1,808 research outputs found

    Infectious Disease Ontology

    Get PDF
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain

    A Labeled Graph Kernel for Relationship Extraction

    Full text link
    In this paper, we propose an approach for Relationship Extraction (RE) based on labeled graph kernels. The kernel we propose is a particularization of a random walk kernel that exploits two properties previously studied in the RE literature: (i) the words between the candidate entities or connecting them in a syntactic representation are particularly likely to carry information regarding the relationship; and (ii) combining information from distinct sources in a kernel may help the RE system make better decisions. We performed experiments on a dataset of protein-protein interactions and the results show that our approach obtains effectiveness values that are comparable with the state-of-the art kernel methods. Moreover, our approach is able to outperform the state-of-the-art kernels when combined with other kernel methods

    Mapping proteins to disease terminologies: from UniProt to MeSH

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the UniProt KnowledgeBase is not a medical-oriented database, it contains information on more than 2,000 human proteins involved in pathologies. However, these annotations are not standardized, which impairs the interoperability between biological and clinical resources. In order to make these data easily accessible to clinical researchers, we have developed a procedure to link diseases described in the UniProtKB/Swiss-Prot entries to the MeSH disease terminology.</p> <p>Results</p> <p>We mapped disease names extracted either from the UniProtKB/Swiss-Prot entry comment lines or from the corresponding OMIM entry to the MeSH. Different methods were assessed on a benchmark set of 200 disease names manually mapped to MeSH terms. The performance of the retained procedure in term of precision and recall was 86% and 64% respectively. Using the same procedure, more than 3,000 disease names in Swiss-Prot were mapped to MeSH with comparable efficiency.</p> <p>Conclusions</p> <p>This study is a first attempt to link proteins in UniProtKB to the medical resources. The indexing we provided will help clinicians and researchers navigate from diseases to genes and from genes to diseases in an efficient way. The mapping is available at: <url>http://research.isb-sib.ch/unimed</url>.</p

    Mapping Nanomedicine Terminology in the Regulatory Landscape

    Get PDF
    A common terminology is essential in any field of science and technology for a mutual understanding among different communities of experts and regulators, harmonisation of policy actions, standardisation of quality procedures and experimental testing, and the communication to the general public. It also allows effective revision of information for policy making and optimises research fund allocation. In particular, in emerging scientific fields with a high innovation potential, new terms, descriptions and definitions are quickly generated, which are then ambiguously used by stakeholders having diverse interests, coming from different scientific disciplines and/or from various regions. The application of nanotechnology in health -often called nanomedicine- is considered as such emerging and multidisciplinary field with a growing interest of various communities. In order to support a better understanding of terms used in the regulatory domain, the Nanomedicines Working Group of the International Pharmaceutical Regulators Forum (IPRF) has prioritised the need to map, compile and discuss the currently used terminology of regulatory scientists coming from different geographic areas. The JRC has taken the lead to identify and compile frequently used terms in the field by using web crawling and text mining tools as well as the manual extraction of terms. Websites of 13 regulatory authorities and clinical trial registries globally involved in regulating nanomedicines have been crawled. The compilation and analysis of extracted terms demonstrated sectorial and geographical differences in the frequency and type of nanomedicine related terms used in a regulatory context. Finally 31 relevant and most frequently used terms deriving from various agencies have been compiled, discussed and analysed for their similarities and differences. These descriptions will support the development of harmonised use of terminology in the future. The report provides necessary background information to advance the discussion among stakeholders. It will strengthen activities aiming to develop harmonised standards in the field of nanomedicine, which is an essential factor to stimulate innovation and industrial competitiveness.JRC.F.2-Consumer Products Safet

    Foundation, Implementation and Evaluation of the MorphoSaurus System: Subword Indexing, Lexical Learning and Word Sense Disambiguation for Medical Cross-Language Information Retrieval

    Get PDF
    Im medizinischen Alltag, zu welchem viel Dokumentations- und Recherchearbeit gehört, ist mittlerweile der überwiegende Teil textuell kodierter Information elektronisch verfügbar. Hiermit kommt der Entwicklung leistungsfähiger Methoden zur effizienten Recherche eine vorrangige Bedeutung zu. Bewertet man die Nützlichkeit gängiger Textretrievalsysteme aus dem Blickwinkel der medizinischen Fachsprache, dann mangelt es ihnen an morphologischer Funktionalität (Flexion, Derivation und Komposition), lexikalisch-semantischer Funktionalität und der Fähigkeit zu einer sprachübergreifenden Analyse großer Dokumentenbestände. In der vorliegenden Promotionsschrift werden die theoretischen Grundlagen des MorphoSaurus-Systems (ein Akronym für Morphem-Thesaurus) behandelt. Dessen methodischer Kern stellt ein um Morpheme der medizinischen Fach- und Laiensprache gruppierter Thesaurus dar, dessen Einträge mittels semantischer Relationen sprachübergreifend verknüpft sind. Darauf aufbauend wird ein Verfahren vorgestellt, welches (komplexe) Wörter in Morpheme segmentiert, die durch sprachunabhängige, konzeptklassenartige Symbole ersetzt werden. Die resultierende Repräsentation ist die Basis für das sprachübergreifende, morphemorientierte Textretrieval. Neben der Kerntechnologie wird eine Methode zur automatischen Akquise von Lexikoneinträgen vorgestellt, wodurch bestehende Morphemlexika um weitere Sprachen ergänzt werden. Die Berücksichtigung sprachübergreifender Phänomene führt im Anschluss zu einem neuartigen Verfahren zur Auflösung von semantischen Ambiguitäten. Die Leistungsfähigkeit des morphemorientierten Textretrievals wird im Rahmen umfangreicher, standardisierter Evaluationen empirisch getestet und gängigen Herangehensweisen gegenübergestellt

    MKEM: a Multi-level Knowledge Emergence Model for mining undiscovered public knowledge

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Since Swanson proposed the Undiscovered Public Knowledge (UPK) model, there have been many approaches to uncover UPK by mining the biomedical literature. These earlier works, however, required substantial manual intervention to reduce the number of possible connections and are mainly applied to disease-effect relation. With the advancement in biomedical science, it has become imperative to extract and combine information from multiple disjoint researches, studies and articles to infer new hypotheses and expand knowledge.</p> <p>Methods</p> <p>We propose MKEM, a Multi-level Knowledge Emergence Model, to discover implicit relationships using Natural Language Processing techniques such as Link Grammar and Ontologies such as Unified Medical Language System (UMLS) MetaMap. The contribution of MKEM is as follows: First, we propose a flexible knowledge emergence model to extract implicit relationships across different levels such as molecular level for gene and protein and Phenomic level for disease and treatment. Second, we employ MetaMap for tagging biological concepts. Third, we provide an empirical and systematic approach to discover novel relationships.</p> <p>Results</p> <p>We applied our system on 5000 abstracts downloaded from PubMed database. We performed the performance evaluation as a gold standard is not yet available. Our system performed with a good precision and recall and we generated 24 hypotheses.</p> <p>Conclusions</p> <p>Our experiments show that MKEM is a powerful tool to discover hidden relationships residing in extracted entities that were represented by our Substance-Effect-Process-Disease-Body Part (SEPDB) model. </p

    Automatic extraction of gene ontology annotation and its correlation with clusters in protein networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Uncovering cellular roles of a protein is a task of tremendous importance and complexity that requires dedicated experimental work as well as often sophisticated data mining and processing tools. Protein functions, often referred to as its annotations, are believed to manifest themselves through topology of the networks of inter-proteins interactions. In particular, there is a growing body of evidence that proteins performing the same function are more likely to interact with each other than with proteins with other functions. However, since functional annotation and protein network topology are often studied separately, the direct relationship between them has not been comprehensively demonstrated. In addition to having the general biological significance, such demonstration would further validate the data extraction and processing methods used to compose protein annotation and protein-protein interactions datasets.</p> <p>Results</p> <p>We developed a method for automatic extraction of protein functional annotation from scientific text based on the Natural Language Processing (NLP) technology. For the protein annotation extracted from the entire PubMed, we evaluated the precision and recall rates, and compared the performance of the automatic extraction technology to that of manual curation used in public Gene Ontology (GO) annotation. In the second part of our presentation, we reported a large-scale investigation into the correspondence between communities in the literature-based protein networks and GO annotation groups of functionally related proteins. We found a comprehensive two-way match: proteins within biological annotation groups form significantly denser linked network clusters than expected by chance and, conversely, densely linked network communities exhibit a pronounced non-random overlap with GO groups. We also expanded the publicly available GO biological process annotation using the relations extracted by our NLP technology. An increase in the number and size of GO groups without any noticeable decrease of the link density within the groups indicated that this expansion significantly broadens the public GO annotation without diluting its quality. We revealed that functional GO annotation correlates mostly with clustering in a physical interaction protein network, while its overlap with indirect regulatory network communities is two to three times smaller.</p> <p>Conclusion</p> <p>Protein functional annotations extracted by the NLP technology expand and enrich the existing GO annotation system. The GO functional modularity correlates mostly with the clustering in the physical interaction network, suggesting that the essential role of structural organization maintained by these interactions. Reciprocally, clustering of proteins in physical interaction networks can serve as an evidence for their functional similarity.</p
    • …
    corecore