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AFFECT-PRESERVING VISUAL PRIVACY PROTECTION 

 The prevalence of wireless networks and the convenience of mobile cameras 
enable many new video applications other than security and entertainment. From 
behavioral diagnosis to wellness monitoring, cameras are increasing used for 
observations in various educational and medical settings. Videos collected for such 
applications are considered protected health information under privacy laws in many 
countries. Visual privacy protection techniques, such as blurring or object removal, can 
be used to mitigate privacy concern, but they also obliterate important visual cues of 
affect and social behaviors that are crucial for the target applications. In this dissertation, 
we propose to balance the privacy protection and the utility of the data by preserving the 
privacy-insensitive information, such as pose and expression, which is useful in many 
applications involving visual understanding.  

The Intellectual Merits of the dissertation include a novel framework for visual 
privacy protection by manipulating facial image and body shape of individuals, which: (1) 
is able to conceal the identity of individuals; (2) provide a way to preserve the utility of 
the data, such as expression and pose information; (3) balance the utility of the data and 
capacity of the privacy protection. 

The Broader Impacts of the dissertation focus on the significance of privacy 
protection on visual data, and the inadequacy of current privacy enhancing technologies 
in preserving affect and behavioral attributes of the visual content, which are highly 
useful for behavior observation in educational and medical settings. This work in this 
dissertation represents one of the first attempts in achieving both goals simultaneously.  

KEYWORDS: Pose Estimation, Human Body Reshaping, 3D Face Reconstruction, 
Facial Expression Transfer, Visual Privacy Protection 
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Chapter 1 Introduction 

 

Recent advances in digital image technologies have made it easier to capture and share 

data online. The captured images or videos enable a variety of applications such as video 

surveillance, intelligent monitoring system, etc. On the other hand, such forms of data 

gathering raise concerns on protecting sensitive information, such as identify of a child, 

that participant may want to keep hidden. As a result, an increasing amount of attention 

has been gathered to prevent the violation of privacy of individuals from both academia 

and industry. 

1.1 Background 

Privacy enhancing technologies for video data is a relatively new topic of research 

with the explicit goal of visually protecting the identity of selected individuals. From the 

early work at IBM on simple obfuscation [153] to the latest work on privacy in visual 

sensor networks [191], visual information management [115], and location/activity 

protection in surveillance [149], many aspects of enterprise surveillance have been 

investigated. Despite the significant research effort, there are few systems that are 

actually deployed in practice. Besides the questionable robustness of these research 

prototypes, the market needs from large corporations and public facilities do not seem to 

be significant enough to warrant large-scale deployment.  

On the other hand, the prevalence of wireless network and the ease of capturing 

and viewing videos enable many new applications other than security and surveillance. 

Many of these applications have strong privacy need as required by law. The most 

notable examples are the use of video for behavior observations for educational and 
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medical purposes. Behavioral observation is an important tool for early diagnosis of 

many neurodevelopmental disorders in children. Behaviors like repetitive movements, 

staring spells, and tantrums can be early signs of serious conditions including autism 

spectrum disorder, epilepsy and Attention Deficit Hyperactivity Disorder (AD/HD). Such 

intermittent behaviors either are not exhibited or are difficult to capture during brief 

clinical visits. The gold standard in behavioral science is accurate recording of 

problematic behaviors based on observation over a period of time in naturalistic 

environments such as home or school. Such an approach is difficult to achieve in 

practical terms because setting up recording devices in naturalistic environments faces 

stringent privacy protection requirements as covered by HIPAA [174], FERPA [175], 

COPPA [176], and other related regulations. It is in this context that visual privacy 

protection is the most relevant and pressing to address.  

1.2 Motivation  

Visual privacy protection techniques, such as blurring, object removal or 

pixelation, have been applied to some of these studies to obfuscate everything in the 

video besides the subject of observation [64][66][65]. Besides these simple blurring or 

removal techniques, more advanced techniques have been proposed. Since people often 

identify a person by observing his/her face, large majority of the existing work focus on 

face de-identification. Newton et al. [125] proposed a privacy enhancing algorithm called 

k-Same, taking advantage of the concept of k-anonymity to face image databases. The 

algorithm determines similarity between faces based on a distance metric and creates new 

faces by averaging image components. More recently, Mosaddegh et al. [119] relied on a 

set of face donors from which it can borrow various face components (eyes, chin, etc.). 
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However, it is not enough to protect visual privacy only by modifying the face area. Even 

when the person's face is obscured, other elements could exist in the image, which can be 

used to perform person identification, for instance, using inference channels and previous 

knowledge [149]. Visual cues such as clothes, height and gait can be also used to identify 

the person. Others deal with the de-identification of the whole human body instead of just 

face. Tansuriyavong et al. [164] proposed to use a silhouette for privacy protection of a 

person. They remove information about textures while maintaining the shape of the 

person to complicate the identification. In [3], Agrawal et al. proposed person de-

identification method in videos by using different blurring function. Flores and Belongie 

proposed to protect the privacy of a person in the image by removal [53]. Unfortunately, 

all these privacy-enhancing techniques obfuscates affect behaviors and detailed social 

interaction such as eye gaze between the subject and other individuals in the scene. Often, 

these behaviors are the key behavioral episodes that are of high diagnostic values. 

Finding a proper trade-off between the privacy and the utility of data remains a 

challenging problem. The research presented in this dissertation aims to preserve the 

utility like expression and pose of a person while protecting his/her privacy by making 

use of advanced computer vision technologies.  

1.3 Contributions 

The research work presented in this dissertation address the problem of protecting 

visual privacy while preserving most of the observable affect cues of an individual that 

are of high value either for security or medical purposes. I hypothesize that affect-

preserving privacy protection can be achieved by digitally manipulating the identifiable 

attributes of an individual (body shape and facial features) while preserving the behaviors 
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(pose and expression). Capitalizing on the advances in visual data capturing and 

computer graphics, I argue that such an approach would be able to produce more 

naturalistic results compared to transferring behaviors to an animated avatar. Major 

contributions in this dissertation are listed as follows: 

1. I propose a novel body reshaping scheme that, unlike typical 3D morphable 

approaches, does not require any user interaction in fitting the model to the 

original image. The proposed scheme uses a Kinect sensor to automatically 

capture and back-project 3D skeleton to the image in driving the mesh 

deformation process for reshaping.   

2. I propose a novel human pose and shape estimation system that is more robust 

than existing systems in capturing complex body movements and require no 

manual initialization. The robust performance of the proposed system is due to 

the use of data captured from multiple depth sensors that are fused via a non-

rigid fitting scheme. The subsequent estimation of pose and shape from the 

fused data is based on the celebrated SCAPE parametric model [10]. 

3. I propose a novel facial privacy protection scheme that, unlike existing 

approaches, protects privacy while preserving facial affect. The proposed 

scheme protects privacy by recoloring skin tones and replacing key facial 

features with those from other people, while preserving affect by blending 

these components to match the original expression.  

4. To address the inadequacy of existing facial privacy protection in handling 

head pose variations and privacy leakage through the shape of the skull, I 

propose a new privacy protection scheme that transfers facial expression and 
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eye gaze from one person to another. The proposed scheme solves these 

problems by first using a coarse-to-fine scheme in reconstructing a detailed 

3D face surface model from a single image in the wild, and then applying 

mesh deformation in transferring facial expression and eye gaze between the 

source and target models.   

5. I propose a novel evaluation scheme to measure the effectiveness of body 

reshaping schemes in protecting privacy while preserving the utility of the 

videos. To the best of our knowledge, no evaluation schemes have been 

previously developed for this purpose. The utility is measured based on the 

subjective opinions on the naturalness of the reshaped videos. The privacy is 

measured based on whether the identity of the individual can be recognized 

after reshaping based on soft biometric techniques such as gait information.  

1.4 Outline of the dissertation 

The rest of this dissertation is organized as follows. Chapter 2 reviews the 

necessary background and previous works on de-identification for privacy protection, 

pose and shape estimation using depth information, and face reconstruction from RGB 

image. A brief introduction about the general pipeline for human body and face 

manipulation is presented in Chapter 3. In Chapter 4, the proposed method to hide the 

identity while preserving the utility information of individual by face recolor and facial 

component blending is first discussed. We then move to model-based approach for facial 

expression synthesis and eye gaze correction. In Chapter 5, I introduce the skeleton-

driven an approach for human body reshaping in RGB images with single depth sensor. 

In addition, a scheme for pose estimation to improve the performance of human body 
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reshaping with single depth sensor is discussed. In Chapter 6, a model-based approach to 

reshape the body shape with multiple depth sensors and an application using human body 

reshaping for visual privacy protection is presented. The conclusion and future work are 

finally presented in Chapter 7. 

  

Copyright © Wanxin Xu 2018 
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Chapter 2 Related Work 

2.1 De-identification of Visual Identifiable Information 

Images, videos or other forms of data always contain rich information about the 

individuals in them – from facial features, body shapes, clothing styles to unique ways of 

walking and interactions with others. Such kind of information makes it easier to infer the 

identity of that person. However, most applications including those used in health and 

education research and general safety surveillance like people counting and crowd 

control, the knowledge of the identities of individuals are not necessary or required.  

Therefore, a need to use de-identification to remove all personal information of 

individual from an image or video draws much attention in recent years. Different from 

recognition, which makes use of all possible features to recognize the identity of a person 

or the label of an object, de-identification defined as an opposite process to conceal the 

identity of the person from been recognized. Instead of removing all information of the 

target person in image or video, the ideal goal for de-identification is to hide the identity 

of the person without obscuring his/her action and expression. In this section, we give a 

brief review on the most important work related to the pipeline for our visual privacy 

protection. More comprehensive reviews on previous literature can be found in [53][127].  

 Most of previous works proposed for de-identification of person in image or 

video focus on face de-identification, the primary biometric feature. Early approaches for 

face de-identification use simple transformation like blurring (see Figure 2.1(b)) or 

pixelization (see Figure 2.1(c)). While these methods are capable to protect the privacy of  
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person in the image, some forms of data utility, such as facial expression, fails to be 

preserved due to heavy obfuscations of facial features. Most recent approaches attempt to 

preserve such features in a more systematic manner. Newton et al. proposed the k-same 

algorithm for face de-identification [125]. In their algorithm, they computed the average 

of k most similar faces from a dataset and replace each face image with the obtained 

average face. Some extensions to the k-same algorithm named k-same select [60] and 

model-based k-same [61] were proposed by Gross et al. aiming to improve data utility of 

the output. A large image gallery is required by the k-same select algorithm since there 

must be an image for each individual in every utility subset. In addition, the utility 

classifier need to be retrained if a new subset is added making this algorithm less flexible.  

Bitouk et al. in [20] introduced a system for privacy protection by replacing the face with 

another similar unrelated face selected from the database. Their algorithm blends the two 

faces by replacing the eyes, nose and mouth area and further adjust the color and 

illumination of the face in order to generate visually realistic result. Inspired by k-same 

algorithm, Jourabloo et al. in [90] proposed an approach to hide the identity of person 

while preserving a large set of facial attributes, such as gender, age, race, etc. by fusing 

faces with similar attributes. It can achieve impressive result on grayscale image with 

   
(a) (b) (c) 

Figure 2.1 Early method for face de-identification: (a) Original image; (b) Blurring; (c) 
Pixelization. 
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attribute annotations, but the expression of the person fails to be preserved, which is not 

suitable for the applications like action recognition or behavior observation. In [104], the 

author presented a face de-identification method that enables the preservation of 

important face clues which is useful for behavior or emotions analysis. Their approach 

preserves the most important non-verbal facial features such as eyes, gaze, lips and lips 

corners by applying variational adaptive filtering. However, the approach on the basis of 

filtering fails to generate photo-realistic result. 

Even though face plays the dominant role, other body features such as silhouette 

and gait are also important clues contained in image or video that have been shown useful 

for biometric identification. There are several works proposed to replace the object of 

interest in image or video by their abstracted version to achieve the goal for privacy 

protection. Williams et al. made use of silhouette representation for privacy protection in 

a fall detection and object finder system [190]. In addition to silhouette representation, 

Fan et al. proposed to use a generic 3D avatar to replace the person in video to protect the 

privacy of content in the video [45]. Their system provides a number of ways to obscure 

the person at different level, in addition to replace people within the video with 3D avatar 

or virtual objects, blurring the video also available. An interesting approach for body de-

identification was presented in [126] - they proposed to replace a person with another one 

selected from a dataset gallery. However, the movement of the new person is different 

from the original one, which not proper for the applications like behavior observation or 

video monitoring. Ruchaud and Dugelay [148] proposed an approach to make the identity 

of people not be recognizable while preserving enough information such as body shape 

and motion that are required for the surveillance. They replace the body shape by  
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Figure 2.2 Examples of Animoji with iPhone X. 

 
applying polygonal approximation on it with the help of a predefined model. It should be 

noted that the privacy of an individual can be protected or concealed by these schemes. 

Unfortunately, most of these methods suffer from artifacts, fail to emphasize the data 

utility and to preserve the naturalness of output image and video, which are key to 

subsequent vision processing. In this dissertation, we aim to preserve the facial 

expression and body pose of a person through reshaping while protecting his/her privacy. 

2.2 Facial Expression Capture and Reconstruction 

Human face plays a key role in human visual perception because it conveys a 

wide variety of information about an individual such as identity, emotion and intention. 

Reconstruction of a 3D model of a person’s face from RGB images is important with 

various applications in face recognition, animation, video editing and more. For example, 

the latest iPhone X released by Apple using Face ID technology to unlock the phone, 

mimic and turn the expression of a person into an animated emoji, as is shown in Figure 

2.2. Due to the variability in pose and environmental condition, this problem is 

fundamental but challenging in computer vision and computer graphics. Because it is 
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easy for human to recognize the inaccuracies in face appearance, tremendous efforts have 

been made to model the face with high quality.  

The last few years have seen great progress on 3D face reconstruction from RGB 

images. Various methods have been proposed to solve the problem of facial model 

reconstruction and can be roughly categorized into three groups: shape from shading 

based approach (SFS), structure from motion based approach (SFM) and statistical 

model-based approach.  

Shape from shading It is an approach to recover the shape information from a 

single image with use of information on shading variations. Many approaches are 

proposed to estimate the shape of a person’s face which is optimized to match the input 

image and can be considered as an extension of shape from shading method. SFS-based 

methods can recover the fine geometric details that may not be available from low-

dimensional models with the knowledge of lighting conditions and surface reflectance 

properties. The original shape from shading algorithm was proposed by Horn [73] and 

has been further investigated by others. Atick et al. in [12] used a statistical shape 

shading algorithm to reconstruct the 3D shape of a human face from a single image. Their 

work assumes the facial albedo to be constant and a linear constraint on the shape is 

imposed. The drawback of this algorithm is its time for computation and complexity. 

Dovgard and Basri [44] presented a SFS-based approach by combining the statistical 

constraints from [207] and the geometric constraint of facial symmetry into a single 

framework. Their framework is simple and has low cost in computation, however, the 

main drawback of this approach is that it is more compatible to frontal faces and the 

performance of the algorithm will be limited if the given human face is not symmetric. 
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Kemelmacher and Basri [94] introduced an approach to reconstruct the face model from a 

single image using just a reference model. They assume Lambertain reflectance and use 

spherical harmonics to represent the reflectance, which allows for and can handle 

unknown lighting coming from multiple unknown light sources. 

Structure from motion One major constraint of SFS-based methods is that the 

lighting should be known as a prior or require a relatively simple model to approximate 

the illumination. Therefore, it is hard to apply it directly to the image in the wild if the 

configuration of the light sources is unknown or complicated. To overcome the limitation 

of SFS-based methods, the structure from motion based approach making use of multiple 

images is proposed to reconstruct the model of a human face. Fidaleo and Medioni [49] 

estimated the 3d shape of a person’s face from the corresponding 2d facial feature points 

of multiple facial images. With use of this method, a dense and accurate person-specific 

3d face model can be obtained. However, it often requires many consistent face images 

from different views, and self-occlusion or non-rigid variations which may lead to the 

correspondence error in 2d images can easily cause the SFM-based methods to fail. Lee 

et al. [103] proposed a SFM-based method for 3d face reconstruction which is robust to 

self-occlusion. They first build a coarse 3d face model using facial landmarks detected on 

multiple images. After that a dense 3d mean face model is warped to fit the coarse 3d 

face by thin-plate spline fitting. Ichim et al. [80] introduced an approach to build dynamic 

3d avatar from a collection of facial images captured by mobile devices, which can be 

used to create avatar with low cost and hardware requirement. Their approach deforms 

the template model with a constraint of noisy point cloud built from SFM. Compared to 

SFS-based approaches, SFM-based methods are more robust to illumination. However, it 
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is challenging for SFM-based approaches to reconstruct a dense 3d face model because 

reliable feature point correspondences among facial images captured in the wild is hard to 

establish. Another limitation is that the SFM-based approaches cannot handle the non-

rigid transformation of a person’s face caused by variations in facial expression, which 

serves as an important component in 3d face modeling. 

Statistical Face Model Different from SFS-based and SFM-based methods, 

statistical face model based approaches achieve face reconstruction on an image using a 

training dataset to learn a deformable model and then infer the 3d model of face in the 

given image by fitting a set of feature points between the 2d image and the obtained 3d 

deformable model. The popular approach for this type of facial reconstruction 

methodology is based on 3D morphable model (3DMM), an example-based approach 

proposed by Blanz and Vetter [21]. It uses the principal component analysis to learn the 

principal variations of face shape and appearance from the example faces, and then fitting 

these properties to a specific face in an image as a linear combination of principal 

components. This was extended by Vlasic et al. [180] who study and synthesize the 

variations on the facial shape along several axes, such as identity and expression by using 

a multilinear model. A variety of methods have been proposed in the last few years to 

reconstruct the face model from images or video. Most of them make use of 3D 

morphable model or a multilinear face model for face reconstruction [177][86][210]. Zhu 

et al. in [211] proposed a discriminative approach for 3d face model fitting by using local 

facial features and learn a cascade of regressor to estimate and update the parameters of 

3d morphable model iteratively, achieving promising results. Some efforts in the field for 

face reconstruction have also focused on trying to build face model from other type of 
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source data. For example, building face model from large unstructured photo collections 

has been proven to be very successful [95][146][147]. Roth et al. [146] took a collection 

of unconstrained facial images with various poses and expressions as input and finally 

generated a person-specific face model of the individual. Their method first detects 2d 

landmarks on all input images and a 3d template mesh is warped and projected to 2d to 

match the 2d landmarks to get an initial model. A photometric stereo approach is further 

applied to improve the reconstruction. They extended their work in [146] by using a 3d 

morphable model instead of a simple template mesh to improve the fitting performance 

on image with arbitrary face shape and pose in [147]. These techniques, however, are not 

suitable for face reconstruction of individuals with only limited samples.  

Other recent works have shown promising results for by integrating the 3d 

morphable model with deep neural networks for reconstructing the model of faces in 

images [24][43][166][172][173]. Richardson et al. [143] proposed a method to regress 

the parameters of 3d morphable model for face images with use of convolutional neural 

network. While their network can recover the facial shape from real image successfully, 

external algorithms are required for pose alignment and detail refinement. To recover the 

detailed information on face image, Richardson et al. [144] introduced an end-to-end 

network-based approach to improve the coarse face model generated by 3d morphable 

model with the help of a fine-scale network. A limitation of their method is that it may 

not performs well for face image with large geometric variations beyond the given 

subspace. To overcome this problem, Sela et al. [152] proposed a fully convolutional 

network to predict correspondence and depth by learning the unconstrained geometry 

directly in the image domain. They merge the model-based and data-driven geometries to 
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improve the quality for face reconstruction with details. In this dissertation, we extend the 

work in [210] to develop a coarse-to-fine scheme to reconstruct a 3D face model from 2D 

images. Different from [210], we capture the person-specific features like winkles using 

shading information from the image. This is essential to making the result photorealistic.   

With the success of face reconstruction from images, several algorithms have 

been proposed for facial expression synthesis. In [107], Li and others proposed a method 

for facial expression retargeting in video, but the scheme relies on a pre-captured dataset. 

Song and others presented an analogy-based approach that uses the vertex tent coordinate 

transfer to perform geometric warping [159]. A Face2Face framework proposed by Thies 

et al. [177] allows for expression transfer between a captured RGB video of one actor and 

another arbitrary target face video in real time. They use a blendshape model to estimate 

the person’s identity, expression, appearance and lighting. Further work on expression 

mapping and image-based mouth re-rendering enables the generation of photo-realistic 

target video sequence. Suwajanakorn et al. [162] introduced a framework to synthesize 

the lip movement by learning the mapping between audio and lip motion. Their work 

requires a large amount of person specific training data and does not take gaze direction 

into consideration. Thies et al. [167] presented an approach for real-time gaze-aware 

facial reenactment in virtual reality using a RGB-D camera to capture a person wearing a 

head-mounted display (HMD), and track the eye gaze with use of two internal infra-red 

(IR) cameras. A recent work proposed by Wen et al. in [187] achieve the tracking for 3D 

shape and motion of eyelids in real time from a single view RGB-D input. The 

reconstructed face is integrated with the tracked eye region making the result more  
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 realistic. They represent eyelid variation with two linear models and detect semantic 

edges using a DNN, and further reconstruct the eyelid in real-time by a projective edge 

fitting method. Our work, however, differs from the previous approaches as it does not 

require any pre-captured dataset or neural images of the source and the target. We extend 

the work proposed in [160] to manipulate the expression of target input image using mesh 

deformation. Besides expression, we also transfer the eye gaze of the source actor to the 

target actor by using geometry warping approach. 

2.3 Human Pose Estimation 

Existing approaches for pose estimation mainly fall into two classes: marker-

based and markerless. Most of the commercial motion capture (Mocap) systems use 

marker-based techniques because of their robust and accurate performance. However, the 

 
(a)                               (b) 

Figure 2.3 Double counting error [137]. (a) Estimated pose; (b) Max marginal. 
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significant hardware cost, as well as the need of a highly controlled environment and a 

special suit with markers significantly limit the use of Mocap in many of the 

aforementioned applications. Fueled by advances in commodity video cameras, marker-

less Mocap systems are becoming more prevalent in recent years. Early markerless 

systems are based on carefully-calibrated color camera networks [15][55]. Recent 

advances using marker-less Mocap systems for human motion capture can be found in a 

number of excellent survey articles [118][136][157]. However, these approaches often 

require complex setup, careful control of illumination and background for foreground 

extraction. The quality of the scan is often poor, making these types of markerless 

systems impractical for casual usages like home entertainment. The related work I am 

going to discuss here will focus on 2d pose and 3d pose estimation in color and depth 

image. Based on this division, I first introduce the method of 2d pose estimation, and then 

3d pose estimation will be presented in detail. 

2D Pose Estimation. Many existing works estimate the pose of a person from a 

single, monocular image or video depending on image features that are chosen to 

represent the salient parts of the image with respect to the pose of a person. In the last 

few decades, many features are proposed for pose estimation. The early approach for 

pose estimation proposed by Hogg [71] makes use of edge information. Agarwal and 

Triggs [2] proposed to separate the person from background in image using image 

silhouettes. The author in [138][47] used color features to model the un-occluded skin or 

clothing for pose estimation. Color and texture provide more information compared with 

geometric features such as edge and silhouette, but the appearance model need to be 

updated during tracking to account for the change of illumination. To achieve good 



 
 18 

performance for pose estimation, the features like edge, silhouette, color and etc. are 

combined together. Yang and Ramanan used oriented gradient descriptor for pose estimation 

with low computation cost, which can be combined with other descriptors [198].  

In addition to image features, some researchers estimate the pose of person by modeling 

the articulated relationships between rigid human body parts with use of part-based models. In 

particular, tree-structured pictorial structure models are popular and widely used for human pose 

estimation. For instance, Johnson and Everingham [87] used a cascade of body parts detectors to 

obtain discriminative template. Other approach extended part-based model to a more flexible 

spatial body model implemented based on poselet features [134]. Despite impressive result, one 

of the limitation for tree structure is double counting, it occurs because of the symmetric 

appearance of body parts (left and right arm), more than one part is assigned to the same region of 

the image with high confidence, an example is shown in Figure 2.3 [137]. To overcome this, a 

lot of efforts have been focused on constructing more representative models and adding 

additional constraints [182][48][85][169][38]. Ferrari et al. [48] included repulsive edges to 

kinematic model to overcome double counting problem in upper-body pose estimation in video. 

Recently, the development and surge of interest of deep convolutional neural networks 

(CNN) for vision task enables the state-of-art performance on pose estimation by employing 

convolutional architectures [8][27][171][133][185]. Among these approaches, DeepPose [171] is 

the first attempt using CNN to estimate the pose of a person. It regressed the joint coordinates of 

body parts with a cascade of ConvNet. Chen and Yuille [34] combined a part-based model with 

ConvNets to improve CNN performance. They used a mixture model to represent the spatial 

relationships between pairs of joint and learning the probabilities for the presence of joints and 

their spatial relationships within image patches by DCNNs, to improve the overall performance. 

Most recent approach for single person pose estimation is proposed by Newell et al. in [124]. 

They proposed a novel CNN architecture that replies on skip connections for feature learning and 
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a “stacked hourglass” network on the basis of repeated pooling and upsampling for the task of 

human pose estimation. Thereafter many methods are proposed based on stacked hourglass 

architecture. For example, Chu et al. [35] extended the work in [124] with a multi-context 

attention mechanism and the author in [197] adopted hourglass as their basic structure and replace 

the residual units with a Pyramid Residual Module.  

Single person pose estimation in image or video has been studied extensively, parsing the 

pose of multiple person in the scene is much more challenging due to occlusions and interactions 

between people. The approaches for multi-person pose estimation can be categorized into two 

groups: top-down and bottom-up. Top-down approaches [82][130][46][59] employ a person 

detection and then perform single-person pose estimation for each detection. The performance of 

these kind of method highly depend on the reliability of person detector and the runtime of these 

approaches rely on the number of people. Bottom-up approaches [31][81][99][123][129] predict 

the body joints of all person in the scene and further partition them to corresponding person 

instances. These methods rely on context information and more robust to occlusion and complex 

poses. Cao et al. [28] proposed part affinity fields to encode location and orientation of limbs, and 

then used a greedy algorithm to parse the joints for all people in the image.  

3D Pose Estimation. Estimate the 3D pose of a person from an image or video has been 

of significant interest, it can be used in many applications such as gaming, human motion capture 

and analysis, and human-computer interaction. Different methods have been proposed depending 

on the input type and the number of capture devices [9][25]. Belagiannis et al. [16] estimated the 

3d human pose of all person from images captured by synchronized cameras. Similar to the work 

in [16] that integrates 2D pose detections in each view, Joo et al. proposed the first system to infer 

the pose of more than five people engaged in social interactions with use of hundreds of VGA 

cameras, HD cameras and Kinects sensors [88]. The application of these methods might be 

limited due to the requirement of multi-camera system in a controlled environment.  Instead of 

estimating the 3d human pose with multiple images as input, some recent works are proposed rely 
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on deep-net frameworks for 3d human pose estimation from single image. The work of [108] 

extended the structured-SVM model to deep neural networks for 3d human pose estimation from 

monocular image by learning a similarity score between feature embedding of the image and the 

pose.  Zhou et al. [209] estimated the pose from monocular video using temporal and spatial 

information with Expectation-Maximization algorithm. 

With the recent advances in low cost and compact depth sensors such as 

Microsoft Kinect cameras, several approaches have been proposed using depth sensors to 

estimate human pose without any markers. The approach for human pose estimation with 

one or more depth camera system can be classified into three categories: generative 

approaches based on local or global optimization, discriminative approaches based on 

learning from exemplars or exemplar pose retrieval and hybrid approaches [69]. 

Generative approaches: The earlier approach for real time depth-based motion 

tracking from single view was presented in [22]. Ganapathi et al. [57] proposed a method 

to track the pose of human by extending the traditional ICP with free space constraints. 

Ye and Yang [201] performed a GMM-based optimization over a rigged mesh model for 

human body tracking. A drawback of generative approaches is that its accuracy is limited 

by the fidelity of the model used. Some of these generative models, however, fail to 

preserve important surface details like the folds and winkles of the clothes and thereby 

cannot produce high quality rendering. Different from the existing work, our proposed 

pipeline can generate a human model with details of hairstyle and cloth wrinkles rather 

than a rough shape. 

Discriminative approaches: To address the limitation of generative models, 

Shoton et al. in [156] trained a regression forest classifier to cluster the input single depth 

image into parts using a large training dataset of realistic human body shapes, and 



 
 21 

estimated the joint locations using mean shift. Similarly, based on regression forests, 

Taylor et al. in [165] proposed an approach to predict dense correspondences between 

image pixels and the vertices of an articulated mesh model directly. Since the effort used 

to train classifiers can be quite significant for many learning-based methods, our 

proposed methods have the advantage that it does not require significant effort in 

acquiring training data to build customized classifiers.  

Hybrid approaches: Combining the advantages from both generative and 

discriminative approaches, the first hybrid approach for human motion capture was 

presented in [56]. Baak et al. [13] and Ye et al. [200] both proposed a data-driven 

approach for pose estimation, which used a discriminative approach to initialize the pose 

estimation based on a set of pre-captured motion exemplars and refine the estimation via 

a generative process. Contrary to these approaches, our goal is to estimate the pose and 

shape of the actor with multiple stationary depth sensors and allow the actor to move 

freely in the capturing space.  

2.4 Human Shape Reconstruction 

There is a vast amount of applications with human shape reconstruction, such as 

computer games, animation, virtual reality and etc. It has been extensive studied both 

theoretically and algorithmically by researchers in computer vision and computer 

graphics. Over the last few decades, a number of approaches for modeling of human 

shape has been developed with depth images [205][121], 3D scanners [10][188] and 

multi-view images [55][75][110]. According to the number of camera used, existing 

approaches can be classified as single and multi-view.  
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Single-view reconstruction: Some works rely on a good detection of silhouettes in 

image. Sigal et al. [158] used silhouette to compute the shape features and then estimate 

the shape of the person by a mixture of experts model. In addition to silhouette, Guan et 

al. [62] proposed to use edge and shading information to improve the performance of 

shape estimation with self-occlusion. Zhou et al. [208] introduced a body-aware image 

warping approach to recover the 3D body shape. In their approach, it is required for user 

to manually label the body parts and joints before the fitting, in order to estimate the body 

shape dependent parameters. Bogo et al. [23] presented the first method to 

simultaneously extract the 3D pose and body shape from a single image fully 

automatically, without any user interaction, and without requiring a background image 

for background extraction. The author in [194] proposed an approach to reconstruct the 

 
Figure 2.4 Illustration of SCAPE model, 𝜃𝜃 - parameter for pose, 𝛽𝛽 - parameter for shape. 
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human body shape from monocular video using a pre-captured shape template. Recently, 

several methods are proposed to capture both shape and pose of a parametric human body 

model with depth cameras, such as Microsoft Kinect sensor. Weiss et al. [186] proposed 

to estimate the shape of human body by fitting the parameters of a SCAPE model (see 

Figure 2.4) to the depth data with a single depth sensor. Zhang et al. in [205] used a 

single depth sensor to capture and register several scans of a user at multiple poses from 

different views and used these data to build a personalized parametric model. Newcombe 

et al. in [121] extended their previous work on Kinect-Fusion to capturing dynamic 3D 

shapes including partial views of moving people. BodyFusion [202] reconstructed the 

dynamic motion of a person from a single depth camera in real-time with use of skeleton 

prior. The author in [203] further extended the work in [202] to be able to handle the 

challenging scenario like fast motion and infer the inner body shape apart from clothing. 

A recent system for real-time generation of 3D human model using ICP-based alignment 

was proposed in [5]. However, this kind of approach may fail to track human pose from 

noisy depth data due to its sensitive to initial poses and prone to local minima. 

Multi-view reconstruction: Marker-less performance capture from multi-view 

have been well studied. Aguiar et al. [4] achieved human performance capture by 

volumetric deformation from multi-view video. Their approach requires the user to 

specify the key vertices used to refine the surface for each pair of subsequent time 

instants. Liu et al. [112] introduced a combined image segmentation and tracking 

framework for capturing the motion of two characters from multi-view videos. They 

extended the work to handle motion capture for more than two persons and gave a 

comprehensive overview and thorough evaluation of the system in [110]. Rhodin et al. 
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[141] proposed a volumetric shape model and estimated the shape parameters by fitting a 

parametric shape model to image edges and silhouette. However, their approach only 

reconstructs a coarse shape model without cloth-level details, for instance, wrinkle or 

folds. Robertini et al. [145] proposed a model-based performance capture algorithm to 

capture the shape of human body with detailed in less controlled and outdoor 

environments from multi-cameras. In [89], Joo et al. proposed an interesting approach to 

capture the body movement with use of a unified deformation model in a multi-view 

camera system. Their approach can capture the total body motion including facial 

expressions, body motion, and hand gestures. Using multiple depth cameras for the 

reconstruction of human body have received significant interests in recent literatures. 

Helten et al. in [68] proposed a method for estimating a personalized human body model 

with two depth sensors, and then they used the estimated model to track the user’s pose in 

real time from a stream of depth images. Tong et al. presented a full body scanning 

system by letting the user standing still on a turntable with multiple Kinect sensors [178]. 

Ye et al. [199] presented an algorithm to capture the performance of multi-person with 

three handheld Kinects. Their proposed method removes the constrains that the cameras 

have to be static and in controlled settings. Similar to the camera setting in [199], Wang 

et al. [183] proposed a method to reconstruct the complete textured models of moving 

subjects using a new pairwise registration algorithm to register partial scans with little 

overlap without the knowledge of initial correspondences from three or four handheld 

sensors.  Fusion4D [42] used multiple depth cameras to capture human subject with 

challenging motions in real-time and demonstrated pretty impressive results on dynamic 

scenes modeling. A system named FlyCap was proposed in [195], this system aimed to 
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capture the human motion using multiple autonomous flying cameras equipped with 

RGB-D sensors which was solved by a non-rigid surface registration approach for 

tracking of moving object. 

Understanding and manipulating the range of human body shape variation has 

applications ranging from body beautification to computer animation. Recently, many 

statistical methods have been proposed to model human body shape variations due to 

different identities, postures, and motions.  

Statistical shape models are commonly used as a prior when the goal is to predict 

the body shape in motion. Early works in [6][154] used principle component analysis 

(PCA) to characterize a space of human body shapes without considering the shape 

changes with the pose. More recently, other approaches were introduced to model non-

rigid deformations caused by posture changes based on triangle transformations 

[10][7][63]. These works resulted in a morphable human model that can be used to 

produce body models of different people with different poses. A simplified SCAPE 

model called S-SCAPE was proposed by Pishchulin et al. in [135] to model the variations 

caused by different identity and postures as linear factors. This kind of model can be used 

to represent the shape of human body and to generate the corresponding mesh models for 

posture and shape fitting purposes. The limitation of global model is that a large available 

dataset is required to train the parameters for shape and posture variations. To solve this 

problem, Zuffi and Black [212] proposed a part-based statistical model, in which the 

body is represented by a graphical model and can be deformed to represent the variation 

of different postures and shapes, while ensuring the joint connected parts to be close. 

Compared to SCAPE model, this part-based model is more efficient and flexible. 
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Recent advances in deep neural networks provide an alternative approach to 

capture the human body shape from the data. Dibra et al. [40] presented an accurate and 

fully automatic method to estimate the body shape of a person from silhouettes or shaded 

images by using convolutional neural networks. A limitation of this method is that it 

assumes a frontal view input and cannot handle poses with a significant difference from 

the neutral pose or contain self-occlusions. In [163], the author proposed a novel encoder-

decoder architecture to estimate the pose and shape of a person. The proposed framework 

makes it possible to indirectly learn the body shape and pose parameters from real images 

and corresponding silhouette without knowing the ground truth on corresponding 3D 

pose and shape parameters. Kanazawa et al. [91] proposed an end-to-end framework to 

reconstruct the human body. The proposed architecture can infer the 3d pose and shape of 

a person from image in-the-wild with complex background. Different from previous 

approaches to estimate the human shape with arbitrary posture using a parametric model, 

Varol et al. [179] proposed the BodyNet, a fully automatic end-to-end framework on the 

basis of neural network to predict the human body shape from a single image in natural 

scene, which contains four subnetworks and use a volumetric representation for body 

shape estimation. The network is fully differentiable and provide segmentation on body 

part. 

Many applications, like reshaping human bodies in still images [208], reshaping 

in video [84], and estimating body shape under clothes [196], all make use of such types 

of morphable human models. In this dissertation, we use the SCAPE model from [11] and 

a GMM based fitting approach for human body reshaping. Different from our previous 

work in [193] that can only change the shape of the body along the direction of the 
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skeleton in 2D space, the current work uses a parametric model for mesh deformation 

transfer in 3D space. Unlike our previous work in [192] that focused only on pose, the 

proposed approach can simultaneously estimate both the human pose and shape for body 

reshaping. 

2.5 Body Reshaping 

Realistic human performance capture is an active research area in computer vision 

and computer graphics. It enables many applications from character animation in films 

and computer games, to behavior analysis and monitoring in medical rehabilitation. In 

recent years, great progress has been made in the field of human performance capture. 

Many existing works specifically designed for pose tracking without the estimation of 

human body shape or pre-obtain the shape of an actor and track it over time. Our goal, in 

this dissertation, is to reshape the body shape of an actor by simultaneously estimating 

his/her pose and shape.  

Many existing commercial image-editing tools can only provide basic 

functionality, and it may takes the user hours of manual work to change the appearance of 

the body in an image. To provide an easy way to do such manipulation, [208] proposed a 

semi-automatically approach to modify the shape of the person in image. They fit the 3d 

model to image and allow the synthesis of image by deforming the model following a 

body-aware image warping approach to transfer the effect of reshaping from the model to 

image. However, a good 3d skeleton and segmentation of body is required from the user. 

A system for quickly and easily manipulating the body shape of a human actor in video 

footage is demonstrated in [84]. They change and modify the shape of the actor by 

transforming the deformation of a body model fitted to the shape and pose of the actor. 
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The manipulated result on human body reshaping in video footage is obtained by 

performing an imaged-based warping. Different from manipulating the shape of human 

body in image or video, more recent work [51] develop a system to generate and reshape 

avatar with a 3D body scan as input. However, user annotation or a good initialization 

between the input and the morphable model is required by the aforementioned works, 

which may limit the wide usage of the approach. Chen et al. [32] presented a system that 

is able to produce realistic and plausible result for editing the clothed 3D body by using a 

3D body-aware warping scheme. It is achieved by fitting a revised SCAPE model to the 

actor and control the shape of the actor by a few semantically meaningful parameters. 

Different from theirs with a good initial value for pose and shape parameter during fitting, 

we combine the GMM with SCAPE to get correspondence between the model and the 

actor and thus can handle more complex pose that are different from the neural pose. 

     Despite the great success of previous work, there still remains lots of 

difficulties to produce global consistent and natural looking manipulation result. In this 

dissertation, we explore a novel system to reshape the human body using noisy depth data 

from multiple stationary depth sensors. Accurate and reliable estimation of pose and 

shape plays a key role in our system, which is a challenging task because of the 

complexity of human motion and complicated occlusions from self and environment. 

Using a well-calibrated network of RGB-D sensors, our approach can accurately estimate 

the non-frontal poses and poses with significant self-occlusions. Different from previous 

approaches that require manual annotations or segmentations, we devise a fully 

automated approach for surface representation of an actor move freely in the capturing 

space with the help of a Gaussian mixture model (GMM) based framework. By taking all 
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data points into consideration, it enables the fitting without a prior knowledge of 

correspondence between the model and the observed data practical and more robust to 

noisy and outliers. Once the model is fitted to the observed data, a bone-based approach 

is applied to find the location of skeletal bones.  

       Another advantage of our system is that it provides an easy and quick way to 

make the observed actor getting taller, shorter, fatter or thinner by applying deformation 

transfer across consistent captured frames.  The physical attributes like height, weight or 

leg length of the observed actor can be manipulated by changing the parameters of the 

morphable model. Such reshaping enables new form of visual privacy protection that can 

obfuscate soft biometrics of a person, like gait, height or weight, while maintaining the 

cognitive behavioral patterns useful for many health-related observation tasks. A model-

based cloth try-on system with privacy protection using mobile Augmented Reality is 

presented in [151]. They use secret sharing and secure computation technique to help the 

selection of a 3d model of user to ensure the privacy protection. Different from theirs, our 

approach provides a new way to build the 3d model of user and hide the identity by the 

idea of avatar animation. Liu et al. [111] proposed to use linear blend skinning to achieve 

the mesh deformation for image-based rendering. They can only change the pose of 

person but the shape of person is still preserved, which cannot be used to preserve the 

data utility and protect the privacy for the application of behavior observation. Contrary 

to previous work for privacy protection by blurring the body or replace it with an avatar 

[128], reshaping on real image can generate a more realistic image that preserve useful 

information like the posture while hide the identity of the person which is crucial for 

psychological and behavior analysis. Experimental results demonstrate the effectiveness 
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of our system to automatically estimate the pose and shape of human as well as the 

reshaping of the estimated human body.  

 

  

Copyright © Wanxin Xu 2018 
 



 
 31 

Chapter 3 Preliminary Works: General Pipeline for The Application of Face and 

Human Shape Manipulation 

 

In this chapter, a high-level overview of the main components and steps for the 

application of face and human shape manipulation is introduced and discussed. Even 

though the pipeline of these methods highly depend on their applications and goals, 

therefore, may varying significantly, a number of components tend to be common: the 

input geometric data capture and preprocessing, surface reconstruction, and rendering. 

The followings provide a detailed description for each of the most common components 

used to achieve the goal of face and human shape manipulation. 

3.1 Geometric Data Collection and Processing 

Many applications benefit from or even require geometric information acquired 

from the scenes in real world, such as virtual reality, human computer interaction, and 

health care. Digital cameras are commonly used to obtain the 3D information of an object 

captured from the physical environment through image-based 3D reconstruction 

techniques, structure from motions, for example. In recent years, the availability of low-

cost and contact-free RGB-D cameras offer new possibilities for the capturing of more 

complexed structures. This kind of sensors acquire range images in real-time, i.e. with 30 

frames per second or more. Among them, the Time-of-Flight (ToF) and Structure-Light 

sensor have experienced a remarkable success in developer and research communities. 

Such range imaging-based devices make use of optical properties and use their own light 

source for the active illumination of a scene. As is shown in Figure 3.1 (a), the 

technology of Kinect v1 released in 2010 was based on the structured light approach. It  
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consists of two cameras, one RGB and one IR, and one laser-based IR projector [116]. 

The depth information for each pixel is calculated by triangulating the known pattern 

through the projection of structured light emitted by the projector. Different from Kinect 

v1 sensor, Kinect v2 sensor (see Figure 3.1 (b)) employs a time-of-flight (ToF) camera 

for depth sensing. These technologies offer a cheap and easy access to measure the 

distance to the nearest objects through every single pixel of the acquired depth maps. 

Because of their geometric imaging capabilities, a lot of works have been explored using 

RGB-D cameras in the last decade. Simultaneous Localization and Mapping (SLAM), 

human pose recognition, face tracking, hand articulations and others have been explored 

using RGB-D cameras by researchers from industry and academia 

[167][187][201][156][202].  

Depending on the type of RGB-D sensors, several pre-processing operations may 

be required, such as noise removal, camera calibration and alignment. Take Kinect sensor 

as an example and two sample depth images are shown in Figure 3.2. Darker grayscale 

represents smaller depth measurements. Both images suffers excessive noises like 

inaccurate depth pixel, values or holes, which could influence the performance and may 

result in inaccurate estimation for pose detection, image localization or 3D reconstruction. 

 
(a)                                                                  (b) 

Figure 3.1 Examples of Kinect Sensor v1 (a) and Kinect Sensor v2 (b). 
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The removal of noise is a challenging task because it is not easy to distinguish noise from 

the true surface. An optimal noise removal algorithm is often expected to remove the 

undesired outliers, while preserving the detailed geometrical information. Traditional 

denoising approaches are effective in removing sporadic noise and filling in small 

missing values. For example, Fleishman et al. [52] extended the concept of bilateral 

filtering, first proposed for image smoothing [170], to remove the noises while preserve 

the edge information. A modification of bilateral filtering named divisive normalized 

bilateral filtering was proposed by Fu et al. [54] to achieve temporal and spatial filtering. 

Holes on depth data can be caused by self-occlusion or specular reflection of the 

underlying surface and in turn affect the performance of applications such as surface 

reconstruction, action recognition, object segmentation etc. Some of the holes on depth 

data are small and isolated, and others are large and connected. Small to medium size 

holes can be filled by applying an interpolation technique such as linear interpolation, bi-

linear interpolation or polynomial interpolation. 

 
Figure 3.2 Example of imperfect depth data captured by Kinect sensor with noises and 
black holes [155]. 
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Large holes can be filled using depth image inpainting approaches. Doria et al. [41] 

introduced a method to fill holes in the LiDAR datasets by combining the concept from 

patch-based image inpainting and the gradient field image editing. The author in [114] 

clustered RGB-D image patches into groups and filled in missing depth data by 

employing the low-rank matrix with the help of the corresponded color images. 

After obtaining cleaned depth data, reliable and accurate calibration or 

registration may be required to align the subsequent captured depth data from different 

cameras to produce high quality-spatial data and 3D models. The well-known Kinect 

Fusion technique used a single moving Kinect sensor and aligned all frames to build 

static 3D model of the environment [122]. The alignment in Kinect Fusion is achieved 

with the help of Iterative Closest Point (ICP) algorithm, which provides an estimation of 

 
(a) 

 
(b) 

Figure 3.3 Calibration result using the method from [155], (a) uncalibrated scene; (b) 
calibrated scene. 
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the extrinsic parameters of the sensor. In the case of using multiple Kinect sensors for 

dynamic 3D scene reconstruction, estimating camera extrinsic parameters often require a 

calibration object of known geometry. Traditional calibration methods with checkerboard 

or laser pointers do not work well for depth camera as the specific color or texture pattern 

are not observable for depth sensors. In addition, because of the wide baseline, the 

overlapping views between adjacent sensors are small and using ICP algorithm to 

estimate the extrinsic parameters of sensor cannot product a robust estimate. A possible 

way is to use a separate calibration object to establish correspondences for registration 

parameters estimation. One such example is to use a spherical calibration object [155]. 

Such a calibration technique can be used for scene reconstruction with multiple wide-

baseline RGB-D cameras without much user interaction, an example of multiple sensor 

registration is shown in Figure 3.3. ICP algorithm can be further used to refine the result 

of registration by optimizing the extrinsic parameters.   

3.2 Surface Reconstruction from Point Cloud 

Point Clouds are the measured scene points in 3D space, and they can be 

calculated from the depth data obtained in the previous stage. A typical way to convert 

the depth map produced by the RGB-D sensor to point cloud is to apply the perspective 

projection with the information of calibration about the sensor. It can be achieved by 

using the mapping function between the depth data and the camera space provided by the 

Kinect SDK, a software development kit, to convert the depth data to point cloud [98].  
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The direct use of these point clouds is not suitable for most applications because of the 

massive amount of redundant data they contain. Many works have been conducted to 

simplify the dense point clouds by removing the redundant points while keeping the 

feature points to represent the 3D geometry of the scene or object [77][67][78][113]. 

These works can be roughly divided into two categories: mesh-based and point cloud-

based. Mesh-based approaches construct triangular mesh from the point cloud in the first 

step and then removing the redundant triangles. Because of the large amount of the data 

to be processed, the time for computation is high. In contrast, the point-based methods for 

simplification rely on the point information to simplify the point cloud without 

reconstruction of mesh model and have lower computational complexity than mesh-based 

methods. As such, they are more widely used and supported by open-source 

computational geometry library such as Computational Geometry Algorithms 

Library (CGAL) [36]. There are a number of different point-based simplification methods. 

Figure 3.4 shows the comparison result of three methods for point cloud simplification. 

The first one is to let the user specify the desired size of the point cloud and remove the 

points from the input point set randomly, see Figure 3.4 (a). The grid-based approach 

 
               (a) (b) (c) (d) 
Figure 3.4 Comparison of three methods for point clouds simplification using CGAL 
[36]: (a) Original input; (b) Random simplification result; (c) Grid simplification result; 
(d) WLOP simplification result. 
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shown in Figure 3.4 (b) clusters all points into grid cells and replace all points inside a 

cell with an arbitrarily chosen representative point. The speed for this algorithm is slower 

compared to the first approach.  The Weighted Locally Optimal Projection (WLOP) 

algorithm proposed by Huang et al. in [77] simplifies the point cloud and also regularizes 

the resampled points to be evenly distributed adhere to the original shape, as is shown in 

Figure 3.4 (c), upon which is more useful and proper for further mesh reconstruction.  

With the point clouds in hand, the process of converting such a discrete point set 

into a continuous surface representation is defined as surface reconstruction. The 

reconstructed surface mesh is good representation for the topology and geometric shapes. 

During the last few decades, many algorithms for surface reconstruction have been 

proposed depending on the output requirements, the properties of input point cloud data, 

the preference of user, etc. Depending on how the mesh is constructed, these algorithms 

can be roughly divided into three groups: implicit surface-based approaches, region 

growing approaches, and Delaunay-based approaches [97]. Implicit surface-based 

methods use weighted sum of basis functions such as the radial basis function to fit the 

point cloud data. Region growing approach starts with a seed triangle and then 

continually grows or expands from this seed triangle until all the points have been 

considered. Different from the implicit surface-based approach, the region growing 

approach takes all the points from the point cloud as the vertices of the reconstructed 

triangle mesh. The details of the original object, therefore, will be preserved and tend to 

produce more accurate reconstructed surface mesh. The Delaunay-based approach aims 

to turn a set of points to a set of triangles for the desired triangle mesh surface 

reconstruction. As is shown in Figure 3.5, in Delaunay triangulation, it is defined that no  
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points other than the three points that define the aforementioned triangle can be contained 

by each circumcircle. The dual of Delaunay triangulation is called Voronoi diagram and 

is generated by connecting the centers of the circumcircles as displayed in Figure 3.5 (a). 

Both are important geometric data structures in computational geometry, which provide a 

possible way to approximate the neighbor points in the point cloud data.  

3.3 Motion Capture for Face and Body Shapes 

Motion capture is the process to record the motion information of objects or 

people. Due to the emergence of new types of sensors such as Kinect and the 

improvement of computational performance, motion capture has found increasing usage 

in many fields, like character animation for games and entertainment, motion analysis for 

medical, sports and virtual reality.  

 
(a) (b) 

Figure 3.5 Duality of Delaunay triangulation [37] (a) Delaunay triangulation with all the 
circumcircles and their centers (red); (b) Voronoi diagram (red) overlaid to Delaunay 
triangulation. 
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In general, motion capture techniques can be classified into two categories: marker-based 

systems require the attachment of different kinds of sensors or markers on the subject 

being captured; markerless systems, on the other hand, capture motion based on statistical 

inferences on captured images [22][110][112][195]. For consumer markets and other 

domains like health care where it is desirable to have the least amount of restriction, 

markerless systems provide a much more promising solution for motion capture. In this 

work, we concentrate on markerless motion capture using single or multiple depth 

sensors. 

A surface mesh template with embedded skeleton is a widely used data structure 

to model the tracked subject in markerless motion capture system [135][196][212]. This 

kind of mesh template can be a generic model, SCAPE, for example, or a laser-scanned 

mesh model with detailed surface geometry. The skeleton model can be represented by a 

tree structure, as is shown in Figure 3.6. The red dots in this figure represent the joints. 

The movement of each joint is controlled by different rigid body motion as indicated by 

 
          (a)                     (b) 

Figure 3.6 Template and embedded skeleton for human body and the hand [116]. (a) 
Human body with skeleton; (b) Hand with skeleton.  
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the black arrows. A rigid motion of a joint can be represented in several ways, like Euler 

angles, quaternions, twist, etc. The motion of a subject can be obtained by optimizing the 

energy function which contains the data term and the regularization term.  

Compared to body motion capture, facial motion capture is more challenging 

because of the requirement for higher resolution in detection and tracking of subtle 

expressions movement. The captured and processed facial movements can then be used 

for facial animation in games or avatars. In recent years, blendshape has been used 

successfully to create 3D dynamic models for the application of facial animation and 

retargeting [106]. Such model contains a neutral face and a set of face with different 

expressions, ranging from stereotypical (like happy and sad) to extremely subtle (like 

narrow eyes). A new facial model can be created by combining different blendshapes 

with different weights.  
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Chapter 4 Facial Image Manipulation with RGB Images  

 

In this chapter, two different ways to manipulate the expression of human face in 

RGB images are presented. I first discuss image a retouching technique to manipulate the 

face image while preserving the expression [193]. Then, a system to transfer expression 

from one person to another is introduced. 

4.1 Facial Image Manipulation with Recolor and Component Blending 

Face image editing typically involves a set of image editing tools, such as 

recoloring, image composition, tone adjustment and etc. Many of them have already been 

widely studied and applied in face image editing. Bitouk et al. in [20] proposed a face 

swapping system based on a large collection of face images. Another face swapping 

method under large pose variation was proposed by Lin et al. [109]. Our work combines 

recoloring and composition of facial component to produce a new face image while 

preserving the general configuration of different facial features so as to preserve the 

expression.  

4.1.1 Overview of our system 

The procedure of face image editing in our system is illustrated in Figure 4.1. 

Given an input source image and a selected target image that best fits the facial 

expression of the source image from the dataset, we first segment the skin part from the 

rest of the image. Then, we use the color transfer method proposed by Reinhard et al [139] 

to recolor the source image. To change the face component of the source image, like eyes, 

nose or mouth, we first detect the facial component to be changed and then blend it with  
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Figure 4.1 Face image editing procedure 

the corresponded parts from the target image using Poisson blending method [132]. 

Details of our implementation and the results are presented in the following section.   

4.1.2 Skin recoloring and facial component blending 

Given an input source image, we first search for the best fitted image from the 

dataset that has a similar expression and head pose with the source image. Then we 

segment the skin region from the rest of the image for source and target image. In this 

step, we first manually select a patch to identify the proper skin color and then apply the 

skin color detection algorithm. Our system uses a combination of HSV and YCrCb color- 

   
(a)     (b) (c) 

Figure 4.2 Skin Color Transfer with input source image in (a), target image in (b) and the 
skin-recolored source image in (c). 
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spaces to model the skin color. Then, we use a simple thresholding scheme to classify the 

skin pixels. To transfer the skin color of the target image to that of the source image, we 

take advantage of the color transfer algorithm described in [139]. At the first step, 

segmented source and target images are converted from RGB space to lαβ  space. Then, 

we compute the mean , ,s s sl α β  and variance ˆ ˆˆ, ,s s sl α β  of the source and target images for 

each color channel. The final mapped distributions of the data points in lαβ  space are 

obtained by Equation (4.1), (4.2) and (4.3): 
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The last step for the color transfer procedure is to convert the result back to RGB space. 

Figure 4.2 shows the result for color transfer. 

    
(a) (b) (c) (d) 

Figure 4.3 Generation of the ROIs. (a) Landmark detection. (b) Landmark refinement by 
linear interpolation. (c) Initial ROIs. (Mouth (blue), eyebrows (yellow), eyes and nose 
(green)). (d) Final generated ROIs by erosion and dilation.  
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The next part of face image editing in our system is to replace the specified facial 

component of the source image with the target image. We first use the facial feature 

detection algorithm proposed in [11] to detect the eyes, nose or mouth in source and 

target image. Inspired by the work in [119], we then segment the face image into 

different regions of interest (ROI) by linear interpolation, image erosion and dilation on 

the basis of the detected feature point. The process to generate the ROIs is completely 

automated, as illustrated in Figure 4.3.  After cropping the corresponded ROIs from 

source and target images, we apply the Poisson blending method [132] to blend the 

cropped part from the target image with the source image seamlessly. The result of image 

blending is shown in Figure 4.4. 

4.1.3 Experimental results 

The objective of the experiment in this part is to show that the resulting image 

have the same general expression as the original one. In addition, the identity of the 

person should not be revealed from the resulting image. To demonstrate the performance 

of our method, we use FEI Face Database [79], which contains 2800 images of 200 

different subjects, and Caltech Faces dataset [184] which contains 450 images of 27  

   
(a) (b) (c) 

Figure 4.4 Poisson blending result. (a) Source image. (b) Mask obtained from the ROIs 
generation. (c) Blended image. 
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different subjects. The choice of these datasets is led by the ease to find similar 

expressions from different individuals. Figure 4.5 shows results obtained from our face 

image editing method. We can see the result looks natural and the expression of the 

person is preserved while some of the key facial biometric features including eyes, nose, 

and mouths are replaced. One limitation of our method is that the source and target image 

should have similar head pose and the change of head pose need to be small in order to 

   

   

   

   
(a) (b) (c) 

Figure 4.5 Fame image editing result. (a) Source image. (b) Skin recolored result. (c) 
Facial component blending result. 
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produce realistic rendering. One possible way to fix this problem is to align the face 

image using 3D face model as discussed in the next section.  

4.2 Fully Automatic Photorealistic Facial Expression and Eye Gaze Correction 

with a Single Image 

Nonverbal information like facial expression and eye gaze plays a crucial role in 

social interaction. Generating a photorealistic facial expression from a single image while 

preserving the identity of the actor has many applications in film making, gaming and 

telepresence. In recent years, several approaches have been proposed to animate the 

expression of a real actor on a virtual avatar in real time [150][29]. Instead of transferring 

the expression to a virtual avatar, Thies et al. presented an algorithm to transfer the 

captured expressions from the source video to another real actor [177]. While these 

approaches have demonstrated impressive results on facial animation to real actor or 

avatar, synthesizing a wide range of facial expressions accurately and realistically on 

arbitrary real actors remains a challenging problem due to significant difference between 

source and target actors, self-occlusion, uncontrolled illuminations, etc. 

Recent advancements in low cost and compact depth sensors make it easier to 

acquire depth information for facial performance editing. In [168], Thies et al. proposed a 

method for face reenactment based on RGB-D data. Hsieh et al. in [74] developed a 

system to capture and retargeting facial expressions using a commercialized depth sensor. 

However, compared to 2D RGB cameras, depth devices are still not widely available and 

the resolution of the captured images is low. Cao and others proposed a regression-based 

algorithm on webcam, with robustness and accuracy comparable to RGB-D based 

methods [29]. Similarly, the expression transfer method proposed in [177] can achieve  
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real-time transfer of facial expressions captured from a source actor to a target actor with 

different identity.  The main drawback of the previous systems for facial performance 

capture is that they lack the capability to get information of eye gaze. Often ignored in 

most facial expression transfer systems, eye gaze has been shown to significantly 

contribute to our perception of social attention [100], and is of significant value in 

medical evaluations of conditions like autism spectrum disorder. In [181], Wang et al. 

presented the first approach to capture the eye gaze, head pose and expression 

simultaneously using a single RGB camera.  

In this section, we propose a facial reenactment system that takes a source and a 

target image with arbitrary facial expressions, and generates a new image of the target 

actor with both facial expression and eye gaze similar to those of the source actor while 

preserving all the background information. To achieve photorealistic transfer, we propose 

a novel coarse-to-fine scheme for reconstructing the 3D geometry of the face based on 

details from a single image. The facial expression information is then transferred in a 

fully automatic manner from source image to target image using mesh deformation.  

 

Figure 4.6 The Overview of our proposed face expression transfer pipeline 
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4.2.1 Overview of the system 

To manipulate the facial expression and eye gaze according to the source image 

with minimal artifacts, I propose a system consisting of three main parts: 3D face 

reconstruction, expression and eye gaze transfer, as well as image compositing (see 

Figure 4.6). 

3D face reconstruction: We start the whole pipeline by building the 3D models for 

a single source and target images respectively. At the same time, we capture the person-

specific features like winkles using shading information from the image. This is essential 

to making the result photorealistic.  

Expression and eye gaze transfer: The second part in our system is to transfer the 

expression and eye gaze from the source to the target. We manipulate the expression of 

target input image using mesh deformation with a reference to the source input image. In 

addition to expression, the eye gaze of the source actor is also transferred to the target 

actor by using geometry warping approach. 

Image compositing: The last component in our system blends the re-rendered 

target image with its original background by using modified Poisson image editing [1], 

where they take the pixels on source and target boundary into consideration, in addition, 

alpha blending is added to the editing process.  

4.2.2 Coarse and fine face reconstruction 

In this section, we first discuss the use of a parametric face model for face 

representation. Then, we introduce an approach to capture wrinkles and high frequency 

details on image to generate a mesh with fine details. 
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4.2.2.1 Coarse model fitting 

 

       (a)                                              (b)                                                  (c) 

Figure 4.7 Coarse face reconstruction: (a) labeled 3D face landmarks; (b) 2D landmarks 
detected on the input image; (c) reconstructed model projected to the input image 

We encode the face shapes by making use of a parametric face model created 

based on publicly available 3D facial expression datasets. We control the expression and 

shape of the 3D face on a lower-dimensional subspace with principle component analysis 

(PCA): 

                       exp expid idS S E Eα α= + +                                                (4.4)            

where S  is the desired 3D shape, S  denote the shape of the average face among the 

scans, idE  is the principle axis extracted from a collection of 3D face meshes with a 

neutral expression. expE  is the principle axis trained on the offset between expression 

mesh and neutral mesh of each individual contained in the scans. idα  and expα  are the 

representations of shape and expression weight for modeling. Basel Face Model [131] 

and FaceWarehouse [30] are used for constructing idE  and expE  respectively.  
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Following the scheme of [210], we fit the parametric model to the source input 

image and target input image. With the assumption of weak perspective projection: 

                       2

1 0 0
0 1 0dS f RS T 

= + 
 

                                           (4.5) 

where 2dS  represents the 2D positions of vertices in S  projecting from the world 

coordinate to image plane, f  is scalar factor, R  and T  are rotation and translation 

matrices respectively. After we find the 2D landmark alignment result _ 2land dS  [140], all 

unknowns in Equation (4.4) and Equation (4.5) can be solved by minimizing the 

projection error of labeled 3D landmarks on the parametric model 2dS  and _ 2land dS : 
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An example of our coarse face reconstruction is shown in Figure 4.7. It shows the 

labeled 3D landmarks on parametric model, the 2D alignment on image, and the rendered 

coarse model overlay to the image respectively.  

4.2.2.2 Geometry refinement 

A good estimate of the overall shape of an individual in the image can be obtained 

by fitting the parametric model from the previous stage but person-specific facial features 

like wrinkles are not adequately captured. To refine the geometric details in this stage, we 

deform the obtained mesh to fit its shading with the input image.  Inspired by the work in 

[161], we assume Lambertian reflectance and approximate the image intensities with the  
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 (a)  (b)     (c) (d) 

Figure 4.8 Geometry refinement: (a) coarse shape; (b) shape after refinement; (c) 
reconstructed fine shape with texture; (d) Facial expression transfer with coarse (left) and 
refined (right) 

surface normal using the first-order spherical harmonics. The objective function for 

shading based geometry refinement is as follows: 

2

1 2( ( )) ( ( ))T
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v
E I P v l h z v E Eβ β= − + +∑                           (4.7)                         

where ( ( ))I P v  is the image intensity of vertex v  projected to the image plane with the 

projection matrix P , l  is a vector of 4 1×  representing the spherical harmonics 

coefficients, and ( )z v  is the z -coordinate of vertex v . 1β  and 2β  are weights for the 

regularization term regE  that constrains the final mesh to be close to the original shape, 

and the Laplacian smoothing term LPE . vh  is 4D spherical harmonics approximation to 

surface reflectance defined as ( ) ( )(1, )
( ) ( )
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, where ( , , )x y zw v v v=  and rw , 

cw  are neighboring vertices of w  along horizontal and vertical direction on the surface. 

Equation (4.7) can be solved by updating and fixing l  and v  iteratively with linear least 

squares optimization. Figure 4.8 shows the result of geometry refinement. Figure 4.8 (a) 

shows the coarse shape obtained from the previous stage, Figure 4.8 (b) shows the shape 

with geometric refinement, Figure 4.8 (c) shows the refined shape with texture 
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information and Figure 4.8 (d) shows the effectiveness of geometry refinement for facial 

expression transfer. 

4.2.3 Facial expression transfer and eye gaze correction  

After obtaining the 3D models for both the source and the target images, we apply 

the mesh deformation to transfer the expression from the source to target.  Our approach 

is similar to that of [160]. However, instead of finding correspondences based on the user 

selected markers, we register the models with coarse shape parameters to the refined 

shape obtained by geometry refinement. In this way, the correspondences can be easily 

treated as all of the triangles in the mesh. Thus, the efficiency for facial expression 

transfer can be improved significantly without finding correspondence points. The 

difference around the mouth of the source and target actors are reduced by piecewise 

affine warping in the image domain.  

 
(a) (b) (c) 

Figure 4.9 Eye gaze transfer: (a) original pairs of image with detected eye mask; (b) 
direct transfer without refinement; (c) final synthesized image 
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In addition to expression transfer, we take the eye gaze difference into 

consideration to make the final re-rendered image more realistic. As is shown in Figure 

4.9, we first extract the eye mask from source and target image by morphological 

operations. The gaze is estimated by sphere fitting, colored with the green circle and red 

point in Figure 4.9 (a). Then, we use the correspondence points extracted from source and 

target images around the eye area to compute the transformation matrix to warp the eye 

mask. The relative location for eye gaze is calculated using the center of eye gaze and the 

eye corner. The synthesized eye gaze is finally estimated by the aspect ratio from the 

relative location. The final manipulated image is generated by blending the eye and the 

mouth area with the re-rendered image together. More results are shown in the 

experimental section. 

4.2.4 Experimental results  

We evaluate the performance of our system on face reconstruction from single 

image using both qualitative analysis and quantitative evaluation.  

     
(a) (b) (c) (d) (e) 

Figure 4.10 3D reconstruction evaluation: (a) Input RGB image; (b) Ground truth; (c) 
reconstructed model by our method; (d) error map between our model and ground truth; 
(e) error map between model obtained by method of [210] and ground truth. 
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We first present the experimental result for face reconstruction. We evaluate the 

accuracy of our system for face reconstruction on a public available dataset provided by 

MPI Informatik [18]. The dataset contains three sequences captured indoor with 200k 

vertices and one sequence captured outdoor with 50k vertices. The scanned models from 

this dataset serve as the ground truth. To measure the difference between the ground truth 

and our reconstructed model, we first align them by ICP algorithm [76] and search the 

nearest point from the ground truth model along the normal direction of each vertex in 

our reconstructed model. The Euclidean distance is then calculated for each pair of the 

points. One example from the dataset is shown in Figure 4.10. The mean error distance 

between our reconstructed model and the ground truth is 2.48mm, comparing with the 

method from [210] which is 2.71mm. We also compare our method for face 

reconstruction with the method from [210] on more unconstrained images of different 

illumination and poses. Figure 4.11 presents the result of comparison, from left to right, 

showing the reconstructed model and the model with texture.  

To evaluate the performance of our method for facial expression and eye gaze 

transfer, we choose images with different expression or head pose from the LFW dataset 

[100]. The result of our method for transferring the expression and eye gaze between two 

different identities with single image is shown in Figure 4.12. The leftmost row in each of 

the three pairs is the input of source and target image, the transfer result of expression is 

shown in middle column, the final result with eye gaze transfer is displayed in the 

rightmost column. It can be seen that our system is able to generate realistic result for 

various facial expression transfer with eye gaze correction.  
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Figure 4.11 Face reconstruction on unconstrained image: Input RGB image; 
reconstruction with our method; reconstruction with method from [210]; 
reconstruction using our method with texture. 
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Figure 4.12 Result of our proposed system: (First row) source input and target input 
images; (Second row) manipulated image after expression transfer from source to target 
without eye gaze correction; (Third row) final output image with gaze correction. 

 

Copyright © Wanxin Xu 2018 
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Chapter 5 Human Body Reshaping with Single and Two Depth sensors 

 

Automatic reshaping of human bodies is a computer vision and graphics 

technique with many applications. It manipulates various shape attributes of the visual 

appearance of a person without any manual editing. Keeping coherent reshaping results 

across many video frames is more challenging and the recent advance in RGB-depth 

sensors have significantly advanced key processing steps including pose and skeleton 

estimation. In order to develop a system that can be used in the consumer market, it is 

important to minimize the number of sensors required and the initialization setup. In the 

first part of this chapter, I introduce a single RGB-D sensor based for human body pose 

and shape reshaping system. This system features a novel pipeline for pose estimation 

that can be used to improve the performance of human body reshaping with single depth 

sensor. The limitation of a single sensor is that the estimation of pose from the 3D data 

our reshaping system based on is not robust due to significant occlusions. In the second 

part of this chapter, we extend our system to utilize two RGB-D sensors and introduce a 

new pipeline for pose estimation.  

5.1 Skeleton-driven Approach for Human Body Reshaping with Single Depth 

Sensor 

Reshaping of human body in image or video is an active area of research in 

computer graphics [208][84].  Most existing works rely on the use of 3D Morphable 

Model to edit the human shape. In our first system, we achieve this by manipulating the 

3D skeleton data provided by a single Kinect V2 Sensor. We then apply the linear blend 

skinning procedure with bounded biharmonic weights as described in [83] to perform a  



 
 58 

smooth 2D mesh deformations. Figure 5.1 gives an overview of our human body 

reshaping procedure, which consists of three stages. The first stage of body reshaping is 

data preparation. We use Microsoft Kinect Sensor to acquire 3D skeleton data, back 

projected 2D skeleton data and human shape mask simultaneously. These data are 

computed using the Kinect V2 SDK by Microsoft. Next, we manipulate the 3D skeleton 

data by scaling each body part along its direction to get new 3D skeleton data and back 

project it to 2D image using coordinator mapper provided by Kinect V2 Sensor. The 

shape deformation is achieved using linear blend skinning [83] by moving the 2D 

skeleton data obtained in first stage to the corresponded projected 2D joints position 

obtained in the second stage. Finally, we render the new image using 2D image rendering 

tool. Details of our implementations and the results are presented in the following section. 

 

Figure 5.1 Human body reshaping with single depth sensor 
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5.1.1 Data preparation and mesh generation 

 The process starts by capturing the color image frame of the whole environment 

which will be used for further rendering. The Kinect SDK also provides the associated 

body mask data, 3D skeleton data and back projected 2D skeleton data. The segmentation 

of the human body from the color image frame can be achieved by overlaying the body 

mask data on the color image. Due to the poor contrast and bad lighting of the image, we 

use morphological operations to refine the segmentation. The contour of the human shape 

is then obtained from the mask data. Note, the obtained contour must be a closed polygon. 

We use the triangulation algorithm in [22] to generate the triangulated mesh inside the 

contour. The entire procedure is demonstrated in Figure 5.2.  

 

Figure 5.2 (a) Original mask. (b) Refined mask and contour. (c) Generated mesh. 
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5.1.2 2D shape manipulation 

The 3D Skeleton data contains the 3D positions for 25 human joints. We use 19 of 

them for body shape editing, excluding the unrelated hand thumb, hand tip, and foot for 

our applications. Suppose each joint position in the skeleton space is represented as 

( , , )X Y Z . The skeleton space coordinates are expressed in meters. The back projected 

2D skeleton data on the color image is represented as ( , )x y  in pixel. To change the shape 

of the human body in each frame sequence and preserving their consistence, we propose 

a method that are able to scale the correlated bone length without changing the human 

pose. Using 1 1 1( , , ; , , ; , , )  

T
i i in i in i inP X X Y Y Z Z=  to represents the 3D joint position 

set in thi frame and 1,2, ,19n = . We first calculate the length of the bone for each joint 

pair in 3D space. Then, we divide the reshaping process of the 3D skeleton into five parts: 

left arm, right arm, left leg, right leg and body. The target length of each part is based on 

the skeleton of an average man/woman in the U.S. The scaling is computed in the 3D 

space, mapping the original iP  to the target iP′  in each frame in the video sequence. After 

3D skeleton reshaping, we use the built-in function of Kinect SDK to map the new 3D 

skeleton data iP′  to the color image to obtain the new 2D skeleton data. The 2D mesh 

deformation is finally achieved using linear blend skinning [83] by moving the 2D 

skeleton data on the mesh to the corresponded new projected joint position. To obtain the 

final result, we render the new mesh by patching the color of the original appearance of 

the human to the deformed mesh. In the last step, we embed the reshaped colored human 

body image to the background image obtained in the first stage. 
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5.1.3 Experimental results 

To evaluate the performance of our proposed human body reshaping method, we conduct 

the experiment in two different environments. The spatial resolution of the image 

captured by the Kinect is 1920 1080× . The practical ranging limit of Kinect is 0.4 to 4m. 

The first column and second column in Figure 5.3 demonstrate a sample of the original 

video frames and the corresponding reshaped video frame. The result shows that our 

method can reshape the human shape under different and complex environment. The 

limitations in segmentation and 3D skeleton tracking from the Kinect might influence our 

reshaping results. In the future, we plan to combine advanced segmentation and tracking 

under occlusion approach with those from the Kinect to improve the performance of our 

approach and make it more robust.  
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(a) (b) 

Figure 5.3 (a) Selected original image frame from two environments. (b) Reshaped 
image frame (taller and thinner). 

5.2 Human Pose Estimation with Two RGB-D Sensors 

Even though recent approaches have shown that 3D positions of body joints can 

be estimated from a single depth sensor, the depth data often suffer from sensing noise 
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and self-occlusion. Before going to our model-based approach for human body reshaping, 

I first introduce a system to estimate the pose of human subject using two RGB-D sensors 

to improve the performance of the skeleton-based approach for human body reshaping as 

described in Section 5.1.  

5.2.1 System overview 

The two sensors simultaneously capture the front and back of the body’s 

movement. Using a wide-baseline RGB-D camera calibration algorithm, the two 3D 

scans are first geometrically aligned, and then registered to a generic human template 

using a Gaussian-mixture-model based point set registration procedure with local 

structure constraints. The new pose of person is finally estimated by a rigid bone-based 

pose transformation. Experimental results demonstrate the effectiveness of our system in 

estimating the body pose over other state-of-the-arts techniques. 

The overall pipeline of our proposed framework is illustrated in Figure 5.4. It 

consists of three main components: data acquisition & preprocessing, non-rigid 

 

Figure 5.4 The Overview of our proposed pose estimation pipeline 
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registration, and skeleton estimation. We first discuss the acquisition and preprocessing 

of the data used in our framework in Section 5.2.2, followed by the method to register the 

template to the target model in Section 5.2.3. In Section 5.2.4, we introduce how we 

estimate the pose from the template and registered input scans. The experimental result is 

finally discussed in Section 5.2.5. 

5.2.2 Data acquisition and preprocessing 

 In our framework, two Kinects are mounted in opposite direction facing toward 

the front and back of the subject being captured. The subject can move freely within the 

intersecting view frusta of the two Kinects during the capture. The input data is a set of 

color and depth images. Each pair of input images are aligned and transformed into a 

point cloud representation. As shown in Figure 5.4, we first detect and segment the 

person from the scene using background subtraction and morphological operations. Since 

  
(a) (b) 

Figure 5.5 Point cloud alignment from two depth sensors: (a) before alignment; (b) after 
alignment. 
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the 3D positions of point cloud is obtained with respect to the local coordinate system of 

each depth sensor, we first provide a coarse alignment of the point clouds from those two  

depth sensors using the extrinsic camera parameters. Different from traditional 

calibration methods using a checkerboard [206], we use a wide-baseline RGB-D camera 

network calibration method proposed in [155]. This approach makes use of a spherical 

object with distinct color as a calibration object and identifies the correspondences across 

different views based on the estimated locations of the center of the sphere. The 

calibration procedure produces the relative camera pose between the two cameras, which 

we use to provide a rough alignment of the two point clouds. Figure 5.5 shows the 

alignment of the two point-clouds.  

After the initial alignment process, the combined point clouds are roughly aligned 

but there are still noise and outliers that could affect the pose estimation. To remove these 

noises, we follow a two-stage process. By assuming the distribution of the distances of 

each point to its closest K neighbors follows a Gaussian distribution, we first remove 

those points whose mean distance between all its neighbors significantly deviate from the 

global mean distance. Even though this stage can remove most outliers, the surface of the 

point cloud is still noisy and unevenly distributed. Surface reconstruction directly on 

these low-quality data would be highly unreliable. As such, we apply Weighted Locally 

Optimal Projector (WLOP) to further denoise these data points and resample them evenly 

across the surface [77]. 

5.2.3 Non-rigid point set registration 

In the next stage of our proposed pipeline, similar to [201], we create a 3D 

template model that consists of the surface vertices, the surface mesh connectivity, the 
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skeleton and the skinning weight, by having the person posed a T-shaped posture in the 

overlapped region of the two frusta. We use the approach from Baran et al. [17] to 

automatically get the kinematic skeleton with 18n =  joints and the skinning weight, 

which describes the association of each vertex to each bone. The generation of this 

template model is done offline and only once over the entire pipeline. 

 For registration, the first frame of the sequence is registered with the template 

while the rest of the frames are registered with the neighboring frames. Since the view 

direction of the input scan might be different from that of the template, we first transform 

the input scan according to the estimated view direction of the template. Applying 

principle component analysis to the point cloud, the 3D orientations for the template and 

the input scan are obtained. We then transform the input scan into the same view 

direction with the template. Afterwards, we use the Coherent Point Drift (CPD) algorithm 

proposed in [120] to register the input scan with the template. However, as the input scan 

can be quite incomplete, direct application of CPD for registration can be problematic as 

it fails to take spatial relationship between the neighboring points into consideration.  

In our framework, inspired by the work in [58], we preserve the local structure of 

the template through Laplacian coordinate. Similar to [120], we assume the template data, 

{ }| 1, 2, ,

D
nY y R n N= ∈ =  represents the centroids of GMM. The goal is to derive an 

optimal GMM parameters to fit the input scan { }| 1, 2, ,

D
mX x R m M= ∈ =  to the 

GMM centroids by minimizing the objective function defined below:  

2 2( , ) ( , ) lc lc g gE W Q W E Eσ σ λ λ≡ + +                                     (5.1) 
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Following the same approach as [201][120][58], we use the Expectation 

Maximization (EM) algorithm [19] to solve the objective function in Equation (5.1) 

iteratively. Using a weighted uniform distribution account for outliers, with the 

assumption that the variance 2σ  for all Gaussians is same, the first term in Equation (5.1) 

is defined as:  

2 2
2

,
( , ) ( , ) log

2 2
mn P

m n
m n

P N DQ W x y Wσ σ
σ

≡ −Ψ +∑                       (5.2)                
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                (5.3)                 

where Ψ  can be considered as a function of Y  with parameters W ; u  is the weight of 

uniform distribution; 
, 1 1

M N

m n m n= =

≡∑ ∑∑ ; 
,

( | )old
P m

m n
N p n x=∑  and oldp  denotes the posterior 

probabilities of GMM. Two more terms, lcE and gE , in Equation (5.1) are used for 

regularization:  

   2

1
( ) ( ( , ))

N

lc n n
n

E L y L y W
=

≡ − Ψ∑                                             (5.4)                    

2
gE W≡                                                                (5.5)                                               

where L  is Laplacian matrix with cotangent weights. The lcE  term is used to preserve 

the local shape structure of the template. The gE  term ensures the continuous motion. lcλ

and gλ  are trade-off parameters specified by user.  
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5.2.4 Skeleton estimation using bone-based approach 

Once the input scan is registered to the template, the correspondence between 

them is obtained. Inspired by the work in [101][102], we treat the template as a rest pose, 

which is used to estimate the pose of the input scan. According to the skeleton and 

weights provided by the template, we can obtain 17B =  parts for the rest pose, the 

vertices in the same cluster have the same rigid motion. The clustering in our framework 

is achieved by assigning the vertices to the bone with the largest weights.  

Since the vertices in the registered input scan { }| 1, ,iv i Nχ = =  has 

correspondences to the vertices in the rest pose { }| 1, ,iu i Nϕ = = , the estimation of the 

new pose becomes the problem of finding a set of rigid bone transformations 

{ }, | 1, 2, ,j jR T j B=  to associate the vertices in the input scan to the vertices in the rest 

pose through minimization the following objective function: 

   
2

, 1
min

j j

N

j j i j i diffR T i
S R u T v Eλ

=

+ − +∑                                     (5.6)                               

 
2

( , )
diff j j jk j k k jk k

j k Edge
E S R C T S R C T

∈

≡ + − −∑                              (5.7)                         

where  1, 2, ,j B= ; jS  is the scaling factor for each bone transformation, which helps 

to fit the bone length of the input scan; ( , )j k Edge∈  means bone j  and bone k  share the 

same joint jkC ; λ  has the value of 1 in our framework. diffE  ensures that the difference 

of new positions of joints connecting two bones will be small after transformation. 

Similar to [101][102], we find the solution to the Weighted Absolute Orientation problem 
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[72] to solve Equation (5.6). The new pose of the input scan can be obtained by applying 

transformation to the rest pose.   

In our framework, the last step in this stage is to build the detailed human pose 

model. The original incomplete input scan contains the detailed information, like clothes 

winkles, hair style etc., and the registered input scan can be used to fill the gap of the 

missing data. As such, we fuse them together and then apply Poisson surface 

reconstruction [93] to obtain a detailed human pose model. 

5.2.5 Experimental results 

In this section, we experimentally demonstrate the effectiveness of our framework 

from two perspectives: qualitative analysis and quantitative evaluation. Our system was 

first tested on a publicly available dataset provided by MPI Informatik [70]. This dataset 

contains six sequences (D1-D6) of motion with varying difficulties performed by one 

actor including kicking, rotation, and circular walking. The ground truth of joint position 

of the actor is also provided in this dataset obtained by a marker-based Mocap system.  

 

Figure 5.6 Visual comparison of our proposed method using the dataset in [70] with its 
ground truth data. Blue line (Our method estimation) and Black dot (Ground truth).  
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We can qualitatively and quantitatively evaluate our system by comparing the joint 

position error against the ground truth data. 

Even though this dataset is captured by one depth sensor, our proposed system 

can be used. We first applied Hidden Point Removal (HPR) method in [92] to detect the 

visible part of the template and then estimated the pose by our proposed pipeline. We 

followed the same strategy as described in [70] to estimate the average joint error. Figure 

5.6 shows the pose estimation of our system on this dataset. As shown in Figure 5.6, our 

system can produce good estimation even with heavy occlusion and missing data. The 

average joint position error of our method versus other state-of-art approaches on this 

dataset are shown in Figure 5.7. The results clearly show that our system achieves higher 

or comparable performance [70][156][13].   

 

Figure 5.7 Comparison of average joint position error for six sequences from the 
evaluation dataset: Kinect [156] (Dark blue), Baak.et al [13] (Light blue), Helten et al 
[70] (Yellow) and Ours (Red).  
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In addition, we compare the accuracy of pose estimation on our pipeline by 

comparing it with Kinect SDK [96]. We captured three sequences of three actors with 

different weight and height, performing a variety of complexity movements like crossing 

arm, rotation, running, etc. The first column of Figure 5.8 shows the captured color 

images from the depth sensor in front; the second and third column show the pose 

estimation by Kinect SDK for the depth sensors in front and behind respectively; the last 

column shows the pose estimation by our proposed pipeline. It can be observed that the 

Kinect SDK based method produce poorer pose estimation than our proposed system 

under significant occlusion. Some joint positions deviate from the supposed position if 

the body parts are occluded.  

 
(a) (b) (c) (d) 

Figure 5.8 Pose estimation visualization results: (a) Color image from depth sensor 
(front); (b) pose estimation from KinectSDK (front); (c) pose estimation from 
KinectSDK (back); (d) pose estimation from our proposed system. 
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In our last experiment, we visually show the comparison of the detailed model 

generated with and without holes filling before the Poisson reconstruction. The data here 

is the same as that from Figure 5.8.  The comparison is shown in Figure 5.9. We can see 

the reconstructed model with holes filling before Poisson reconstruction looks more 

natural. The first column shows the reconstruction result without holes filling, some of 

the body part (e.g. leg) is miss-connected or disconnected (e.g. hand).  

 

 

 

 

 

 

  
(a) (b) 

Figure 5.9 Poisson reconstruction with and without holes filling: (a) without holes filling 
before Poisson reconstruction; (b) with holes filling using our proposed way before 
Poisson reconstruction.  

Copyright © Wanxin Xu 2018 
 



 
 73 

Chapter 6 Model-based Approach for Human Body Reshaping with Sensor 

Network  

In this chapter, a novel pipeline to reshape the human body using noisy depth data 

from multiple RGB-D sensors (sensor network) is presented. Compared with a single 

view reshaping system introduced in Chapter 5, multiple RGB-D sensors provide more 

constraints and better coverage, leading to more consistent results. However, there exist 

several challenges in estimating the pose and shape of human simultaneously in RGB-D 

data due to self-occlusion and motion complexity. To cope with the time-varying 

articulated human shape, we propose a new approach that combines a Gaussian Mixture 

Model (GMM) based fitting approach as introduced in Section 5.2.3 with a morphable 

model learned from range scans. Without any user input, this approach can automatically 

account for the variations in pose and shape. It also enables different types of reshaping 

by manipulating body attributes such as height, weight or other physical features. 

Experimental results are provided to demonstrate the effectiveness of our system in 

manipulation of human body shapes. In the last part of this chapter, we demonstrate the 

feasibility in using our proposed system for visual privacy protection. 

6.1 Overview of the System 

The schematic of our proposed framework is shown in Figure 6.1. It consists of 

three main components: data acquisition & preprocessing, pose & shape estimation, and 

human body reshaping. Inputs are aligned color and depth data captured from multiple 

RGB-D cameras. Based on offline calibration parameters, we first perform denoising on  
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the depth data and align them onto the same coordinate system based on the system 

described in [155]. 

To estimate the pose and shape of the actor, we use a morphable model along with 

the GMM based framework to fit the observed data.  We optimize the model to the 

observed data in two stages. The first stage (Section 6.3.2) estimates the posture and 

coarse body shape of the observed actor, by combining a modified approach from [10] 

with the GMM based point set registration [120]. While this initial step produces accurate 

pose and coarse shape, it fails to reconstruct the non-rigid deformations caused by 

clothing of the actor. In the second stage (Section 6.3.3), the details of the surface shape 

are estimated by finding the difference along the normal directions between the 

reconstructed shape in the first stage and the original refined point cloud. 

After finding the correspondence between the observed data and the morphable 

model, we can now reshape the observed actor by modifying the semantic body attributes 

of the morphable model and applying the deformation transfer to the fitted model fully 

automatically (Section 6.4). 

Foreground 
Segmentation
(Section 4.1)

Wide-baseline camera 
network calibration(offline)

Pose and Shape 
Estimation 

(Section 4.3;4.4;4.5)

Human Body Reshaping 
(Section 5)

SCAPE Model

    Aligned Data    Aligned Data

Noisy Removal 
& Alignment

 

Figure 6.1 Overview of our proposed system. 



 
 75 

 
(a) (b) (c) 

Figure 6.2 Point cloud alignment from four depth sensors: (a) before alignment, (b) after 
alignment. (c) alignment with texture and camera position (1,2,3,4) 

6.2 Data Collection and Pre-processing 

In our experimental setup, we used four Kinect cameras mounted in four 

directions perpendicular to each other for data capture. This configuration helps to 

minimize any interference between adjacent Kinect cameras. The actor can move freely 

within the four intersecting view frusta during the capture. The input data is a set of color 

and depth images. Each pair of input images are aligned and transformed into a point 

cloud representation [26].  

As shown in Figure 6.1, we first detect and segment the person from the scene 

using background subtraction and morphological operations. Since each depth sensor 

produces point clouds in its own local coordinate system, we need to estimate the 

extrinsic camera parameters before aligning the local point cloud data into a global 

coordinate system. Different from traditional calibration methods using checkerboard 

[206], we estimate the extrinsic parameters using a wide-baseline RGB-D camera 

network calibration method from [155]. This approach uses of a spherical object with 

distinctive color as a calibration object, and identifies the correspondences across  
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                                            (a)            (b)       (c) 

Figure 6.3 Point cloud outlier removal and simplification: (a) Original aligned point 
cloud; (b) after outlier removal using Gaussian filter; (c) after denoising using WLOP 

different views based on the estimated trajectory of the sphere’s center. The calibration 

procedure produces the relative rigid transformation between the two cameras, which we 

use to provide a rough alignment of the point clouds. Figure 6.2 shows a sample of point 

clouds from different views in their local coordinates in Figure 6.2(a), in the global 

coordinates in Figure 6.2(b), and with textures and cameras’ position in Figure 6.2(c). 

After the process of initial alignment process, we follow the same two-stage 

process to remove the noises and outliers as described in Section 5.2.2. By assuming the 

distribution of the distance of each point in the aligned input scan to its neighbors is 

Gaussian with a mean and a standard deviation, we first search for the nearest neighbors 

at each 3D point and remove the point whose mean distance between all its neighbors is 

greater than or smaller than the threshold defined by the global mean and standard 

deviation. Even though this stage can remove most outliers, the surface of the point cloud 

is still noisy and non-uniformly distributed. In this case, the assumption of a normal 



 
 77 

distribution for further surface reconstruction would be unreliable. To solve this problem, 

we apply Weighted Locally Optimal Projector (WLOP) [77] to generate a set of denoised, 

simplified and evenly distributed point, as is shown in Figure 6.3.  

6.3 Pose and Shape Estimation with Multiple Depth Sensors 

6.3.1 SCAPE model 

Unlike our previous work [192], we use the SCAPE model, instead of a non-

parametric model, as prior for the goal of reshape human body caused by different 

identities and postures. This section briefly reviews the SCAPE model introduced in [10]. 

The SCAPE model uses separate parameters to control the deformation of the 

pose and the body shape, and then fuses them together under a single transformation. 

Denote the generic template model of shape and pose as X  and the target model as Z . 

SCAPE computes a 3 3×  transformation matrix fA  that deforms each triangle 0
fT  

(defined by vertices , , 1, 2,3f kx k = ) in the template model to its corresponding target 

triangle fT  with vertices ( , , 1, 2,3f kz k = ): 

0 0( ) ( ) ( )f f f f f f fT A T R D Q Tθ β θ≡ ≡                                      (6.1) 

where the pose is governed by the rotation of triangle in part ( )fR θ  and the pose-

dependent non-rigid deformation ( )fQ θ . The shape variations are controlled by a linear 

function ( )fD β . During the training phase, the pose of different individuals is fixed at  
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0θ . SCAPE models the shape variation using a PCA model ( )fD Uβ β µ≡ + , where U  
and µ  are both pre-trained PCA parameters, µ  is the mean body shape. 

Given both θ  and β , vertex positions 1, , Nz z  of the target mesh can be 

determined by solving the linear least square problem as follows: 

1

2

, ,
{ , , } 1 2,3
argmin ( ) ( ) ( )

N

F

m f f f f k f k
z z f k

E R D Q x zθ β θ
= =

≡ ∆ −∆∑ ∑


                    (6.2) 

where F  is the total number of faces, N  is the total number of vertices, and 

, , ,1 , , ,1,f k f k f f k f k fx x x z z z∆ = − ∆ = −  are edges for each triangle. As shown in Figure 6.4, 

we can synthesize realistic meshes for different people in a broad range of poses and 

shapes. 

6.3.2 GMM-based pose and shape fitting 

The next step is to fit the trained SCAPE model to the observed data obtained in 

Section 6.2. The goal of fitting is to optimize both θ  and β  such that the resulting 

 
     (a) (b)   (c)                (d) 

Figure 6.4 SCAPE Model with 16 parts of different poses and shapes 
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morphable model has good approximation for the observed data. Previous approaches 

based on morphable models such as [196][33] require initial guesses about the closest 

point correspondence or sparse tracking markers. Instead, we use a GMM based approach 

[204] that takes all the observed data points into consideration. Our approach is more 

robust against outliers and occlusions, and is also more effective in fitting between two 

complex non-rigid point data sets. In the followings, we first describe the GMM based 

non-rigid registration approach in Section 6.3.2.1, unlike the previous approach presented 

in Section 5.2.3 that focused only on pose, the proposed approach in this section can 

simultaneously estimate both the human pose and shape for body reshaping, and then 

provide the details in Section 6.3.2.2 on how we apply this approach in fitting the 

observable data with the morphable model. 

6.3.2.1 GMM-based point set registration  

Inspired by the work proposed in [120], we assume that the observed data 

{ | 1, 2, , }

D
mY y R m M= ∈ =  follows a N -component GMM distribution with 

component means initialized at the vertices { | 1, 2, , }

D
nX x R n N= ∈ =  of the 

deformed template with pose and shape parameter θ  and β . Therefore, the probability of 

each observed data point can be expressed as: 

1

1 1( ) (1 ) ( | )
N

m m n
n

P y u P y x u
N M=

= − +∑
                            

(6.3) 

2

2 /2 2
1( | ) exp( )

(2 ) 2
m n

m D

y x
P y x

πσ σ
−

= −                           (6.4) 
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where D  is the dimension of the observed data (e.g. 3D = ); u  is the weight of the 

uniform distribution that accounts for outliers and the variance 2σ  for all Gaussians is 

assumed to be the same for simplicity.  

The registration of these two point sets X  and Y  can be considered as a 

Maximum Likelihood problem, which is equivalent to minimize the following negative 

log-likelihood: 

1
log ( )

M

m
m

E P y
=

≡ −∑                                          (6.5) 

Using the same approach as in [120], we apply the Expectation Maximization (EM) [39] 

algorithm to minimize the objective function in Equation (6.5) iteratively until it 

converges. During the E-step, the posterior probabilities are calculated using the 

parameter obtained from the previous iteration based on the Bayes rule as: 

2

2

2 2 2

2
1

exp( )
2( | )

(2 )exp( )
2 (1 )

m n

old old
nm n m D

N
m n

n old

y x

P p x y
y x uN

u M

σ

πσ
σ=

−
−

≡ =
−

− +
−∑

                       (6.6) 

During the M-step, we can find the new parameters by minimizing the objective 

function in Equation   

22 2
2

1 1
( ( , ), ) log

2 2

M N
pnm

m n
m n

N DPQ X y xθ β σ σ
σ= =

≡ − +∑∑                     (6.7) 

where 
1 1

M N

p nm
m n

N P
= =

=∑∑ .   
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6.3.2.2  Human pose and shape optimization  

Before applying the GMM registration, we need to first transform the observed 

data to the same view direction of the morphable model. Using principle component 

analysis on the point cloud, the 3D orientations of the morphable model and the observed 

data are obtained. We then construct a transformation to transform the observed data into 

the same view direction with the morphable model, as shown in Figure 6.5.   

After the alignment process, we apply the GMM-based non-rigid registration 

approach to fit the morphable model X  to the observed data Y . We solve this by jointly 

optimizing the two objective functions from Equation (6.2) and Equation (6.7) to obtain

X , θ  and β  using the following objective function: 

2( ( , ), )m dataE Q Xω θ β σ+ ∗                                     (6.8) 

 
  

                     (a)                     (b)                  (c) 

Figure 6.5 View direction transformation (a) Morphable model with view direction (b) 
Original observed data with view direction (c) After transformation (Red: Y-axis; Blue: 
Z-axis; Green: X-axis) 
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where mE  from Equation (6.2) and 2( ( , ), )Q X θ β σ  from Equation (6.7) are weighted by 

dataω  that controls the influence of observed data on the morphable model. To simplify the 

optimization problem, we use a coordinate descent strategy and solve for each variable 

iteratively. The followings describe the steps that are summarized in Algorithm 1. 

Initialization. In the initial stage, the variance 2σ  is obtained by taking the derivative of 

the objective function defined in Equation (6.8) w.r.t. 2σ  and set it equal to zero, yielding: 

22

1 1

1 M N

nm m n
m np

P y x
N D

σ
= =

= −∑∑                                     (6.9) 

Iteration. There are three main steps in each iteration: 

1) Fixing θ  and β , update X . 

We solve the vertices that gives the best correspondence between the morphable model 

X  and the observed data Y . It can be obtained by minimizing the objective function 

defined in Equation (6.8). 

2) Fixing β  and X , update θ . 

 To estimate the pose change θ∆ , we use the twist change to rotation as an 

approximation, that is, i.e. ˆ( )newR I Rθ≈ + ∆ , where 1 2 3( , , )θ θ θ θ∆ = ∆ ∆ ∆ , and  

  
3 2

3 1

2 1

0
ˆ 0

0

θ θ
θ θ θ

θ θ

−∆ ∆ 
 ∆ = ∆ −∆ 
 −∆ ∆ 

                                         (6.10) 

Then, the pose change can be solved by minimizing the following function to deform the 

morphable model into the pose that best approximates the observed data. 
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2 2

, , 1 2
1 2,3 1, 2

ˆmin ( )
F

b b f f f k f k R b b
f k b b adj

I R D Q x y
θ

θ ω θ θ
∆

= = ∈

+ ∆ ∆ −∆ + −∑ ∑ ∑         (6.11) 

where fD  and fQ  are defined in Equation (6.2); Rω  is a trade-off parameter; and 1, 2b b  

are indices of the adjacent bones. The second term in Equation (6.11) is used to prevent 

large joint rotation. 

3) Fixing θ  and X , update β . 

Algorithm 1.  Human Pose and Shape Optimization 

Input: Initial 2, ,θ β σ  and observed data Y . 

Output: The optimized ,θ β∗ ∗ . 
0iter = ;  

Repeat 
        0j = ; 
        E-step: 

                Compute posterior nmP  according to Equation (6.6);   

        M-step:  
        Repeat  
                Compute X  by solving Equation (6.8); 
                Compute and update θ  by Equation (6.11);   
                Compute and update β  by Equation (6.12);  

                Adjust dataω  by simulated annealing; 

    j + + ; 
        Until (satisfy the stop criteria) 
        iter + + ; 
Until (satisfy the stop criteria) 

,θ θ β β∗ ∗= =  
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For shape update, we find the best shape parameters to fit the observed data by 

minimizing the following function: 

                 
2

, ,
1 2,3

min ( )
F

b f f k f k
f k

R U Q x y
β

β µ
= =

+ ∆ −∆∑ ∑                             (6.12) 

Termination. The process fits the morphable model to the observed data iteratively. The 

process stops if it reaches to a maximum number of iterations (e.g. max_ 10iter = ) or the 

maximum movement of the vertices is small enough (experimentally set to 1mm). 

6.3.3 Detailed motion reconstruction 

After the registration in Section 6.3.2, we obtain a deformed mesh 

{ | 1, 2, , }

D
nX x R n N′ ′≡ ∈ =  that is a good approximation of the observed data. 

However, to preserve details like winkles and folds, they need to be transferred from the 

observed data to the deformed mesh.   

To recover the details of observed data, we use a procedure similar to that 

proposed in [105]. For each vertex ix′  in the deformed mesh, we first find the nearest 

neighbor ic  from observed data along its normal direction in . Then, the detail 

coefficients id  is obtained by optimizing the objective function as follows: 

       
22 2

1 ,
( )

N

d i i i i l i s i j
i i j

E x d n c d d dλ λ
=

′= + − + + −∑ ∑                   (6.13) 

where i  and j  are neighboring vertices. The second term in the first summation in 

Equation (6.13) is used to prevent large movement. The weighting factor lλ  is 
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empirically set to 0.1 . The last term accounts for smoothness with the weighting factor

0.5sλ = . This is a least square problem and can thus be solved efficiently. Figure 6.6 

shows how the details are preserved and the resulting reconstructions.  

6.3.4 Bone-based approach for skeleton estimation 

Once the observed data are registered to the morphable model, the 

correspondences between them can be obtained. Similar to the process of skeleton 

estimation introduced in Section 5.2.4, we treat the morhpable model as a rest pose and 

use it to estimate the skeleton of the observed data. According to the skeleton and weights  
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from the morhpable model, we can obtain 16B =  parts or clusters for the rest pose. 

Vertices in the same cluster are assumed to have the same rigid motion. The clustering in 

our framework is achieved by assigning the vertices to the bone with the largest weights. 

The new skeleton of the observed data can finally be obtained by applying the resulting 

transformation to the rest pose following the procedure as described in Section 5.2.4.  

6.4 Human Body Reshaping 

In Section 6.3.2, we describe the procedure to establish the correspondences 

between the morphable model and the observed data. Such correspondences can then be 

used to reshape the human body. In particular, we treat the morphable model as source 

mesh, and the deformed mesh with details as target mesh, the deformation transfer is 

applied to reshape the human body. 

 The goal of the deformation transfer is to transfer the change in shape from the 

source to that of the target. In our system, the attributes, like the weight, height or leg 

length of a human body can be modified by changing the shape parameter from β  to β ∗   

(a) (b) (c) 

Figure 6.6 Detail reconstruction (a) Initial registration result. (b) Reconstruction with 
details. (c) Detailed model with texture. 

 

 

   
(a) (b) (c) (d) 

Figure 6.7 Human body reshaping (a) Original; Reshaping to different shape parameters 
(b) shorter; (c) thinner; and (d) fatter. 



 
 87 

in the source mesh ( , )X θ β .  Given a new β ∗ , we first obtain the deformed source mesh, 

and then transfer the deformation to the target by affine transformation similar to the 

procedure proposed in [160]. Figure 6.7 shows one example of reshaping the human body 

with different shape parameters. 

6.5 Experimental Results 

In this section, I experimentally evaluate our framework from two perspectives. 

First, we quantitatively measure the pose estimation and shape quality of our system 

using several publicly available datasets. The motion in these datasets ranges from simple 

movements to very challenging ones with heavy occlusion. Second, we demonstrate the 

effectiveness of our human body reshaping system. 

6.5.1 Evaluation of poses 

The IDT dataset [70] contains six sequences (D1-D6) of varying motion 

complexities, including kicking, rotation, and circular walking, performed by one actor.  

 

Figure 6.8 Visual comparison of our proposed method using the dataset in [70] with its 
ground truth data. Black line (Our method) and Red dot (Ground truth).  
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 The ground truths of joint positions obtained by a marker-based MOCAP system 

are provided as part of this dataset. As such, we can qualitatively and quantitatively 

evaluate our system by comparing the joint position error against the ground truth data 

following the same strategy as in [70]. 

As shown in Figure 6.8, our system can produce good estimation even with heavy 

occlusion and missing data. The average joint position error of our method versus other 

state-of-art approaches on this dataset are shown in Figure 6.9. Among the three methods 

we compared ([156];[70];[192]) in which the dataset using in this paper is provided by 

their method, our proposed method gave the best results five out of the six sequences in 

the dataset.   

In addition, we compare the accuracy of our pose estimation with that from the 

Kinect SDK V2 [96]. We captured three sequences of three different actors performing a  

 

Figure 6.9 Comparison of average joint position error for six sequences from the 
evaluation dataset: Blue - [156], Orange - [70], Yellow - [192] and Purple - Ours method.  
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(a) (b) (c) (d) (e) (f) (g) 

Figure 6.10 Pose estimation visualization result: (a) Color image from depth sensor 
(Kinect2); (b) (c) (d) (e)pose estimation from KinectSDK; (f) pose estimation from 
proposed system; (g) Reconstructed model with texture. 
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variety of complex movements like crossing arm and running. The first column of Figure 

6.10 shows the captured aligned color images from one depth sensor. The second to fifth 

columns show the pose estimations by Kinect SDK for each of the four depth sensors 

respectively. The sixth and seventh columns show the pose estimation and the 

reconstructed model with texture by our proposed pipeline. It can be observed that the 

Kinect SDK based method produces poorer pose estimation than our proposed system 

under significant occlusion. Some joint positions deviate from the supposed position if 

the body parts are occluded.  

6.5.2 Evaluation of shapes 

We evaluate the accuracy of body shape fitting using the SCAPE dataset [10], 

which contains 71 example poses with 12k vertices and 25k triangles, as well as the 

dataset in [196], which has 6 subjects (3 female and 3 male) performing 3 different 

motions (knees up, spin and walk) in 3 clothing styles (tight, layered and wide).  

 
(a) (b)                      (c) 

Figure 6.11 Error map for body shape fitting. (a) Original scan. (b) The estimated model 
overlaid with the ground truth, and (c) the difference between the estimated model and 
the ground truth, the unit is in millimeter. 
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These two datasets are publicly available with high quality realistic 3D scans. We 

visually and quantitatively measure the accuracy of our shape estimation. For the SCAPE 

dataset, we calculate the Euclidean Distances between all pairs of correspondence points 

between the ground truth and estimated shape. Figure 6.11 shows the error map for the 

examples selected from the dataset. It is clearly visible that the optimized shape model 

closely resembles the targeted example pose even though the input scan with large 

missing area. The mean error and the maximum error distance between our estimated 

shape and the ground truth for this example are 7.6 mm and 34.3 mm respectively. 

 
Figure 6.13 Detail visualization of shape fitting. 

 

Figure 6.12 Visual results of our shape fitting. Input model (gray) are overlaid on our 
result (red). 
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To visually validate our system, we compare our reconstruction result against the 

model from the dataset from [196]. The results are shown in Figure 6.12, which shows 

the overlay of our result with the model from the dataset. Figure 6.13 shows the shape 

reconstruction in detail. It can be noticed that our detail reconstruction algorithm can well 

preserve the winkles and folds of subject’s clothing. 

 

Figure 6.14  Body reshaping visualization result (a) Original reconstructed model (b), 
(c) and (d) Reshaped result with our method with different parameters of morphable 
model. 
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Figure 6.15 Our system reshapes the human body using multiple RGB-D sensors. (Left) 
Original reconstructed human model; (Right) 4 different views of the reshaped human 
body with shorter legs and longer body. 

6.5.3  Evaluation of human body reshaping 

In our last experiment, we evaluate the entire system from data capturing to 

human body reshaping. We capture four sequences of four individuals with different 

height and weight in the lab environment. By changing the parameters of the morphable 

models, we can produce various body types as shown in Figure 6.14.  

6.6 Application on Visual Privacy Protection 

The prevalence of wireless networks and the convenience of mobile cameras 

enable many new video applications other than security and entertainment. From 

behavioral diagnosis to wellness monitoring, cameras are increasing used for 

observations in various educational and medical settings. Videos collected for such 

applications are considered protected health information under privacy laws in many 

countries. At the same time, there is an increasing need to share such video data across a 

wide spectrum of stakeholders including professionals, therapists and families facing 
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similar challenges. Visual privacy protection techniques, such as blurring or object 

removal, can be used to mitigate privacy concern, but they also obliterate important 

visual cues of affect and social behaviors that are crucial for the target applications. In 

this section, an application using human body reshaping and facial image manipulation 

for concealing the identity of individuals while preserving the underlying affect states is 

discussed. The experiment results demonstrate the effectiveness of our method for visual 

privacy protection.  

6.6.1 Evaluation of human body reshaping with depth sensor network for visual 

privacy protection 

In this section, we evaluate the entire system from data capturing to human 

reshaping described in Section 6.1 for visual privacy protection. Our hypothesis is that 

the reshaped video will preserve the naturalness of human movements while obfuscating 

important soft biometrics such as height and weight for privacy protection. We use the 

same sequences captured in the lab environment as mentioned in Section 6.5.3. In order 

to objectively prove our hypothesis, we have devised two tests in measuring the 

naturalness and privacy preservation of the reshaping results.  

In the first test, we have recruited 25 non-expert participants who were not 

familiar with the four actors in the videos. Each of them was shown 4 video sequences. 

Each sequence has 4 sub-sequences derived from the same data – the second one was 

always the original while the other three were different reshaped versions. However, the 

participants were not aware which was the original, and they were asked to rank the 4 

sub-sequences ranging from 1 (least natural) to 4 (most natural). The participants were 

free to watch all sequences repeatedly. 
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As the ranks are not independent samples, we utilize the Wilcoxon signed-rank 

test [189] to analyze the result obtained from the questionnaire. In this two-sample 

statistical test, we set one sample to be the original video (sub-video 2), and the other one 

to be each of the reshaped videos. The null hypothesis is that the mean rank of the  

reshaped videos is the same as that of the original video. Our test results are shown in 

Figure 6.16, in which the y-axis in (a), (b), (c) and (d) represents the rank scores from the 

 
(a) (b) 

 
(c) (d) 

 

Figure 6.16 Average score of questionnaire results on the naturalness of our reshaping 
method.   
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questionnaire. The p-value of the test for each sub-video paired with the original video is 

marked on top of each box bar. None of the p-values are significant enough (p < 0.05 

[50]) to reject the null hypothesis. As such, we conclude that the naturalness of our 

proposed method for human body reshaping is comparable with the real captured video. 

In the second test, we evaluate the capacity of our reshaping method for privacy 

protection. We use gait analysis as an instance. In particular, the performer is required to 

first stand as an ‘A’-pose and then walk normally towards the depth sensor for a few 

steps. The motion data are captured and extracted by using our skeleton estimation 

approach mentioned in Section 6.3.4. We use the foot step or stride length and rotation 

angle of knees as the gait features for analysis, which has been investigated and proved to 

be a key measurement for gait recognition in existing work [117]. 

Foot step: During a walking period, one foot serves as a pivot when the other foot 

moves, it’s half of the stride length. In our experiment, we assume that the pivot foot not 

move in the short time interval. We compute the foot step by averaging the Euclidean 

Distance between the locations of left and right foot joint in several intervals. 

Axis of Rotation

Longitudinal Axis

θ 
α 

β 

Knee angle(Relative)

 

Figure 6.17  Axis of rotation and relative angle of knees.  
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Rotation Angle of knees: With the help of the obtained joint position from our 

system, we calculate the relative angle of left and right knee along the longitudinal axis, 

as shown in Figure 6.17. The knee angle can be computed as θ α β= − . After reshaping, 

if the foot step is changed to some extent while the relative rotation angle of knee is 

preserved, which indicates that the soft biometric feature, gait for example, is protected. 

We test the effectiveness of our proposed method for privacy protection by 

capturing two sequences of people walking normally in the room. Figure 6.19 shows the 

result of foot joint position in one gait cycle before and after reshaping, respectively with 

different reshaping parameters. In Table 6.1, we show the average step length in several 

 
Figure 6.18 Joint Angle in one gait cycle. (a) Sequence1. (b) Sequence2. 
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intervals for different reshaping parameters. Reference to the work proposed by 

Middleton et al. in [117], we can conclude that the range for stride length used as gait 

feature to recognize the identity of a person from others is from 640mm~840mm, that is, 

320mm~420m for each foot step. In other words, we can assume that the identities of two 

people are different if the difference of their step length is greater than 20mm. Figure 

6.18 shows the result of joint angle of knee in one gait cycle before and after reshaping, 

respectively. 

From Figure 6.19 and Table 6.1, we can see that the foot joint position after 

reshaping is quite different with that of the original one for two different actors, and the 

step length changes between 30-80mm according to different reshaping parameters. The 

significant difference in foot step length between the original and reshaped videos will be 

able to protect the identity of an individual from a gait biometric identification system. 

And from Figure 6.18 we can see that the joint angle after reshaping is almost similar 

with that of the original one for two different actors. The results, therefore, demonstrate 

the effectiveness of our proposed method for privacy protection. 

Table 6.1 Average step length with different reshaping parameters (mm) 
 

Category Test1 Test2 Test3 

Sequence1 Original 361.76 361.76 361.76 

After Reshaping 407.14 339.96 328.76 

Sequence2 Original 354.49 354.49 354.49 

After Reshaping 434.40 329.95 299.80 
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(a) 

 
(b) 

Figure 6.19 Foot Joint position in one gait cycle. (a) Sequence1. (b) Sequence2. 
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Chapter 7 Conclusions and Future Work 

 

In this dissertation, I have described several novel systems that can be used to conceal the 

identity of the person in the captured video frame while preserving the person’s pose and 

facial expression. It has been demonstrated that unlike existing visual privacy protection 

methods that often lead to loss of significant social cues, my dissertation work provides a 

way to protect privacy and maintain utility for behavior observation. The key ideas 

behind the proposed visual privacy protection are reshaping of body shape and facial 

image manipulation. To the best of knowledge, we are the first to propose the usage of 

body shape reshaping as an effective solution for visual privacy protection while 

preserving the underlying affect states.  

In addition to the target goal of privacy protection, I have also made fundamental 

contributions to computer vision. Our proposed pose estimation scheme is robust under 

heavy occlusion using multiple depth sensors. With a wide-baseline RGB-D camera 

calibration algorithm, the point set registration procedure with local structure constraints, 

the rigid bone-based pose transformation and the holes filling scheme, the reconstruction 

of detailed human model is greatly improved. Even for the case with a single depth 

sensor, I have presented a new method to accurately estimate the complex movement 

pose, though the detailed human shape model have been shown to be too difficult to 

capture. With the help of morphable model, all aforementioned models have been used to 

reshape a human body through deformation transfer. 

I have also presented two approaches for facial image manipulation. The first 

method combines recoloring and composition of facial component to produce a new face 
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image while preserving the general configuration of different facial features so as to 

preserve the expression. The second method transfers both the facial expression and the 

eye gaze from source input image to target input image by first reconstructing the 3D 

face from single image in an illumination-invariant manner and then capturing person 

specific details with a coarse-to-fine scheme. The final manipulated output images have 

demonstrated the effectiveness of our system. 

In the future, I plan to improve the speed of the system for pose estimation to 

make it run in real-time and improve eye gaze rendering by taking reflection caused by 

local illumination into consideration. In addition, more challenging tasks such as multiple 

people interacting, detailed human model from one depth sensor, will be investigated.  

  

Copyright © Wanxin Xu 2018 
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