4,787 research outputs found

    Reasoning about space for human-robot interaction

    Get PDF
    L'interaction Homme-Robot est un domaine de recherche qui se développe de manière exponentielle durant ces dernières années, ceci nous procure de nouveaux défis au raisonnement géométrique du robot et au partage d'espace. Le robot pour accomplir une tâche, doit non seulement raisonner sur ses propres capacités, mais également prendre en considération la perception humaine, c'est à dire "Le robot doit se placer du point de vue de l'humain". Chez l'homme, la capacité de prise de perspective visuelle commence à se manifester à partir du 24ème mois. Cette capacité est utilisée pour déterminer si une autre personne peut voir un objet ou pas. La mise en place de ce genre de capacités sociales améliorera les capacités cognitives du robot et aidera le robot pour une meilleure interaction avec les hommes. Dans ce travail, nous présentons un mécanisme de raisonnement spatial de point de vue géométrique qui utilise des concepts psychologiques de la "prise de perspective" et "de la rotation mentale" dans deux cadres généraux: - La planification de mouvement pour l'interaction homme-robot: le robot utilise "la prise de perspective égocentrique" pour évaluer plusieurs configurations où le robot peut effectuer différentes tâches d'interaction. - Une interaction face à face entre l'homme et le robot : le robot emploie la prise de point de vue de l'humain comme un outil géométrique pour comprendre l'attention et l'intention humaine afin d'effectuer des tâches coopératives.Human Robot Interaction is a research area that is growing exponentially in last years. This fact brings new challenges to the robot's geometric reasoning and space sharing abilities. The robot should not only reason on its own capacities but also consider the actual situation by looking from human's eyes, thus "putting itself into human's perspective". In humans, the "visual perspective taking" ability begins to appear by 24 months of age and is used to determine if another person can see an object or not. The implementation of this kind of social abilities will improve the robot's cognitive capabilities and will help the robot to perform a better interaction with human beings. In this work, we present a geometric spatial reasoning mechanism that employs psychological concepts of "perspective taking" and "mental rotation" in two general frameworks: - Motion planning for human-robot interaction: where the robot uses "egocentric perspective taking" to evaluate several configurations where the robot is able to perform different tasks of interaction. - A face-to-face human-robot interaction: where the robot uses perspective taking of the human as a geometric tool to understand the human attention and intention in order to perform cooperative tasks

    An Outlook into the Future of Egocentric Vision

    Full text link
    What will the future be? We wonder! In this survey, we explore the gap between current research in egocentric vision and the ever-anticipated future, where wearable computing, with outward facing cameras and digital overlays, is expected to be integrated in our every day lives. To understand this gap, the article starts by envisaging the future through character-based stories, showcasing through examples the limitations of current technology. We then provide a mapping between this future and previously defined research tasks. For each task, we survey its seminal works, current state-of-the-art methodologies and available datasets, then reflect on shortcomings that limit its applicability to future research. Note that this survey focuses on software models for egocentric vision, independent of any specific hardware. The paper concludes with recommendations for areas of immediate explorations so as to unlock our path to the future always-on, personalised and life-enhancing egocentric vision.Comment: We invite comments, suggestions and corrections here: https://openreview.net/forum?id=V3974SUk1

    Neuroadaptive technology enables implicit cursor control based on medial prefrontal cortex activity

    Full text link
    The effectiveness of today's human-machine interaction is limited by a communication bottleneck as operators are required to translate high-level concepts into a machine-mandated sequence of instructions. In contrast, we demonstrate effective, goal-oriented control of a computer system without any form of explicit communication from the human operator. Instead, the system generated the necessary input itself, based on real-time analysis of brain activity. Specific brain responses were evoked by violating the operators' expectations to varying degrees. The evoked brain activity demonstrated detectable differences reflecting congruency with or deviations from the operators' expectations. Real-time analysis of this activity was used to build a user model of those expectations, thus representing the optimal (expected) state as perceived by the operator. Based on this model, which was continuously updated, the computer automatically adapted itself to the expectations of its operator. Further analyses showed this evoked activity to originate from the medial prefrontal cortex and to exhibit a linear correspondence to the degree of expectation violation. These findings extend our understanding of human predictive coding and provide evidence that the information used to generate the user model is task-specific and reflects goal congruency. This paper demonstrates a form of interaction without any explicit input by the operator, enabling computer systems to become neuroadaptive, that is, to automatically adapt to specific aspects of their operator'smindset. Neuroadaptive technology significantlywidens the communication bottleneck and has the potential to fundamentally change the way we interact with technology

    Social Intelligence Design 2007. Proceedings Sixth Workshop on Social Intelligence Design

    Get PDF

    Proceedings of the 2011 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory

    Get PDF
    This book is a collection of 15 reviewed technical reports summarizing the presentations at the 2011 Joint Workshop of Fraunhofer IOSB and Institute for Anthropomatics, Vision and Fusion Laboratory. The covered topics include image processing, optical signal processing, visual inspection, pattern recognition and classification, human-machine interaction, world and situation modeling, autonomous system localization and mapping, information fusion, and trust propagation in sensor networks

    A Design Thinking Framework for Human-Centric Explainable Artificial Intelligence in Time-Critical Systems

    Get PDF
    Artificial Intelligence (AI) has seen a surge in popularity as increased computing power has made it more viable and useful. The increasing complexity of AI, however, leads to can lead to difficulty in understanding or interpreting the results of AI procedures, which can then lead to incorrect predictions, classifications, or analysis of outcomes. The result of these problems can be over-reliance on AI, under-reliance on AI, or simply confusion as to what the results mean. Additionally, the complexity of AI models can obscure the algorithmic, data and design biases to which all models are subject, which may exacerbate negative outcomes, particularly with respect to minority populations. Explainable AI (XAI) aims to mitigate these problems by providing information on the intent, performance, and reasoning process of the AI. Where time or cognitive resources are limited, the burden of additional information can negatively impact performance. Ensuring XAI information is intuitive and relevant allows the user to quickly calibrate their trust in the AI, in turn improving trust in suggested task alternatives, reducing workload and improving task performance. This study details a structured approach to the development of XAI in time-critical systems based on a design thinking framework that preserves the agile, fast-iterative approach characteristic of design thinking and augments it with practical tools and guides. The framework establishes a focus on shared situational perspective, and the deep understanding of both users and the AI in the empathy phase, provides a model with seven XAI levels and corresponding solution themes, and defines objective, physiological metrics for concurrent assessment of trust and workload
    • …
    corecore