0

p(xik) = 1 (i 6= 0) (5.2)

where N and M are respectively the number of tracks in the system and the number
of known faces. The probabilities can be represented as a table (see Fig. 5.5). The
system updates this probability table with face images observed from people tracks.
Using the Bayesian theorem, the posterior probability of p(xi j) under an observation y

is:

p(xi j|y) ∝ p(xi j)p(y|xi j) (5.3)

Let xt
i be the face observed by the track i at time t, xk

j the k-th face image of the j-th
known face and F(·) the face feature extraction function, we can define the distances
di j using Equation 5.4. We use those distances as observations.

di j = min
k
‖F(xt

i)−F(xk
j)‖, (5.4)

The likelihood function p(y|xi j) is modeled by randomly selecting wrong and cor-
rect pairs of faces from the LFW [46] dataset. We selected 60000 and 30000 samples
of negative and positive pairs, respectively. We show in Figure 5.6 the distribution of
the distances between the selected pairs. We fitted a skew normal distribution to each
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p(x 01) p(x 02) · · · p(x 0M )

p(x 10) p(x 11) p(x 12) · · · p(x 1M )

p(x 20) p(x 21) p(x 22) · · · p(x 2M )
...

...
...

...
...

p(xN 0) p(xN 1) p(xN 2) · · · p(xN M )

N
 t
ra

c
k
s

M registered faces

sum up to 1

sum up to 1

sum up to 1

sum up to 1 sum up to 1 sum up to 1

Figure 5.5: The posterior probability table. The element at (i, j) is the posterior prob-
ability that the i-th track has the same identity as the j-th learned face. Rows and
columns are iteratively normalized so that they sum up to 1 by using Shinkhorn itera-
tion.

distribution using a maximum likelihood estimation and gradient descent method (they
are indicated as solid lines in Figure 5.6). We denote such distributions as Np(x) (pos-
itive distribution) and Nn(x) (negative distribution). Finally, we define the likelihood
p(y|xi j) from di j as following:

p(y|xi j) =





Np(di j) ( j = i)

c ·Nn(di j) ( j = 0)

Nn(di j) otherwise

(5.5)

using c as a constant to model the tendency that an observed face image is pro-
duced from an unknown person. Using a larger c, the framework tends to classify the
observed face as an unknown one. In this work, we fixed c = 1, but the system works
well with most values of c.

After updating the probability table using this computation, it usually violates
Equations 5.1 and 5.2. For this reasons, we normalize each row and column by ap-
plying the Shinkhorn iteration [108]. The algorithm first normalizes the row and then
normalizes the columns until they satisfy Equations 5.1 and5.2. Given the final proba-
bility table, if p(xi j) = max{pxi j} is larger than a threshold, we classify the i-th track
as the j-th known face. The threshold we use for this work is 0.95.
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Figure 5.6: The distributions of L2 distance of the positive and the negative face pairs.
The solid lines indicate the skew normal distributions fitted to the distributions.

5.3 Cooperation with a Mobile Robot

The proposed system is modular and built on top of the Robot Operating System
(ROS) middleware. As a result, it is easy to make a robot cooperate with the network
in order to perform Human-Robot-Interaction tasks. As a demonstration, we imple-
mented a task in which a mobile robot based on a Turtlebot2 (see Figure 5.11) is asked
to deliver a cup to a certain person. The robot navigates through the environment by
using the ROS Navigation stack2 over a pre-built map of the environment. In order to
deliver the cup, the robot should know the transformation between its reference system
to the camera network’s one. To compute this, we manually aligned the robot map to
the subset of the points in the range [0.1 - 0.3m] obtained by the merged point cloud
of the camera network (see Figure 5.7). This passage could be completely automatic
by using the Iterative Closest Point (ICP) algorithm together with an initial guess that
could be obtained with an initial alignment based on the map features. Figure 5.8
depicts the cooperation between the camera network and the robot.

2http://wiki.ros.org/navigation

http://wiki.ros.org/navigation
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Map made by the 
camera network

Map made by 
the robot

Final mapAlignment 
by hand

Figure 5.7: Aligning an environmental map made by the robot to the one made by the
camera network. An occupancy grid map is created from point clouds obtained from
the camera network, and then the maps are manually aligned.

Figure 5.8: The integration of the system and a mobile robot. We can see the robot,
the point clouds obtained from the Kinects, and the tracked person in the same view.
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5.4 Experiments

5.4.1 Person Re-identification Experiment

Figure 5.9: A snapshot of the experiments. Three Kinects are placed so that they cover
the environment. The dots indicate the tracked people.

In order to evaluate our performance, we considered two RGB-D sequences involv-
ing six subjects recorded in different days. Four subjects appear in both sequences,
but they changed clothes and, in some cases, hairstyle. Thus, appearance based re-
identification would fail to re-identify them. In Figure 5.9 a snapshot of the experiment
is visible. We used a three-Kinect v2 camera network that covers the scene. Table 5.1
shows some statistics about the dataset. During the recordings, the subjects moved out
from the network’s FoV causing the system to loose their tracks 49 and 58 times in the
two sequences, respectively.

For the sake of comparison, we applied our Bayesian-inference based classification
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together with a state-of-the-art face recognition algorithm using landmark detection
with SIFT features [87] and simple thresholding as classification approach. About the
time for the execution of our approach, the face detection and extraction took about
15 msec per frame on each distributed node, while the master computer performed the
re-identification in about 10 msec. The network was composed of consumer laptops
with high-end i7 CPUs.

Table 5.2 describes the re-identification performance we achieved. With success

and failure we indicate the number of tracks successfully and wrongly recovered. As
it can be seen, the sum of frames considered (failure plus success) is different with the
different methods. This is due to the fact that OpenFace discards a face when it does
not have sufficient landmarks on it, while [87] yields more face features. Our proposed
approach significantly outperforms the state-of-the-art.

Using the thresholding approach, the decision is made observing a fixed number
of face images. This causes a worse failure rate, since this technique does not take
into account the distances of the different re-identification scores. Nevertheless, the
proposed Bayesian inference classifier waits to classify until a significant difference is
seen. Moreover, it converges quickly as soon as the difference is noticed. This results
in better re-id rate and better re-id time than the thresholding technique. In Figure 5.10
we show some examples of the results we achieved on both sequences. The system
is able to re-identify most of the subjects in the sequences regardless their appearance
(different clothes or hairstyle). In the same Figure, we also show the only recognition
error we encounter using the Bayesian inference approach. The last column of Ta-
ble 5.2 shows the problem of the face-based re-identification approaches. Indeed, the
recover rate is the number of tracks successfully recovered among all of them. Our
approach raises the recover rate from 31% to 56%, but it is powerless for most of the
tracks of the sequences. The reason is that the re-id approach relies on the face and,
therefore, it cannot re-identify a track as long as his/her face is not visible. In order to
overcome this problem, it is possible to add cameras to the network and combine the
face re-id with other soft-biometric features to exploit the best of both methods.

Table 5.1: Long-term re-identification dataset summary

duration [s] # of subjects # of lost
Seq. 1 162 6 49
Seq. 2 218 6 58
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NoneSeq.1 Seq.2

Figure 5.10: Our long-term re-identification results. In green, some examples of suc-
cessful re-identification. In blue, the only re-identification error done using our pro-
posed approach.

5.4.2 Experiment with a Mobile Robot

In order to demonstrate the possibility of building Human-Robot-Interaction appli-
cations using our system, we implement an experiment using a Turtlebot2 platform.
The task assigned to the robot is to navigate though the environment and deliver an
object (a cup) to a specific person. The camera network is trained with a couple of
images and names (including the target person’s one). As soon as the camera network
sees and re-identifies the target person, the robot starts to navigate towards his position
to complete his task (see Figure A.1).

Figure 5.12 exemplifies the lab setting of the experiment. The camera network is
composed of three sensors and three persons are involved. At the beginning of the ex-
periment, each person stares in front of a sensor. The camera network was trained with
six different people and we successfully repeated the experiment three times changing
the target each time.

In Figure 5.13 we show some pictures about the experiment. The person stares
at the sensor and the system correctly re-identifies him as the target person (see Fig-
ure 5.13 (a)). As soon as the re-identification successfully ends, the system commu-
nicates his position and his name to the robot which moves to him (Figure 5.13 (b)).
The robot arrives to his destination and communicates to the person to take the cup ad-
dressing him with his name (Figure 5.13 (c)) and the person takes the cup (Figure 5.13
(d)).

Table 5.2: Evaluation of Re-identification Accuracy

success failure re-id time recover rate
[87] 34 54 2.12 0.318

ours w/o Bayesian 51 7 4.59 0.477
ours w/ Bayesian 60 1 4.24 0.561
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LRF

Turtlebot

Target position

Deliver a cup

Figure 5.11: The experimental setup. Three persons are involved, in orange the target
person. The system communicates the position of the target person to the robot which
delivers the cup to him.

In all the experiments, the system successfully identified the target person, and the
robot delivered the cup to the target person. The experimental result shows that the
proposed system can be integrated with a mobile robot system, and it allows a rich
HRI.

5.5 Conclusions and Future Work

In this chapter, we proposed a person re-identification system for camera networks.
Our solution addresses the main problem of nowadays people tracking libraries which
is the re-association of the people track ID (and name, when it is available). The system
is implemented on top of OpenPTrack, an open-source people detection and tracking
library and uses OpenFace to recognize the extracted faces. The recognition is done
by exploiting multiple faces using a proposed Bayesian inference-based classification
algorithm that allows reliable re-identification. The system has been evaluated using
two RGB-D sequences shot in different days involving several people. Moreover, we
demonstrated the integration of our system with real robots.

While the system shows great improvements with respect to the state-of-the-art, the
visibility of a face in a camera network is still a difficult problem to solve, especially
when cameras are mounted in high positions. In order to deal with this problem, we are
planning to merge our solution with other long-term re-identification methods which
use soft-biometric features as bone lengths or geodesic features.

Another future work is to prove the person re-identification capabilities of our ap-
proach using a wider and openly available dataset comparing our results with other



62 CHAPTER 5. PEOPLE RE-IDENTIFICATION BY FACE RECOGNITION

Figure 5.12: A top-view of the interactive map while the experiment was running. We
used three sensors and three persons were involved in the experiment.

(a) (b)

(c) (d)

Figure 5.13: Some examples of the cup delivery experiment. (a) shows the person
staring at the camera while the system re-identifies him. (b) shows the robot who is
approaching his target, while (c) and (d) show, respectively, the robot calling the name
of his target and the target who is taking the cup



5.5. CONCLUSIONS AND FUTURE WORK 63

long-term people re-identification approaches.
Camera networks provide an effective solution to detect different useful features

as body pose or person identity. This rich and reliable information can complement
the information gathered by a mobile robot boosting the robot’s performances. Indeed,
the camera network can feed this information about the humans acting in the environ-
ment to improve the robot perception as proved in this chapter. Nevertheless, camera
networks are not always usable because of privacy problems or installation difficulties.
For this reason, Chapter 6 describes a novel contribution for detecting fallen people in
a home environment in which all perception and data processing is done on board of a
single mobile robot.





Chapter 6

Fast and robust fallen people detection
from a mobile robot

Recent studies [22, 43] are proving that the population pyramid is turning upside
down. People who are aged 65 and over in 2015 (i.e. 8.5% of the entire population)
will increase to 16.7% by the end of 2050. This is why new needs are requested to
allow those people to maintain an active social life at their own home. While the num-
ber of social health care facilities as well as the number of personal caregivers are not
sufficient to satisfy those needs, social robots have been studied to fill this gap. In re-
cent years, many promising results were proposed in this fields as the new Softbank’s
Pepper or new research platforms as the health care robot Pearl [88], Hobbit [28, 29],
Max [41], ASTRO [20] or our prototype Orobot [14] described in Appendix A. The
main topics proposed by such works are not just about keeping a safe home environ-
ment by monitoring anomalies, but also to enable robots to be friendly companions
able to enhance the social life of the elderly people without invading their privacy.
While camera networks as the ones presented in Chapters 3 and 4 could be effectively
used to find a fallen person or also to capture the act of falling, they are seen as in-
trusive by the elderly people. Moreover, a camera network installation is most times
expensive and not possible in all the scenarios.

In this context, this chapter presents our solution to one of the most common source
of harms, i.e. undetected falls [63]. Indeed, while it is very unlikely for a mobile robot
alone to capture the act of a fall while it patrols, it can be of paramount importance to
detect people lying on the floor in time to raise an alarm.

The contributions of the chapter are summarized as follows:

• we propose a pure-3D, real-time approach to detect fallen people lying on the
floor which is suitable also for cluttered and dimmer scenes;
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Figure 6.1: An overview of the proposed algorithm. The approach can be split into
two different modules running in parallel. The single-view detector is in charge of
detecting people lying on the floor, while the multi-view rejector takes advantage of
the 2D map and the multiple view-points to reject false positives. The final output
can be summarized as the robot 2D map enriched with the detection of fallen people
indicated with red placeholders.

• a novel way to suppress false positives by integrating two basic robot functional-
ities: 2D navigation and mapping. The robot knows where it is in the room and
therefore can suppress false positives taking advantage of multiple viewpoints;

• we registered a new dataset1 for our experiments and we released it to provide
benefit and a baseline for future comparisons. The dataset consists of static
and dynamic sequences composed of 15 different persons shot in 2 different
environments. For a description, see Appendix B.

The chapter is organized as follows. In Section 6.1 we review the literature about
fallen people detection and people detection in general. In Section 6.2 we outline our
novel algorithm. Firstly, we give an overview of the entire system and then we analyze
the single-view approach and the integration with the robot functionalities. Section 6.3
shows the results we achieved using the IAS-Lab Fallen People dataset(described in
Appendix B), while Section 6.4 draws our conclusions and future works we will focus
on.

6.1 Related Work

People detection, also known as pedestrian detection, is one of the most studied
problems in the Computer Vision community. Since a couple of years, the wide success
of Deep Neural Networks (DNN) are changing the way we approach to this problem.
In particular, several works [2, 13, 118] showed great results in detecting people and

1http://robotics.dei.unipd.it/117-fall

http://robotics.dei.unipd.it/117-fall
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estimating their body poses. This kind of algorithms perform well also at detecting
people lying on the floor, given the nature of the training done by the Neural Networks
described. On the contrary, they require RGB images and, therefore, they cannot work
in dimmer scenes, a common situation a mobile robot has to face while patrolling
home. Furthermore, such works and in general DNN-based solutions, require high-
end GPUs to work in real-time. This is a problem for a mobile robot which should be
as light-weight as possible to enhance battery life. For this reason, equipping an high-
end Graphical Processing Unit (GPU) on-board is most times unfeasible. For these
reasons, DNN-based solutions are considered off-topic for this kind of application.
Our approach is based on the point cloud built from RGB-D data, which is robust
to illumination condition and computationally feasible. We take advantage of two
recent semantic segmentation approaches [120, 121], to extract fast features computed
on three-dimensional patches of clusters and learning contextual information among
them using Conditional Random Fields (CRF) and 3D Entangled Forests, respectively.

As stated before, falls are the main source of harm for lonely elders at home. For
this reason, the literature provides different solution to detect them. Mostly, they re-
quire the elders to wear a specific device. Those techniques are very popular given the
recent disruption of open-source platforms which are powerful, small and modular at
the same time [85]. Usually, such wearable devices embed accelerometers [10,60,61].
While those works permits to get useful motion data, they suffer from the difficulty to
distinguish normal actions as sitting or lying down with respect to a fall. Moreover,
they require the elder to collaborate to wear the device, situation which is not always
possible to check or to ensure. A common solution to such problems consists of in-
stalling environmental sensors as microphones [89], infrared, vibration sensors [124]
or cameras for people detection and tracking as shown in recent works [24,35,119] and
commercial systems2. Such systems represent an effective solution to the falls detec-
tion problem. Nevertheless, they require special installations and are less accepted by
elderly, who often see the cameras as an invasion to their privacy. The recent growth
of Ambient Assisted Living (AAL) projects [14,20,28,29,41] proves that robots could
be an alternative solution to assist elderly at home.

To the best of our knowledge, there exist just few approaches to detect people
lying on the floor (i.e. [81, 113, 116]). In particular, [116] and [113] are similar to
our purposes, since they propose solutions suitable for mobile robots. In [116], the
authors tried to extract fallen people lying on the ground by using just RGB images.
They exploited a deformable part-based model to work with multiple viewpoints to

2http://www.nively.com

http://www.nively.com
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make lying people detection invariant to the viewpoint. The authors of [113] use a
similar approach to our work. They proposed a pipeline working on depth images to
find candidates using an Euclidean clustering segmentation. The candidates are then
layered along an axis to be more robust against occlusions and classified by means of
SVM using Histograms of Local Surface Normals. The problem of this approach is
the segmentation. Indeed, it is particularly difficult to segment people if those are near
furniture. In our proposed approach we address this problem by using two classifiers.
Unfortunately, neither the code or datasets used to validate the approach in [113] are
available to compare our approach to theirs. In [81], people lying on the floor are
detected by looking for their heads using RGB-D data. The work seems to require
that the head of the subject is always visible and has not been tested in real-world
scenarios with cluttered scenes. Remarkably, none of the approaches described took
advantage of the knowledge stored in the mobile robot used, i.e. the local 2d map used
for navigation purposes and the availability of multiple viewpoints.

6.2 Approach

Figure 6.1 describes an overview of the approach for detecting fallen people we are
proposing in this chapter. The pipeline can be split in two sub-modules, (i) the single-
view detector in charge of detecting people from single frames and (ii) the false positive
rejection phase. The data used by the single-view detector is the three-dimensional
point cloud generated using RGB-D data and the calibration of the sensor. Firstly, we
pre-process the input cloud in order to cut all the non-important information above a
Region Of Interest (ROI). This region corresponds to all the points with a fixed height
with respect to the ground floor. Then, the resultant point cloud is segmented into
small patches of voxels with similar appearance. At this point, we take advantage
of a two classification phase. The first one classifies each patch as part of a person
or not. This phase is important so that we can use Euclidean Clustering just on the
positive patches to obtain a fallen person cluster invariant to occlusions. Finally, the
second classifier is in charge of discriminating whether a cluster contains a person or
not. The single-view classifier proved to be robust against clutter and performs well in
different illumination conditions. Nevertheless, in order to further improve the overall
performance, we exploit the 2D map and the multiple viewpoints available from the
mobile robot to reject false positives.
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6.2.1 Patch-based Detection of Fallen People

Each point cloud has to be pre-processed in order to reject noisy points and useless
information that can compromise the runtime performance of the overall algorithm
and generate false positives. The point cloud is filtered to contain just the floor and
the points between it and a parallel plane with an height of about 0.7 m. The floor
is then removed since it is not interesting to our purposes using a RANSAC based
segmentation [30]. Since we are removing the floor while the robot is moving, the
robot motion may affect the estimated floor plane. To make more robust the floor
removal, we estimate two floor planes, (i) the first one using the points on the first half
of the cloud close to the robot and (ii) the second one on the second half. We tuned the
distance considered with real-time tests and we choose a distance of 3 m that proved to
be a good split. Unfortunately, when dealing with ToF cameras as the Kinect v2, the
sensor used by our prototype Orobot (described in Appendix A), we need to deal with
sensory noise as flying pixels. To this end, a soft statistical outlier removal is applied
using a set of 50 neighbors and 0.3 as standard deviation.

The single-view algorithm is based on two recent works in the field of semantic
segmentation of objects and scene structures [120, 121]. The algorithm can be split in
the following four subtasks:

1. over-segmentation of the point cloud in 3D patches with similar appearance;

2. classification of the 3D patches as part of a person lying on the floor, or not;

3. clusterization of close positive patches using Euclidean Clustering;

4. classification of the clusters as positive (i.e. contains a lying person) or negative

The proposed algorithm proved to be robust to occlusions as demonstrated in the
Experiments we made (explained in Section 6.3).

The algorithm used for the over-segmentation into homogeneous 3D patches is the
Voxel Cloud Connectivity Segmentation (VCCS) [82]. Figure 6.2 shows an example
of the application of the VCCS algorithm on a prefiltered cloud. The goal of this
approach is to preserve the edges of the scene and objects boundaries, looking for
patches that describe the same point cloud, but drastically reducing the amount of data.
The algorithm requires a set of parameters, we used the following:

• 0.06 as voxel resolution. This parameter affects the number of voxels to be gen-
erated. We chose a good trade-off between the computational time to compute
the patches and to obtain patches with sufficient points;
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Figure 6.2: The first step applied by the single-view algorithm. The pre-filtered point
cloud is divided in patches which clusterize similar structures. Each patch is visualized
with a random color.

• 0.12 as seed resolution. This represents a good trade-off between over-segmenting
also thinner parts as arms or legs and to obtain big patches;

• 0.0 as color importance. We do not want to rely on the RGB information to allow
our algorithm to work also in dimmer scenes. Therefore, voxels do not consider
the color information;

• 1.0 as spatial importance. This parameters has been kept as suggested in [104];

• 4.0 as normal importance. This parameters has been kept as suggested in [104].

Each three-dimensional patch generated by the VCCS algorithm is then classified
as positive (i.e. part of a lying person) and negative (i.e. not part of a lying person).
For this reason, we associate to each patch a feature vector x1. The features have been
chosen as suggested by recent semantic segmentation works [120, 121]. We left out
the color features, considering just the the geometric ones. We calculated λ0, λ1 and
λ2 from the scatter matrix of the patch, while others are calculated from the Oriented
Bounding Box (OBB) obtained including all the patch points. Table 6.1 shows the list
of chosen features.

The calculated feature is passed to a binary Support Vector Machine to classify
whether the patch belongs to a person or not. The SVM uses a Radial Basis Function
(RBF) whose parameter have been selected using grid search and k-fold validation.
The final misclassification cost C has been set to 62.5, while γ to 0.51. As shown in
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Features Dimensionality
Compactness (λ0) 1
Planarity (λ1−λ0) 1
Linearity (λ2−λ1) 1

Angle with floor plane (mean and std. dev.) 2
Height (top, centroid, and bottom point) 2

OBB dimensions (width, height and depth) 3
OBB face areas (frontal, lateral and upper) 3

OBB elongations (height
width , depth

width , height
depth ) 3

Total number of features 16

Table 6.1: The features used by the first classifier for each 3D patch.

(a) (b) (c)

Figure 6.3: The last three steps performed by the single-view algorithm. (a) shows the
outcome of the SVM classifier. In red, the negative patches, while in green, the positive
ones. (b) shows the Euclidean clustering of the positive patches, while (c) shows the
application of the second SVM classifier on the OBB of the cluster.

Figure 6.3(a), at this point a scene could be composed by a set of positive and negative
patches. This phase enable us to reject the clutter and to clusterize the possible persons
lying on the floor. Figure 6.3(b) and (c) show the idea behind the next two steps
performed to find the fallen people location.

Differently from [113], two different sets of patches (positives and negatives) en-
able the possibility to apply the Euclidean clustering without the risk to include clutter
that may cause a cluster to fail the recognition. Firstly, some positive patches can
be easily recognized. Indeed, if a cluster presents a density of false positive patches
particularly high, it can be filtered out. Then, the negative patches are rejected, and
the Euclidean clusters are extracted from the point cloud composed only of positive
patches using a large distance threshold of 1.0 m.

The OBB of each cluster is calculated. Therefore, the number of positive patches
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and the dimensions of its OBB are representative whether a cluster contains a person
or not. Each cluster is encoded with a feature vector x2 of size 9. Table 6.2 shows
the complete list of components in x2. One of the most important feature has proved
to be the sample distances to the hyperplane returned by the former SVM. They have
been organized in a 4-bins histogram for the distance intervals [0,0.25), [0.25,0.5),
[0.5,1), [1,∞). Each histogram bin is filled with the positive patches whose distance
falls in the correspondent interval. For this reason, this histogram provides 4 additional
features (one per interval). We used another binary SVM classifier with RBF kernel
trained with the set of x2. Again, grid-search and k-fold validation brought to choose
a misclassification cost C of 312.5 and the bandwidth γ of 2.25e−3.

Table 6.2: List of features calculated for each 3D cluster and their dimensionality.

Features Dimensionality
OBB dimensions (width, height and depth) 3

Number of positive patches 1
Percentage of positive patches 1

4-bin histogram of positive patch confidences 4
Total number of features 9

6.2.2 Map Verification

The single-view algorithm has been tested with the Kinect v2 sensor used by the
Orobot prototype (see Appendix A). The robot uses a 2D map of the environment
built in advance using the equipped laser range finder (LRF). Exploiting this map the
robot computes a collision-free plan taking into account static obstacles as walls or
furniture. In order to prevent collision with dynamic obstacles as persons or chairs
or new objects in the environment, the robot builds a dynamic map from the LRF data
while it is moving which is used to locally change the static plan. The static map is used
for our purposes, since it contains useful information to reject false positives. Indeed,
true positives cannot be located inside walls or where large furniture items are located.
For this reason, all the single-view detections are checked with those constraints. The
static map is defined as a set of cells S = {Celli, 0≤ i≤ N}, where:

Celli =





−1 unknown content

0 free space

0 < n≤ 1 probability to be occupied

(6.1)
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(a) (b)

Figure 6.4: The false positive rejection performed by using the map verification phase.
(a) a furniture item raising a false positive (in green), while (b) describes the detections
performed by the algorithm. The detections relative to the false positives fall on the
occupied space of the map and are, therefore, rejected.

State-of-the-art 2D SLAM algorithms as [39, 40] provide the transformation needed
to project each single-view detection from the camera coordinate system to the map
coordinate system so that it will be located in a cell map Celli. If the value of Celli is
−1 or occupied (i.e. K ≤ Celli ≤ 1 with K = 0.30), the detection is considered as a
false positive and then rejected. We are assuming that the map has no unknown space
wherever this is reachable by the mobile robot or its sensor. This assumption is always
met by maps built in indoor environments for robot patrolling. Figure 6.4 shows an
example of successful rejection of a false positive. The single-view detector found a
person lying on the floor indicated by the green box raised by a trunk covered with
some furniture in our lab environment. The map allows to reject this false positive
since that area is already occupied. More importantly, the map verification phase can
reject false positives coming from artifacts due to glass walls or mirrors.

6.2.3 Merging Detections from Multiple Vantage Points

Using a moving robot to find fallen people allows to use also another interest-
ing feature that enhances the detection performances. Indeed, while it patrols, is very
likely that the robot camera covers many part of the scene multiple times form different
point of views. Therefore, the location of the detections obtained by the single-view
detector and refined with the map verification can be easily tracked. Indeed, due to
different viewpoints, a detection may be a true negative or a false positive. Addition-
ally, experimental data shows that the detection rate of false positives is lower than the
one obtained by true positives. Another contribution of this chapter is then to exploit
multiple vantage points in order to further improve detection performances.

At this point, the single-view outcomes refined by the map verification are consid-
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ered as input of the multi-view algorithm that exploits multiple view-points to reject
false positives. The output of the algorithm is a set P of validated fallen people lo-
cations pi in the map; formally P = {pi,0 ≤ i ≤ g}, using g as the total number of
people. Considering a new detection d = (loc, t), where d.t is the timestamp when the
detection occurs and d.loc is the fallen person location in the map reference system,
we update the set of clusters C= {Ci : 0≤ i≤ n} where each cluster Ci is defined as:

Ci = {d j : ||d j.loc−dm.loc||< th,∀ j,m ∈ [0,k−1]}, (6.2)

where th is a threshold which controls when two detections will belong to the same
cluster and k is the cardinality of the cluster (i.e. the total number of detections in it).

The multi-view algorithm, implemented in a concurrent thread, updates the set P
as soon as a new detection arrives and it also deletes the old ones from C. This is
mandatory to maintain a lightweight representation of each cluster C and also to dis-
card false positives, whose detection rate is typically low. The algorithm is described
in Algorithm 5, using the following parameters: Lines 3-7 are about the detection re-
jection performed in a cluster, while Lines 8-14 are about the cluster classification as
person or not a person checking its cardinality and the detection rate.

In our tests, the best parameter configuration used is shown in Table 6.3. We would
like to point out that using a frame rate allows to set a lower n̂, therefore preventing
over-fitting on particular environments. The concurrent thread executes the Algorithm
every 10 seconds. Figure 6.5 shows the algorithm in action.

Parameter Value

t̂ 60 s
th 1 m
f̂ 1 Hz
n̂ 5

Table 6.3: The best parameter configuration from our tests for Algorithm 5 in our tests.

6.3 Training and results

Detecting fallen people is a challenging task. This is also pointed out by the lack of
public datasets and methods to solve this problem. In order to allow future comparison
and to boost the research in this field, we released the IASLAB-RGBD Fallen Person
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Algorithm 5 The concurrent procedure run periodically to find lying people locations
exploiting multiple vantage points.

INPUT:

• C: the clusters of detections (already filtered with the map verification) in the
system.

• f̂ : minimum detection rate a false positive should have;

• n̂: minimum cluster cardinality to be considered as a true positive;

• t̂: maximum detection age a candidate can have before being discarded;

• P: set of locations of fallen people found until now.

OUTPUT:

• P: set of updated locations of the fallen people

1: procedure VALIDATE CLUSTERS(C, P, t̂, f̂ , n̂)
2: for each Ci ∈ C do
3: for j ∈ [0,k−2] do
4: for o ∈ [ j+1,k−1] do
5: if |do.t−d j.t|> t̂ then
6: index←ARG MIN(do.t,d j.t)
7: Ci←Ci \dindex

8: tm←mind∈Ci{d.t}
9: tM←maxd∈Ci{d.t}

10: fi← ||C||
tM−tm

11: if fi ≥ f̂ and ||Ci|| ≥ n̂ then
12: loci← ∑d∈Ci

d.loc
||Ci||

13: P←P∪ loci
14: C← C\Ci

15: return C, P

Dataset3 (see Appendix B) as a further contribution.
In this section we will explain how the classifiers described above have been trained

and the results we achieved using the aforementioned dataset. The first SVM of the
single-view algorithm has been trained and validated computing thousands of patches
extracted from frames taken from the static part of the dataset and the Lab A sequence.
The testing phase was performed on different frames taken from the static part and
from the Lab B sequence. In particular, the static part provides the positive samples.

3http://robotics.dei.unipd.it/117-fall

http://robotics.dei.unipd.it/117-fall
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Figure 6.5: An example of the different outcomes using the multi-view approach. The
Figure depicts the 2D map overlayed with the input cloud (white points). If the single-
view detections (indicated as blue cubes) meet the criteria (time and distance), they are
aggregated in one cluster containing a person(randomly colored cylinders)

On the web page of the dataset, the 70-30 train/test split is available. On the other hand,
the negative samples have been extracted from the Lab A (we extracted 24 frames out
of 15932 for training), from Lab B (32 frames out of 9391 for testing) and from the
NYU Depth Dataset v2 [103] (35 frames out of 1449, for training). This is a wide used
dataset for semantic scene understanding and it contains thousands of indoor scenes.
We considered also another split: we used the static part and Lab B for training we
tested on Lab A.

For the second classifier we considered an analogous case. We trained and vali-
dated on positive samples (in this case, clusters not patches) extracted from the static
part, while we extracted negatives from the Lab A sequence and tested on samples of
the Lab B sequence. Analogously, we considered another split, i.e. training on Lab B

and testing on Lab A.

Not only the single-view detector but also the multi-view analyser has been tested
on Lab B. Indeed, both Lab A and Lab B comprehend the entire robot transformation
tree. Given that the position of the fallen people in the 2D map is known, this allows
to calculate the performance indices automatically by checking if the location of the
detected cluster centroid is close (at a distance less or equal to 1 m) to the ground truth
centroid of a person position in the 2D map.



6.3. TRAINING AND RESULTS 77

The performance on this dataset are measured by means of four common metrics,
i.e. the detection accuracy, precision, recall and F0.5 score. Let T P, T N, FP and FN

be respectively the true positives, true negatives, false positives and false negatives, we
can define the metrics as shown in Equations 6.3,6.4,6.5 and 6.6.

accuracy =
T P+T N

T P+FP+T N +FN
(6.3)

precision =
T P

T P+FP
(6.4)

recall =
T P

T P+FN
(6.5)

F0.5 =
(1+0.52)∗ precision∗ recall

0.52 ∗ precision+ recall
, (6.6)

In particular, the F0.5 score can be seen as an harmonic average of recall and preci-
sion promoting more the last one. This metric has already been used in another similar
work by Volkhardt et. al [113]. Additionally, given the lack of available state-of-the-
art work regarding fallen people detection, for the sake of comparison, we defined and
compared with a baseline based on Euclidean custer extraction. In this way, we will
focus on the use of the patches importance also in cluttered scenes. Moreover, we
show also the running times of each part of the algorithm to show that it is suitable for
running in real-time on mobile robots.

6.3.1 Validation

The methods presented in this chapter have been thoroughly evaluated on both
sequences of the dataset described in Appendix B. Since the approach is composed
of a double-step classification, we validated both classifiers separately to demonstrate
the efficacy of both of them. We evaluated using both Lab A and Lab B sequences.
Both classifiers have been trained using just part of the frames contained in Lab A,
while they are seeing Lab B for the first time. The results are presented for each of
the 3 contributions, i.e. the single-view algorithm and the two modules of the multi-
view approach, the map rejection phase and the multiple vantage points validation. In
the results, we used the baseline (B) in order to provide a useful comparison. B is
based on the segmentation on candidates using Euclidean clustering with 0.10 m as
distance threshold and 0.06 m as voxel resolution. We also want to point out that the
distance threshold of the Euclidean clustering is far low than the one required by our
by our approach (1 m). When the candidates are extracted, they are labelled using
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their OBB dimensions with a pre-trained Random Forest classifier. This choice is fair,
since it permits to find a low number of clusters, while maximizing the number of true
positives.

In order to find the optimal set of parameters of the RBF kernel used by the SVM,
we used grid search and K-fold cross validation. In particular, the misclassification
cost C was free to vary in the [0.1,500] interval with logarithmic step 5, while the
bandwidth γ was free to vary in the [10−5,0.6] interval with logarithmic step 15. For te
cross-validation we used K = 10. Table 6.4 reports the SVM performances averaged
on both splits of the test sets.

Table 6.4: Performances of the classifiers on their test sets. We averaged the results on
both splits.

Method Accuracy Precision Recall F0.5
Classifier 1 (C1) 0.90 0.87 0.86 0.87 ± 0.06
Classifier 2 (C2) 0.96 0.97 0.96 0.97 ± 0.02

Tables 6.5 and 6.6 show. As it can be seen, the proposed patch-based method
outperforms the baseline not only in precision (i.e. how good is the classifier to predict
correctly given one of its prediction), but also in recall (i.e. how good is the classifier
to correctly predict given the ground truth predictions). Moreover, the performance are
further improved by applying the map verification step.

Table 6.5: Performance comparison on the Lab A.

Method Accuracy Precision Recall F0.5
Baseline (B) 0.88 0.65 0.33 0.54

Single-view (SV) 0.87 0.73 0.85 0.75
SV+Map verification (MV) 0.92 0.85 0.85 0.85

Table 6.6: Performance comparison on the Lab B, never seen before by both classifiers.

Method Accuracy Precision Recall F0.5
Baseline (B) 0.84 0.64 0.26 0.50

Single-view (SV) 0.88 0.80 0.86 0.81
SV+Map verification (MV) 0.90 0.87 0.81 0.86
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In Table 6.7, we report also the testing result of the multi-view detection merging
described in Section 6.2.3. As expected, the method proved to be useful. We tested
it using all the eight sequences acquired in the dataset in both environments. It is
particularly interesting to notice that the navigation path followed by the robot slightly
changes, even if the environment is the same because of dynamic obstacles and the
different positions of the lying persons. Analyzing the results, each person on the Lab

A sequence is always detected exactly once. We detected a false positive (i.e. generated
by the trunk depicted in Figure 6.4a) in one of the 4 sequences, while the same false
positive is rejected in the other 3. On the other hand, analyzing the 4 patrolling tasks of
the Lab B sequence (which has never been seen before by the classifiers) we obtained
no false positives (all rejected) and the persons are all detected exactly once.

Table 6.7: Performance of the final outcome provided by the algorithm (i.e. single-
view, map verification and multi-view) on the Lab A and Lab B sequences.

Environment TP/P FP
Lab A (sequence 1) 4/4 0
Lab A (sequence 2) 4/4 1
Lab A (sequence 3) 4/4 0
Lab A (sequence 4) 4/4 0
Lab B (sequence 1) 4/4 0
Lab B (sequence 2) 4/4 0
Lab B (sequence 3) 4/4 0
Lab B (sequence 4) 4/4 0

In conclusion, Figure 6.6 shows some qualitative examples of the results achieved.
The single-view detector is able to locate fallen people also in cluttered scenes (i.e.
Figure 6.6(a),(b),(c) and (d)). Also in presence of noisy data that can fool the single-
view detector (i.e. reflections due to glass surfaces), or close objects, the final algorithm
can reject the false positives (see 6.6(e)(f)). Figure 6.6(g),(h) shows the final locations
of the lying people in the two environments.

6.3.2 Runtime Analysis

Table 6.8 shows the running times we achieved using an unoptimzed version of
the code with the single-view detector. The multi-view and map verification part are
computationally negligible, so we do not report them. As it can be seen, the algorithm
is very efficient and it is, therefore, a good choice for a mobile robot. Even with
this version the algorithm could be used in real-time with an average rate of 7.72 fps.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 6.6: Qualitative results on the IASLAB-RGBD Fallen Person Dataset: (a)(b)
even if the lying people can be very close to the wall or other scene elements, the single-
view detector can find them at a high detection rate; (c)(d) the single-view detector can
discard fake lying people, see the white circles; (e)(f) the single-view detector may
find some false positives in the presence of clutter (several close objects) or high noise
(glass surfaces); (g)(e) the multi-view analyser can reject both FP like in (e) thanks to
the low frame rate or in (f) thanks to the map validation (yellow circle).

The machine we used to test it is a Dell inspiron 15 7000 which has an Intel-Core
i7-6700HQ CPU with 4 cores clocked at 2.60GHz and 16GB of RAM.

6.4 Conclusions

In this chapter, we proposed an efficient and robust system that detects people lying
on the floor from a mobile robot. The approach has proven to be effective and invariant
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Table 6.8: Average runtimes of the main steps of the proposed algorithm on our test
machine (Intel Core i7-6700HQ CPU, 2.60GHz x 4).

Processing Stage Runtime
Pre-processing and Oversegmentation 10.27 fps

Patch Feature Extraction 105.98 fps
SVM Classification 1 (per patch) 0.84 µs

Cluster Feature Extraction 2639.56 fps
SVM Classification 2 (per cluster) 0.04 µs

Total runtime 7.72 fps

to pose and distance. The system is composed by two novel contributions: (i) a single-
view algorithm which is composed by two classifiers that segment the fallen people by
rejecting clutter and (ii) a map verification phase and multi-view fusion that improve
the performances rejecting false positives obtained from (i). We validated the approach
on the IASLAB-RGBD Fallen Person Dataset, presented in Appendix B showing great
improvements with regard to a baseline approach. As future work, we would like
to provide results also about the ability of the system to semantically segment the
person on the floor and not just the ability to detect fallen persons. We also plan to
extend the experiments using larger datasets involving multiple people and in real-
world environments as houses and apartments.





Chapter 7

Conclusions

Perception of humans is really important for autonomous robots: first, for safety
reasons and secondly to enable an effective interaction. In this thesis, we presented
how to enrich people perception in camera networks and on board of mobile robots
by exploiting RGB-D data. We showed also how robots and camera networks can
collaborate in order to overcome their intrinsic limitations, i.e. the static nature of a
camera network and the limited perceptive horizon of a mobile robot.

In Chapter 2, we introduced the concept of RGB-D data and the hardware and soft-
ware technologies to capture and process RGB-D data in real time. This type of data is
of paramount importance for robotic systems to enable a smooth interaction with the
humans and the environment. The main contribution of the chapter is a novel efficient
library (encapsulated in a perception node for ROS) to generate point clouds represent-
ing the RGB-D data. By using OpenPTrack as a test-bed, we demonstrated that our
work greatly improves the state-of-the-art by tripling the point cloud generation rate
and by doubling the people detection frame rate. This contribution enables real-time
perception of humans using high-resolution point cloud data.

In Chapters 3 and 4, we presented two different novel approaches for solving the
3D human body pose estimation for RGB-D camera networks which proved to be
effective in complementary scenarios. Chapter 3 proposed a depth-only approach. The
depth data gathered by the different cameras are fused by an algorithm which computes
a synthetic multi-view depth image for the user in the scene. The depth image is
calculated from a frontal-view warping of the merged point cloud. The 3D pose of
the user is obtained using a single-view state-of-the-art skeletal tracker applied to the
synthetic multi-view depth image. The results showed that our approach not only
provides good multi-view pose-invariant skeletons, but also improved the single-view
quality of the considered pose estimator.
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As an alternative approach, Chapter 4 proposed a novel 3D pose estimation algo-
rithm based on RGB-D data, that exploits the camera network by fusing the processed
3D data instead of raw depth data. This is done by associating data at the tracker level
and updating a set of Kalman filters, one for each 3D body joint. Experimental results
show great improvements with respect to the baseline methods considered. The con-
tribution of this chapter has been also released as open-source in the OpenPTrack v2.0
repository 1. The system described in this chapter outperforms the results presented in
Chapter 3 by allowing the tracking of multiple bodies at the same time with negligible
overhead. Moreover, the system do not require data synchronization anymore, allow-
ing the user to build an heterogeneous and cost-efficient network of sensors following
his needs and possibilities. On the other hand, the solution presented in Chapter 3 has
to be preferred when no light is available since it works only on depth data.

We believe the contributions described can give an important boost to improve
the performances of current motion-capture systems and to open new applications of
motion capture techniques in commercial sectors in which the current professional
marker-based motion capture systems are too expensive. Many researchers are work-
ing in order to be able to remove the use of markers, while keeping the overall tracking
quality of marker-based solutions and possibly with a low number of cameras. In this
way, constraints on the users can be removed and the installation costs of such systems
can be reduced, enabling a wider usage of them. Indeed, our work proved to effec-
tively and precisely work relying only on RGB-D consumer sensors like Kinect v.2
and similar. Another scenario that could be explored to enhance our contributions is
the possibility of overcome the static nature of the cameras in the network. Indeed,
recent advances in Visual SLAM (e.g. [77, 78]) may be exploited to update the extrin-
sic calibration of the system, allowing the cameras to be mounted on robots, e.g. as
a swarm of drones or heterogeneous team of mobile robots. As a result, the system
would be able to move the positions of the cameras in order to maximize the informa-
tion gathered by each single camera and not just by processing the data coming from
prefixed locations. Moreover, the system would be also able to adapt itself to new
environments regardless of the light conditions, also where common motion capture
system cannot be installed.

In Chapter 5 we proposed a solution to the long-term people re-identification prob-
lem in a camera network. Many people detection and tracking libraries, as OpenPTrack,
do not provide information regarding the identity of the persons, i.e. they assign new
IDs whenever a new track is created. Our contribution exploits the face of each person

1https://github.com/openptrack/open_ptrack_v2

https://github.com/openptrack/open_ptrack_v2
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to recognize its identity and to re-associate the correct ID and name to each new track.
The results achieved show great improvements, while highlighting the need of addi-
tional soft-biometrics features as the gait or the skeleton lenghts in order to cope with
the situation when the face of a person is not visible from any camera. In this chap-
ter, we also demonstrated a successful collaboration between the robot and the camera
network in order to identify a target person and deliver an object to him/her. Similar
solutions are achievable using the rich information obtained by the works described
in Chapters 3 and 4 enabling the robot to perceive the movements of humans and act
accordingly.

One of the possible application of the intelligent camera networks we are introduc-
ing with the works described in this thesis, is in the field of Ambient Assisted Living.
Undetected falls are one of the main reasons of early deaths for lonely elderly people
living at home. Chapter 6 proposed a fast algorithm to detect fallen people lying on the
ground. The algorithm is composed of a single-view double-classifier enriched with
a multi-view false positive rejection phase performed using the knowledge available
from a mobile robot as multiple views and the map of the environment. Indeed, while
camera networks are able to cover more space allowing also the detection of the act
of falling, they are not always possible to be installed and they are usually seen as a
privacy invasion by the people who needs assistance at home. The experiments and
analysis described proved that the algorithm is robust against clutter, which is the main
problem of state-of-the-art classifiers, and the multi-view and map verification phases
substantially improved the quality. To cope with the lack of dataset of fallen people,
we tested our algorithms on a new RGB-D dataset described in AppendixB recorded
on-board our assistive robot, which has been made publicly available2.

In the future, we can expect that robots and humans will cooperate to perform
different tasks: from assembly lines in industry to rehabilitation at home, from cultural
activities to ambient assisted living. For this reason, the algorithms used should be
effective as well as efficient. We believe that the contributions of this thesis are paving
the way to new developments in this direction, providing fast and effective inputs for a
richer Human-Robot Interaction.

2http://robotics.dei.unipd.it/117-fall

http://robotics.dei.unipd.it/117-fall
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Appendix A

Orobot: an open-source prototype for
Ambient Assisted Living

Last years have seen a worldwide lengthening of life expectancy [111] and, as a
consequence, an increment of advanced assistive solutions for integrated care models.
In this context, ICT can enhance home assistance services for elderly people and thus,
the economical burden for health-care institutions. Indeed, recent studies report that
89% wish to stay at home for sentimental reasons or because they cannot afford nursing
homes [51]. In addition, the shortage of professional caregivers is a well-known issue
and relatives or friends must face with emotional distress negatively impacting also
their productivity at work [92].

In this perspective, home robots will play a crucial role. Not only they will keep
their house safe by monitoring and detecting anomalies or sources of hazards but they
can also be companions able to enhance their social life, e.g. by better connecting them
with their relatives and friends. Examples of recent projects that have tried to develop
such a kind of systems are Hobbit [28, 29], Astro [20, 21] and Giraffplus [23]. The
difficulties in creating a robust and reliable prototype and the encountered challenges
in computer vision and autonomous robotics have been well-explained in [28].

This Appendix aims at presenting an open-source1 and practical solution for an
autonomous robotic platform for home care. The final goal is to develop a set of ar-
tificial intelligence services for indoor autonomous and safe navigation, fall detection,
people recognition, speech interaction and telepresence. This platform has been used
to validate the works described in Chapters 5 and 6.

In Section A.1 and A.2 respectively, the prototype and the tasks currently imple-
mented are described. We have developed these functions using the ROS: Robot Oper-

1https://bitbucket.org/iaslab-unipd/orobot

https://bitbucket.org/iaslab-unipd/orobot
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ating System [90] middleware, which provides many algorithms and a standard com-
munication framework. The need for standards and open solutions have been already
pointed out in [65]. This project enables research in many fields like scene understand-
ing, human robot interaction, socially assistive/intelligent robotics and sensor integra-
tion.

A.1 Hardware Configuration

Our prototype of home robot, shown in Figure A.1, is built on top of a commercial
open-source mobile platform, the Turtlebot 22, which is already equipped with odom-
etry, a gyro, bumpers, cliff sensors, wheel drop sensors and a docking IR receiver.
Furthermore, this platform is a smart choice also because of the available API to inter-
face with ROS and the existence of a worldwide community working with it. For our
purposes, we have added an Hokuyo URG-04LX-UG01 2D scanning laser rangefinder
and a Microsoft Kinect v2. The former is placed at a height of 15 cm so as to easily
detect low obstacles; the latter at a height of almost 115 cm which is the best trade-off
for the people detection at difference distances. The robot control is accomplished by
a Lenovo Y50-70 laptop with Ubuntu 14.04 and ROS Indigo.

A.2 Software and Testing

The software of our robot is entirely based on ROS. The standard robot’s task is
the complete visit of the house while registering all events around it. The robot has
also the capability of auto-docking, i.e. to autonomously return to the docking station
for recharging. The next sections will better describe the important modules we used
to achieve the goal of patrolling an house.

A.2.1 Laser Filtering

The raw data acquired with the laser scanner is subject to many inaccuracies due
to the technology it is based on. As an example, there are issues with transparent
and black surfaces producing frequent outliers. Nonetheless, the laser scanner is the
core sensor for the navigation so the less inaccuracies occur, the better the navigation
algorithm performs. For this reason, we have adopted an interpolation filter from the
ROS packet laser filters3. The laser streams data to the raw scan ROS topic; the filter

2http://www.turtlebot.com/
3http://wiki.ros.org/laser_filters

http://www.turtlebot.com/
http://wiki.ros.org/laser_filters
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Figure A.1: Orobot: an open-source prototype for Ambient Assisted Living

reads, processes and finally publishes the filtered data to the scan ROS topic. This one
is subscribed by the robot functionalities. In Figure A.2 the comparison of the same
map built with the raw scan topic (left) and the filtered one (right) is shown. In the
unfiltered map we can see how the outliers can result in extremely noisy borders. In
contrast, the interpolated map shows significant improvements.

A.2.2 Mapping and Navigation

Building a map is a core functionality in mobile robotics. In literature, this problem
is known as Simultaneous Localization And Mapping (SLAM) and there exist several
implementations in ROS. For this purpose, we are exploiting the well-known technique
described in [39] and implemented in the GMapping4 ROS package. We have tested
it successfully in several natural environments (e.g., office, corridors, homes). Once

4http://wiki.ros.org/gmapping

http://wiki.ros.org/gmapping
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Figure A.2: a) Comparison of the map built with the raw data from the laser scanner
(left) and the data filtered with an interpolation filter (right). b) View of the static and
dynamic maps while the robot is navigating to the goal G.

we have a static map representing the environment, a method for reaching a point
maintaining the localization within the map during the robot movement is of concern.
The technique used is based on AMCL [32] (Adaptive Monte Carlo Localization) ROS
packet. This algorithm is based on two maps: the static one and the dynamic one
which is computed on-line. For reaching a goal G (Figure A.2b), it computes a static
plan from its initial position to the goal basing the decision on the static map. After this
phase, the control of the movements of the robot passes to the dynamic map which is
computed in real-time. With this map, the AMCL algorithm checks whether the robot
is correctly localized using the current sensor data and it re-localizes the robot. The
static plan is then changed in case of dynamic obstacles in order to avoid them. If there
are no possible new plans, the robot tries to rotate around itself to see if other paths
are available given the dynamic map, otherwise it fails to reach the goal with an error
which can be caught and managed.



Appendix B

IAS-Lab RGBD Fallen Person Dataset

In the literature is very difficult to find a dataset for evaluating fallen people detec-
tion approaches. For this reason, as one of the contribution of this thesis, we released a
new dataset which involves several people in different environments. The dataset has
been publicly released1.

The IAS-Lab RGB-D Fallen Person Dataset consists of several RGB-D frame se-
quences containing 15 different people. We acquired the dataset in two different lab
rooms, the Lab B and the Lab A. The different frames were taken with the on-board
Microsoft Kinect v2 sensor of our Orobot prototype (see Appendix A) while it was
patrolling the rooms. While the Lab A sequence is shot in a bigger room, the Lab B

one is taken from a smaller scenario which contains clutter, a sofa and is, therefore,
more similar to a real domestic scene. The Lab B is also more challenging, since it
contains glass surfaces that generate noisy data. The dataset can be split in three parts:

1. Part 1 includes 360 RGB-D frames acquired from 3 static pedestals. It is com-
posed of several views of 10 people, which have been asked to lie in 12 different
poses, 6 from the back and 6 from the front. Each person has been manually
segmented in 3D. Figure B.1 show some examples;

2. Part 2 includes 4 sequences of RGB-D frames, for a total of 15932 frames, ac-
quired from a mobile robot during its patrolling task in the Lab A. People lie in
4 different fixed locations. Figure B.2 depicts some examples;

3. Part 3 includes 4 sequences of RGB-D frames, for a total of 9391 frames, ac-
quired from a mobile robot during its patrolling task in the Lab B. People lie in
4 different fixed locations. Figure B.3 shows some examples.

1http://robotics.dei.unipd.it/117-fall

http://robotics.dei.unipd.it/117-fall
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure B.1: Examples of the static part of the dataset. (a), (b) and (c) show three
example frames acquired from the first pedestal position, while (d), (e) and (f) show
the second pedestal position and (g), (h), (i) the third one. The people were free to
position the limbs as they wanted, the only constraint was about were to place the back
and the head.

We organized the different sequences to reflect the training and testing split we
used for our work [3](see Chapter 6).
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(a) (b)

(c) (d)

Figure B.2: Example frames about the Part 2 of the dataset. The frames have been
captured from the results of the algorithm described in Chapter 6. The green circles
show true positives found by the algorithm, while the white one that can be seen in (d)
shows a correctly rejected detection.
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(a) (b)

(c) (d)

Figure B.3: Example frames about the Part 3 of the dataset. The frames have been
captured from the results of the algorithm described in Chapter 6. The green circles
show true positives found by the algorithm.
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