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Abstract 

Stone, Paul Benjamin, Ph.D. Engineering Ph.D. Program, Department of Biomedical, Industrial, 
and Human Factors Engineering, Wright State University 2022. A Design Thinking Framework for 
Human-Centric Explainable Artificial Intelligence in Time-Critical Systems 

 
 
Artificial Intelligence (AI) has seen a surge in popularity as increased computing power has made it 

more viable and useful. The increasing complexity of AI, however, leads to can lead to difficulty in 

understanding or interpreting the results of AI procedures, which can then lead to incorrect 

predictions, classifications, or analysis of outcomes. The result of these problems can be over-

reliance on AI, under-reliance on AI, or simply confusion as to what the results mean. Additionally, 

the complexity of AI models can obscure the algorithmic, data and design biases to which all 

models are subject, which may exacerbate negative outcomes, particularly with respect to minority 

populations. 

Explainable AI (XAI) aims to mitigate these problems by providing information on the 

intent, performance, and reasoning process of the AI. Where time or cognitive resources are 

limited, the burden of additional information can negatively impact performance. Ensuring XAI 

information is intuitive and relevant allows the user to quickly calibrate their trust in the AI, in turn 

improving trust in suggested task alternatives, reducing workload and improving task performance. 

This study details a structured approach to the development of XAI in time-critical systems based 

on a design thinking framework that preserves the agile, fast-iterative approach characteristic of 

design thinking and augments it with practical tools and guides. The framework establishes a focus 

on shared situational perspective, and the deep understanding of both users and the AI in the 

empathy phase, provides a model with seven XAI levels and corresponding solution themes, and 

defines objective, physiological metrics for concurrent assessment of trust and workload.  
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Executive Summary  

Although there are huge benefits associated with the increased use of AI, there are also significant 

drawbacks such as algorithmic bias (Garcia, 2016), over-reliance (Kim et al., 2020) and automation 

surprise (Parasuraman & Riley, 1997). Explainable AI offers a means to mitigate these concerns 

(Chen et al. 2014; Ezer, 2017), but requires additional information regarding rationale, underlying 

biases, or potential for error to be communicated to the user (Helldin, 2014). Ensuring information 

is useful to the end user and improves task performance is key to successful design of explainable 

AI. The aim of this research is to develop a framework, based on design thinking principles, for 

explainable AI designs that includes evidence-based tools, approaches, and assessment methods for 

designers to enable explainable AI to improve user performance for time-critical systems.  

There are four chapters in this dissertation. The first three chapters cover specific stages of the 

research with associated papers presented as published along with segue sections to provide context 

to the reader. Conclusions, discussion and the significance of the research are detailed in chapter 

four, which is described for completeness but not covered in this document as it is dependent on 

completion of the first three chapters.  

Chapter 1 covers the exploration of the problem, developing an understanding of high-workload or 

time-critical AI-based decision support system. The key outputs of section are – a) a definition of 

the requirements for an AI-based decision support system:   

Stone P.B., Ganapathy. S., (2022), submitted to the International Journal of Human-computer 
interaction, under review.  

and b) an AI model associated with a time-critical decision support system: 

Stone, P. B., Nelson, H. M., Fendley, M. E., & Ganapathy, S. (2021). Development of a novel 
hybrid cognitive model validation framework for implementation under COVID‐19 
restrictions. Human Factors and Ergonomics in Manufacturing & Service Industries, 31(4), 360-
374.
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Chapter 2 Expands the understanding of the problem from chapter 1, and a details structured 

approach for the implementation of explainable AI in time-critical systems. This section examines 

the nature of explainable AI, workload and trust in more detail, and defines the constructs that 

underpin explainable AI. The output is a design framework for the integration of explainable AI in 

a time-critical tasks, based on design thinking. 

Stone, P. B, Jessup, S. A., Ganapathy, S., Harel, A. (2022). Design Thinking Framework for 
Integration of Transparency Measures in Time-Critical Decision Support International Journal of 
Human-Computer Interaction (IJHCI) Special Issue on Transparent Human-Agent 
Communications. 

Chapter 3 focuses on the demonstration of the effectiveness of the design framework for the 

integration of in human-machine teaming. This is achieved through the integration of explainable 

AI into a trust-based tactical decision game based on drone targeting using the framework 

developed in chapter 2 and a human-subjects assessment of the. user performance in versions of the 

game with various implementations of explainable AI. The outputs of this experimental phase are a 

validation of the design thinking framework for explainable AI integration, evidence-based 

measures for task performance and a quantification of the relationships between task measures.  

Chapter 4 presents the specific contributions and significance of this research. 

This research contributes to the understanding of the requirements for successful implementation of 

explainable AI with respect to user interfaces and task performance. In addition to enhanced 

understanding of the problem, specific outputs of this research are the definition of user 

requirements for explainable AI in time-critical systems, a design framework for the 

implementation of explainable AI in time-critical tasks, definition of assessment metrics and 

success criteria for time-critical a mapping of the relationships between performance constructs 

including trust, workload, SA, and task performance. The significance of this contribution is to 

ensure that explainable AI does not come at the cost of task performance and that unintended 

consequences can be better predicted and avoided.
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Glossary of Terms 

Term Definition 

Automation “The execution by a machine agent (usually a computer) 
of a function that was previously carried out by a 
human.” (Parasuraman & Riley, 1997, p.2). For the 
purposes of this study, automation may or may not 
include an AI-based machine agent. 

Artificial Intelligence "…Is the science and engineering of making intelligent 
machines, especially intelligent computer programs” 
(McCarthy, 2007).This study considers machine learning 
to be a subset of Artificial Intelligence, and, in-turn, 
deep earning to be a subset of Machine Learning.  

Deep Learning Deep learning is defined as a representation-learning 
method with multiple levels of representation obtained 
by composing simple but non-linear modules that each 
transform the representation at one level (starting with 
the raw input) into a representation at a higher, slightly 
more abstract level (LeCun, Bengio, & Hinton, 2015). 
The structure of the deep learning network is a feed-
forward system that takes an input in the form of a 
tensor and applies a series of hidden layers made up of 
one or more neurons each with a weight and activation 
function defined within it. (Goodfellow, Bengio, & 
Courville, 2016) 

Explainable AI Explainable AI is the provision of additional information 
to the user regarding rationale, underlying biases, or 
potential error of an AI (Helldin, 2014) 
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Intelligence “The essence of intelligence is the principle of adapting 
to the environment while working with insufficient 
knowledge and resources. Accordingly, an intelligent 
system should rely on finite processing capacity, work in 
real time, open to unexpected tasks, and learn from 
experience. This working definition interprets 
‘intelligence’ as a form of ‘relative rationality” (Wang, 
2008, p.373). 

Interpretability The ease with which an abstract concept can be readily 
made sense of by humans (Montavon, Samek & Muller, 
2018) 

Machine Learning Machine learning is a branch of artificial intelligence (AI) 
and computer science which focuses on the use of data 
and algorithms to imitate the way that humans learn, 
gradually improving its accuracy. (IBM, 2021) 

Transparency “Transparency is the quality of an interface pertaining to 
its abilities to afford an operator's comprehension about 
an intelligent agent’s intent, performance, future plans, 
and reasoning process” (Chen et al., 2014, p. 2). 
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Introduction 

Evolution of the research 

As with most research, the problem I address in this dissertation was born out of a real-

world problem. In this case, the concept was developed while I was working on the 

development of a catheterization training and decision support system, developing an 

understanding of the importance of considering such human-machine teams as joint 

cognitive systems (JCS). Considering human-machine systems as a unified JCS, as opposed 

to a stand-alone machine-based system, enables enhanced understanding of the goals 

and responsibilities of the system (Hollnagel and Woods, 1983). The implementation of a 

JCS aims to improve collaboration and performance by reducing errors due to poor 

communication and task assignment that can result from considering the tasks conducted 

by the DSS and the human agent separately (Woods 1985). More than this, a JCS is 

implicit in the design of a successful machine expert particularly one that relies on 

Artificial Intelligence (AI) and interpretation of user actions to provide adaptive decision 

support. More than this, a JCS is implicit in the design of a successful machine expert 

particularly one that relies on Augmented Intelligence and interpretation of user actions 

to provide adaptive Decision Support. From this starting point, I developed an 

understanding of the importance of considering both human and machine agents in the 

design of expert systems, and as my research progressed, my focus shifted from the 
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development of expert systems for supporting cardiac catheterization to the broader 

problem of the design and development of expert systems, and particularly the 

integration of AI in the DSS, emphasizing the importance of human-machine teaming in 

this context. In these initial phases of the research, I studied the potential for AI support 

in the catheterization problem and developed an understanding of expert systems in the 

JCS context. I focused on the application of Deep Learning to catheter performance 

assessment and development of a cognitive model of cardiac catheterization. Here, I 

realized the nature of expert decision making was an important consideration, 

implementing the Recognition-Primed Decision (RPD) model, Klein (1993) as a key 

component of the cognitive model of cardiac catheterization. The RPD model is a 

representation of how experts make quick decisions in complex situations, particularly in 

complex domains, highlighting the significance of time-criticality as a driver in expert 

systems. Considering time-criticality as the context in the design of human-AI systems, 

allowed for a more general approach than the design of expert systems, which would 

necessarily have a narrower focus on a specific application. This led to the core problem I 

address in this dissertation – the development of a design framework for the integration 

of XAI in time-critical systems, which forms the key output of this research. 

Nature and significance of the problem 

As the use of AI increases, more and more systems rely on it as the only means to 

analyze the vast amounts of data being produced by today’s systems (Martinez, 2019). 

Advances in AI are enabling systems that aim to improve human performance and 

enable operators to take on previously impossible or time consuming tasks (Ertel, 2018). 
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In this context, HAI teaming is increasingly important and traditionally accepted roles of 

human and machine agents are changing (Mercado et al., 2016). Along with the 

integration of AI into our lives and workplaces, there are widespread fears on the 

dangers of AI (Martinez et al., 2019). The importance of the explainable AI (XAI) problem 

was highlighted by Ezer et al. (2019) in their Trust engineering challenge. This research 

challenge included topics on XAI and Algorithmic Transparency but also areas such as 

user interfaces, information modalities and communication strategies, all of which 

intersect in this research proposal.  

Explainable AI is itself a complex, multifaceted problem (Helldin, 2014) covering 

problems as diverse as data bias (Datta et al., 2015; Johnson, 2020), explainable 

algorithms in AI (Kim et al., 2020), ethics and regulation (EU, 2018; Kratsios, 2018; 

Larsson & Heintz, 2020) and the open sharing and reproducibility of results (Haibe-Kains, 

et al., 2020). Explainable AI and Transparency are often used interchangeably, but here, 

transparency is just one aspect of XAI. When considering the problem of designing 

human-centric XAI, constructs such as Trust, Workload, Situational Awareness (SA) and 

task performance require consideration and each of these problems is complex, 

interrelated and can vary from task-to-task, especially in time-critical systems (TCS) 

(Wachter et al., 2017). While there are numerous studies looking at the need for XAI and 

the development of technical solutions such as SHAP and GRAD CAM, there is a notable 

gap in the understanding of the implementation of these solutions. That is to say, which 

solutions are appropriate for a given task and how and when to implement them when 

designing user interfaces.  



   
 

4 

Transparency is a key element of explainable AI, but as yet there is not a single 

agreed definition, therefore, to ensure clarity and consistency throughout the research, 

the following definition was adopted: “Transparency is the quality of an interface 

pertaining to its abilities to afford an operator's comprehension about an intelligent 

agent’s intent, performance, future plans, and reasoning process” (Chen et al., 2014, p. 

2). Transparency is key to establishing trust in both human and human-machine teams, 

to prevent negative outcomes and create accountable systems (de Fine Licht & de Fine 

Licht, 2020). Transparency offers a means to ensure systems remain human-centric and 

empower operators and is a key aspect of building trust in both human-human and 

human-AI teams (de Fine Licht & de Fine Licht, 2020; Mercado et al., 2016). Through XAI, 

the benefits of the system can be maximized while enabling human operators to mitigate 

the potential unforeseen negative impacts that might arise. In TCS, there is also the 

potential for additional transparency information to negatively impact task performance, 

especially if information is poorly presented. Providing designers with an enhanced 

understanding of XAI integration, along with tools to guide the process can ensure 

effective human-machine teaming without compromising task performance.  

There is a clear opportunity for AI to improve human-machine teams (HMTs) in 

TCS, where the power to quickly parse large amounts of data has huge potential benefits 

(Wachter et al., 2017) and understanding the problems of implementation in user 

interfaces is a key element of the overall problem (Ezer et al., 2019). The significance of 

this contribution is to ensure that XAI does not come at the cost of task performance and 

that unintended consequences can be better predicted and avoided. This understanding 
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has implications for the integration of AI into almost any decision support or supervisory 

control application. The ability for operators or human team members to know when to 

trust automation or AI-based team members, and to enable accurate trust calibration. 

A Framework for the integration of XAI in TCS will offer the means for user 

interface designers to better understand the implementation of explainable AI and to 

ensure unintended consequences can be better predicted and mitigated. Ultimately, the 

aim should be to improve task performance an enable designers to measure task 

performance more reliably. The expected direction of system performance improvement 

relating to integration of AI and XAI is summarized in Figure 0.1 

 

Figure 0.1 XAI Design Framework Rationale 

Aims and Objectives 

The overall aim of this study is to develop a design framework for effective integration of 

XAI to improve user experience and HMT performance in TCS. The evolution of the 

research followed three stages, covered in 1 - 3 each with the following aims: 
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1. Develop a detailed understanding of the problems associated with integration of 

HMTs in expert systems and the consideration of the problem as a JCS. 

2. Design and develop a framework for integrating XAI in TCS based on the ‘Design 

Thinking’ approach, covering the Initial development and initial proof of concept 

of a Design Thinking Framework for XAI in TCS. 

3. Chapter 3 covers two main aims: 

a. Development and verification of performance assessment methods and effect 

relationship mapping for the XAI Design framework in the context of a real-

world problem to support the development of design tools to guide engineers 

and designers in developing XAI.  

b. Evaluate the performance of the solution developed using  the XAI framework 

in the context of a real-world problem. Conduct an experiment to understand 

the impact of explainable AI in TCS and provide evidence for the suitability of 

specific measures for task performance and quantify the relationships 

between task performance measures and constructs.  

These aims were translated into research objectives and related research 

questions. These are summarized, along with specific tasks and hypotheses are outlined 

in Tables 0.1, 0.2 and 0.3 These tables provide an overview of the relationships between 

objectives, questions and tasks and further details, including measures and alternative 

hypotheses are provided in the relevant chapters of this document. To ensure that this 

dissertation is a coherent document, each chapter will contain a segue section to explain 

the context and importance of the particular aspects of the research, followed by self-

contained research papers that address the specific aims of each chapter. In each of 

these segue sections, I include a real-world example of an AI drone co-pilot to 

demonstrate the context of the research to the reader and to provide insight into the 

importance and rationale of the study.  
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 Table 0.1 Overview of Stage 1 Aim, Objectives, Research Questions and Tasks  

Stage 1 – Understanding Time-Critical AI Systems 

Aim: Develop a detailed understanding the problems associated with the integration of  AI into human-machine 
interfaces in expert JCS, at the user interface level. (Stone, Ganapathy., 2021; Stone, Jessup, Ganapathy, Harel 2021). 

Research Objectives Research Questions Research Approach/Tasks Hypotheses Reporting 

1.1 Develop and validate a 
cognitive model of cardiac 
catheterization 

1.1.1. How do experts 
make decisions in the 
context of human-machine 
teaming?  
 

1.1.a  Review existing 
cognitive models and 
develop a cognitive model 
of the human-machine JCS 
in the decision support 
system 
 

N/A 

Reported in this 
document 

 

  1.1b Validate the cognitive 
model through application 
to specific scenarios and 
cognitive walkthrough. 

 Stone, Nelson, 
Ganapathy and 
Fendley (2021) 

1.2. Apply AI to an Expert 
catheterization system. 

1.4.1 What are the 
practical issues 
surrounding 
implementation of AI in an 
expert system?  
 

1.4.a Identify a specific 
element of the expert task 
with the potential for AI 
integration to enhance 
performance.  
1.4.b. Develop an AI model 
to assist human decision 
making. 

AI can provide accurate 
advice in the context of 
a decision support 
system.  

Stone & Ganapathy 
(2022) – submitted 

to Smart Health, 
October 2022) 



   
 

8 
 

Table 0.2 Overview of Stage 2 Aim, Objectives, Research Questions and Tasks 

Stage 2 - A Design Thinking Framework for the Integration of Transparency Measures in Time Critical Decision Support. 

Aim: Design and develop a framework for integrating XAI in TCS based on the ‘Design Thinking’ approach. Including 
the Initial development and proof of concept of a Design Thinking Framework for XAI in TCS.  

Research Objective Research Questions Research Approach/Tasks Hypotheses Reporting 

2.1 Develop a framework for 
integrating XAI in TCS based 
on the Design Thinking 
approach. 

2.1.1 What are the requirements for 
the assessment of XAI in TCS? 
2.1.2 How can the key requirements 
for the design of XAI be mapped into 
the Design Thinking approach 
stages: 
Empathize, Define, Ideate, 
Prototype, Test 
2.1.3 Can the Design Framework be 
used to successfully integrate 
transparency measures? 
 

2.1.a Develop a taxonomy of 
design guidelines to facilitate 
designing and easy integration 
of XAI in TCS. 
2.1.b Develop a design 
framework that allows the 
requirements for XAI to be met 
and facilitates the integration to 
AI-based TCS.  
2.1.c Conduct Initial Heuristic 
Evaluation of the Design 
Framework on a candidate AI-
assisted TCS. 

N/A 

Stone, 
Jessup, 

Ganapathy 
and Harel 

(2021) 
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Table 0.3 Overview of Stage 3 Aims. Objectives, Research Questions and Tasks 

Stage 3 - Framework Implementation and XAI Assessment 

Aim: Test the performance of the instantiated model developed by the Design Thinking Framework for XAI in the 
context of a real-world problem. Conduct an experiment to understand the impact of XAI in time-critical tasks, provide 
evidence for specific task performance measures, and quantify the relationships between task performance measures 
and constructs.  

Research Objective Research Questions Research Approach Hypotheses Reporting 

3.1. Develop and verify 
performance assessment 
methods and map effect 
relationships for the XAI 
Design Framework in the 
context of a real-world 
problem. 

3.1.1 How accurately and reliably 
can the impact of XAI on human 
trust in time-critical systems be 
measured? 
• Are subjective user 

assessment tools reliable 
methods to assess the effect 
of XAI in TCS? 

• Are eye-tracking assessment 
methods reliable for the 
assessment of the effect of 
XAI in TCS? 

3.1.2 What are the effects of XAI 
information in TCS on: Task 
Performance, Trust, Workload and 
Situational Awareness? 
3.1.3 What are the interactions 
between these effects? 
 

2B.1.a. Identify direct and 
indirect measures for task 
performance and associated 
constructs. 
2B.1.b. Develop a generic 
assessment platform for a time-
critical AI-assisted task  
2B.1.c. Conduct Human Subjects 
experiment to determine if 
physiological measurements 
i.e., eye tracking can predict and 
measure human trust in time-
critical Human Machine systems  

Subjective assessment 
methods can reliably be 
used to assess the effect of 
XAI in TCS.  
 
Eye-tracking assessment 
methods can reliably be 
used to assess the effect of 
XAI in TCS.  
 
 
XAI information affects task 
performance, trust, 
workload, and Situational 
Awareness in TCS and there 
are interactions between 
these.  
 
  

Eye Tracking 
for XAI  

performance 
Assessment in 
Time-Critical 

Systems. 
(Stone and 

Ganapathy), 
Submitted to: 
International 

Journal of 
Human-

Computer 
Interaction 
(November 

2022) 
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3.2. Assess the 
performance of an 
implementation of the 
XAI design framework 
and determine the effect 
of XAI in time-critical 
systems. 

3.2.1 What is the performance of 
the XAI solution on task 
performance compared to the 
baseline solution? 
3.2.2 What is the performance of 
the XAI solution on workload 
compared to the baseline solution? 
3.2.3 What is the performance of 
the XAI solution on trust compared 
to the baseline solution? 
3.2.4 What is the performance of 
the XAI solution on SA compared to 
the baseline solution? 

3.1.a. Develop a representative 
assessment platform for a time-
critical AI-assisted task  
3.2.b. Implement the XAI Design 
Thinking Framework on this 
task. 
3.2.c. Define required XAI 
Model conditions and Trust and 
Workload levels. 
3.2.d. Conduct a human-
subjects experiment to assess 
the impact of transparency 
measures. 
3.2.e Map the relationships and 
dependencies between XAI and 
task performance, Trust, 
Workload, and SA. 

It is expected that XAI 
information and its timing 
will affect task 
performance and the 
related measurement 
constructs, but this 
relationship is complex, 
and it is not known what 
the result of XAI 
information will be at this 
stage. Two-tailed testing 
will be used to determine 
statistical significance  

 
 
 
 
 

Reported in 
this document 
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Chapter 1 – Understanding AI in Human-Machine Teams 

In this chapter I focus on the exploration of the problem, covering the development of a 

deeper understanding of the requirements for human-machine teaming in an expert 

system, with the two specific objectives of developing and validating a cognitive model 

of cardiac catheterization, published in the Human Factors and Ergonomics in 

Manufacturing & Service Industries journal, 31(4), 360-374 (Stone & Ganapathy, 2022) 

and applying AI to a specific part of the catheterization problem submitted for 

publication in the international journal of Human-Computer Interaction. 

The first of these problems I considered was the development of a cognitive 

model of cardiac catheterization. In the evolution of this research, it was determined 

that considering human-machine teams as a JCS can provide enhanced team 

performance, however this requires an understanding of both the task being conducted 

and the cognitive models employed. In addition to developing the cognitive model, it is 

important to understand how well it defines the cognitive processes it was designed to 

represent (Cen, Koedinger, & Junker, 2006). The original research validation study for 

the cognitive model of the cognitive model of cardiac surgery was initially reported in 

the paper ‘Development of a Novel Hybrid Cognitive Model Validation Framework for 

Implementation Under COVID-19 Restrictions’ in the journal Human Factors and 
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Ergonomics in Manufacture and Service Industries (Stone, Nelson, Ganapathy 

and Fendley, 2021). This study was conducted in the early phases of the COVID-19 

pandemic of 2020 and, as such, the validation process had to rely on remote methods, 

as opposed to face-to-face interviews more traditionally used.  

Taking the AI copilot example, this chapter relates to the steps required for the 

designer to develop a deep understanding of both the AI copilot and the user, i.e. the 

drone pilot. The first paper presented, establishes a cognitive model for a human 

operating in an expert system. The context presented here is not related to the drone 

co-pilot problem, however the time-critical and expert nature of the decision context 

are representative. This stage of the research relates to the early phases of XAI design 

where a deep understanding of the user, task, environment and the AI system requiring 

explanation is required. Including this element in the XAI design framework allows the 

designer to understand the cognitive processes of an expert user without needing to 

become an expert themselves. 
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Development of a Novel Hybrid Cognitive Model Validation Framework for 

Implementation Under COVID-19 Restrictions 

Stone, P. B., Nelson, H. M., Fendley, M. E., & Ganapathy, S. (2021). Development of a 
novel hybrid cognitive model validation framework for implementation under COVID‐19 
restrictions. Human Factors & Ergonomics in Manufacturing & Service Industries, 31(4), 
360–374. https://doi-org.ezproxy.libraries.wright.edu/10.1002/hfm.20904. 

  

https://doi-org.ezproxy.libraries.wright.edu/10.1002/hfm.20904
https://doi-org.ezproxy.libraries.wright.edu/10.1002/hfm.20904
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ABSTRACT 

The purpose of this study was to develop a method for validation of cognitive models 
consistent with the remote working situation arising from COVID-19 restrictions in place 
in Spring 2020. We propose a framework for structuring validation tasks and applying a 
scoring system to determine initial model validity. We infer an objective validity level for 
cognitive models requiring no in-person observations, and minimal reliance on remote 
usability and observational studies. This approach has been derived from the necessity 
of the COVID-19 response, however we believe this approach can lower costs and 
reduce timelines to initial validation in post-Covid-19 studies, enabling faster progress in 
the development of cognitive engineering systems. A three-stage hybrid validation 
framework was developed based on existing validation methods and was adapted to 
enable compliance with the specific limitations derived from COVID-19 response 
restrictions. This validation method includes elements of argument-based validation 
combined with a cognitive walkthrough analysis, and reflexivity assessments. We 
conducted a case study of the proposed framework on a developmental cognitive 
model of cardiovascular surgery to demonstrate application of a real-world validation 
task. This framework can be easily and quickly implemented by a small research team 
and provides a structured validation method to increase confidence in assumptions as 
well as to provide evidence to support validity claims in the early stages of model 
development.  
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Introduction 

The recent outbreak of COVID-19 (SARS-CoV-2) at the beginning of 2020, has caused 

49.7 million individuals to become infected and caused 1.2 million fatalities globally as 

of November 2020 (World Health Organization [WHO], 2020). The extensive outbreak 

has prompted government intervention through widespread shutdown of non-essential 

businesses and services, implementation of social distancing guidance, and reallocation 

of resources and funds to better assist with viral mitigation and containment efforts 

(Ashraf, 2020). In addition to social and institutional shutdowns, economic downturn 

has also ensued due to loss of funding, lack of consumer spending, and uncertainty 

around the return to pre-COVID-19 normalcy. The ramifications have not only impacted 

the global economy but have also had a significant effect on the research community 

within public and private institutions (Ashraf, 2020). 

The American Journal of Emergency Medicine has outlined specific areas for 

focus and guidelines for research during the COVID-19 pandemic (Haleem, Javaid, 

Vaishya & Deshmukh, 2020). Personal Protective Equipment (PPE) has been 

redistributed to those fighting the virus on the frontlines, participants and researchers 

have been prohibited from participating in in-person research (unless pertaining directly 

to COVID-19) and reassigned to staggered schedules or remote work to reduce the 

amount of face-to-face interaction and to maintain appropriate social distancing 

guidelines. Pertinent research in the healthcare field has also been largely suspended as 
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an attempt to allocate the most physical and financial resources possible to fighting the 

virus and predicting future viral outcomes. 

The face-to-face work of human factors researchers has been affected 

particularly hard by these restrictions, as this historically requires extensive human 

interaction to elicit information regarding cognitive and decision-making processes (Sy, 

O’Leary, Nagraj, El-Awaisi, O’Carrol & Xyrichis, 2020). Much of this work requires 

structured in-person studies to be conducted utilizing observational and probing 

techniques. Given that many current studies in Human Factors research are not related 

to battling COVID-19, they are not considered essential practices. In the case of 

healthcare, this problem is compounded as subject matter experts, especially those on 

the frontlines, are not readily available to participate in related studies, and non-

essential research personnel are restricted from healthcare facilities, necessitating that 

test and evaluation procedures are moved online or remote (Sy et al., 2020).  

During this time of rapid innovation around COVID-19, there is an opportunity to 

develop new and innovative tools and capabilities for remote human factors methods. 

Specifically, cognitive model development is an area of human factors research that is 

heavily reliant on face-to-face communication, both to develop models and perform 

validation and assessment studies. We believe there is a clear need for methods that 

allow us to develop and validate cognitive models with less reliance on in-person 

observations and face-to-face interviews and walkthroughs. 
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Cognitive models are widely used in psychology and cognitive engineering to 

understand where errors are made or how training systems can be developed to 

reinforce a user’s cognitive model. They are a means for researchers to understand, 

describe and predict how individuals or teams perform cognitive tasks, such as 

information processing and decision making, and can highlight relevant cognitive states 

and actions with respect to a given task (Rupp & Leighton, 2016). Wagenaar, Reason 

and Hudson (1990) suggests that there are specific errors associated with specific 

cognitive states and that knowledge of the cognitive model can be used to reduce 

errors and improve human decision making.  

Cognitive models aim to define how individuals or groups carry out tasks and 

detail the paths and states required to complete a goal. Hayes‐Roth and Hayes‐Roth 

(1979) develop a cognitive model to understand the nature of the planning activity from 

apparently rational to apparently chaotic decisions made when individuals develop 

plans. The model allows the researcher to abstract types of knowledge and decisions 

made in planning to parse top level thinking and enable simulation of the underlying 

process. Similarly, the Recognition-Primed Decision (RPD) model (Klein, 1993) examines 

the more abstract concept of naturalistic decision making. This model allows the 

researcher to relate outcomes of testing to the naturalistic decision model, which in 

turn can be used to confirm or reject an assertion about the type of decision-making 

being employed. 

The application of cognitive models is addressed by Belkin (1984), who 

concludes that it is vital to understand the user’s problem to build a cognitive model. 
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This explicit representation allows researchers to use computational techniques to 

quantify human cognitive performance through simulation (Cooper, Fox, Farringdon & 

Shallice, 1996). For cognitive modelling to deliver its full potential benefit to cognitive 

science, it is important to ensure sound methodological principles are used in the 

development. The key advantage of cognitive models is to create output that is 

repeatable and produces valid predictions. However, to create a consistent, valid 

prediction, it is important to validate the model.  

There is a need for evidence in simulation and ergonomics science and studies of 

validity can provide this, giving additional credibility to the associated models (David, 

2013; Stanton, 2016). We considered the questions asked by Landry, Malouin and Oral 

(1983) in determining our approach to validation: what does it mean for a model to be 

valid and, does validity refer to the output, structure, or modelling process? Validation 

can improve confidence in the methods used by human factors engineers and is an 

important step in the modeling of a system. (Stanton, 2016; Annett, 2002; Stanton & 

Young, 1999) As mentioned by Annett (2002), for ergonomic models it is essential to 

construct the validity of a model to ensure that the performance is consistent and 

predictive in nature. This provides credibility to the cognitive model for the given task. 

Also, it is important to note that cognitive models can be complex in nature and a 

validation method that works for one model, may not work for another (Strube, 2001). 

Keehner, Gorin, Feng, and Katz (2017) discuss the general approach to validation 

of cognitive models, highlighting the requirement for an iterative, staged validation. The 

goal of any validation method should be to support claims and validity arguments about 

https://onlinelibrary-wiley-com.ezproxy.libraries.wright.edu/doi/full/10.1002/hfm.20873#hfm20873-bib-0040
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the specific models to which it is applied (Keehner et al., 2017). Similarly, Kane (2013) 

argues that validation is an ongoing and iterative process, and we believe a structured 

validation framework could have utility in the early stages of research where gathering 

validation resources is difficult or not cost effective. In this study we use the definition 

of validation as determining if the real system is represented by the model (Law & 

Kelton, 1991). This is achieved by mapping the system capabilities with the model 

representation. More robust, quantitative validation procedures may be required as 

models are developed, but here we seek to determine if the model meets the basic 

requirements of representing the underlying cognitive processes.  

For this study, the safety-critical nature of cardiovascular surgery makes 

validation key to future implementation of this proposed model and heightens the need 

to find alternative means of cognitive model validation to enable progress under COVID-

19 restrictions. This paper attempts to address the question - how can we validate a 

cognitive model in the age of COVID-19 and remote testing? We outline a streamlined 

validation process and explain how we adapted existing thinking while developing an 

understanding of the evolving COVID-19 situation and innovated new approaches to 

cognitive model validation. 

Aims and Objectives 

We aim to advance a simple, structured framework for cognitive model validation 

requiring no direct contact and minimal reliance on remote usability and observational 

studies. While this has been born out of the necessity of the COVID-19 response, we 
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believe a hybrid validation framework for cognitive modeling can have broader 

application to support cognitive systems engineering. We believe this approach can 

lower costs and reduce timelines to initial validation and could allow identification of 

problems early in model development, potentially preventing problems further 

downstream. Our case study focuses on the validation of a cognitive model of 

cardiovascular surgery, given restrictions associated with COVID-19. 

Scope 

The intended output of this study is a Hybrid Cognitive Validation Framework to provide 

human factors researchers with a means to expedite initial validation with minimal 

resources. We propose a validation process based on analysis of existing literature, 

reflexivity cross check, and cognitive walkthrough within the research team. A case 

study implementation of the validation framework is presented to demonstrate 

application and provide example output from the framework. This analysis was 

contingent on the availability of a candidate cognitive model developed prior to the 

COVID-19 restrictions. Although these restrictions may impact the development of 

cognitive models, this study focuses exclusively on the validation of cognitive models in 

this context. The scoring system used in this study is only preliminary for framework 

confirmation through implementation of the framework and associated feedback on 

scoring usefulness and accuracy. 
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Development and Test Implementation of Validation Framework 

In line with the aims and objectives of this study, we used the following process to 

develop and conduct a test implementation of the Hybrid Cognitive Validation 

Framework. 

Formalization of Restrictions 

COVID-19 restrictions are not uniform among countries, states and even cities and 

localities (Hale, Petherick, Phillips & Webster, 2020). As authorities balance the need for 

public safety with the desire to maintain economic activity, these regulations also vary 

over time. We therefore define specific conditions with which this validation framework 

is compatible. In addition to representing COVID-19 restrictions, these conditions also 

represent future situations under which the Hybrid Cognitive Validation Framework can 

be an effective tool for research teams. The restrictions used in this study are:  

• The validation framework can be implemented by a research team consisting of 

a minimum of 2 individuals for performing reflexivity analysis requirements 

(Davies & Dodd, 2002), to collaborate and ensure checks and balances on the 

validation. 

• No requirement for in-person intra-team meetings. 

•  No in-person contact with external Subject Matter Experts (SMEs) during the 

validation process.  

• Communication with SMEs is limited to confirmatory questioning – no probing 

or enhanced analysis due to assumed lack of availability.  

• The research team has access to validation resources, such as those available 

online. 
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These restrictions are in line with initial COVID-19 restrictions implemented by 

the state of Ohio during the initial phase of the COVID-19 response (DeWine, Husted, & 

Acton 2020).  

Analysis of Existing Validation Techniques 

American Psychological Association technical recommendations for psychometric tests 

defines the following four types of validity - Concurrent Validity, Predictive Validity, 

Construct Validity and Content Validity (American Psychological Association [APA], 

1954). Predictive and Concurrent methods are considered together as criterion validity 

and refer to the ability of a test to accurately predict, either in advance or concurrently, 

a predetermined measure or characteristic (Cronbach & Meehl, 1955). By contrast, 

Construct Validity (APA, 1954) aims to determine if a test measures the underlying 

concept it aims to address (Middleton, 2019). Finally, there is Content Validity, which is 

established by demonstrating that test subjects are representative of the population of 

interest (Cronbach & Meehl, 1955). In this paper, we concentrate on construct and 

content validity, ensuring the model and its inputs are representative, rather than 

comparison of model outputs to known standards. These measures relate to the 

internal validity of the model and given the potential complexity of assessment, we do 

not focus on the external validity.  

Prior to COVID-19 restrictions, the proposed validation procedure for the 

Cognitive Model of Cardiovascular Surgery, was to implement a method used by Craig, 

Klein, Griswold, Gaitonde, McGill, and Halldorsson (2012) to validate a cognitive model 
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of laparoscopic surgery. This method includes three validation stages, including data 

collection through SME interviews, construct encoding and comparison, and reflexivity 

phases including reassessment by additional participants who did not take part in the 

initial assessment. This is a modified version of an evidence collection and model 

validation developed in the knowledge audit method (Militello & Hutton, 1998). The 

process required multiple data elicitation procedures and cross comparison with subject 

matter experts with explicit procedures aimed at minimizing researcher bias.  

The restrictions adopted in this study exclude face-to-face, concurrently 

gathered validity measures, and drive us toward remote, asynchronous measures, 

which, although easier to collect are somewhat harder to infer target cognitive 

processes from (Embretson, 1983). We considered several approaches to establish 

construct and content validity for the HCOG framework. Thoromon, Salmon & Goode 

(2019) use interview data as a reference standard to evaluate the validity of a near-miss 

reporting form. In this study, we adopt a similar approach, utilizing the cognitive 

walkthrough as our interview reference standard for empirical validity assessment of 

the HCOG model. Silva, Vieira, Campos, Couto, and Ribeiro (2020) validate a Descriptive 

Cognitive Model for predicting performance in Low-Code Development platforms. In 

this study, the model validation is achieved by comparison of knowledge-based and 

systems-based descriptions and by analysis of the model against specific tasks, 

appropriate to the Low-Code Development Platform. Stanton and Barber (2005) 

validate the Task Analysis for Error Identification, demonstrating improved performance 

compared with Heuristic evaluation, an approach developed by Stanton and Stevenage 
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(1998). This method showed good reliability and concurrent validity for the Task 

Analysis for Error Identification technique. Cornelissen, McClure, Salmon, and Stanton 

(2014) consider the validation of a formative method, concentrating on cognitive work 

analysis, noting the importance of pooling results of multiple analysts in establishing 

validity. This reinforces the importance of the requirement for multiple researchers to 

conduct our validation framework.  

Vinod, Tang, Oishi, Sycara, Lebiere and Lewis (2016) utilize Markovian modelling 

to represent humans and build task simulations to compare outcomes with potential 

human action. This was initially considered a strong option to provide objective, 

quantitative basis for evidence generation in the Hybrid Cognitive Validation 

Framework, however the complexities of this approach and expert nature of surgeons 

meant this approach was discounted.  

The argument-based approach to validation (Kane, 2013) aims to minimize 

complexity in the validation process while still evaluating claims and providing evidence 

to support them. The argument-based approach is based on early construct validity 

models (Cronbach and Meehl, 1955) which details three general principles for validity:  

• The focus of the validation is on the interpretation of the output rather than the 

output itself. 

• Validation is part of an ongoing research program. 

• The proposed interpretation of the output is subject to critical evaluation.  
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The argument-based validation framework (Kane, 2006, 2013) also requires two 

argument types to support validity:  An interpretive/use argument (IUA) and a validity 

argument. The IUA argument specifies the claims that are to be evaluated in the 

validation, while the validity argument is used to evaluate the interpretation of 

validation scoring. The argument-based method claims if these arguments are clear, 

coherent, and complete, and the inferences reasonable and assumptions plausible, a 

model can be said to be valid. We will use these definitions as the basis for the 

argument-based elements of our validation framework.  

The cognitive walkthrough is a structured review method for conducting 

usability assessments early in the design cycle of a product (Lewis, Polson, Wharton, & 

Rieman, 1990). It involves the generation of task scenarios and explicit assumptions 

regarding the user population and context of use. This method was initially developed 

to assess the usability design performance of user interfaces, but we believe it can be 

adapted to establish construct validity of models . The method requires definition of the 

user along with sample tasks or scenarios and action sequences that are compared with 

an implementation of the user interface (Lewis et al., 1990). In adapting this method to 

the validation of cognitive models, we establish sample tasks and incorporate these into 

credible vignettes or scenarios based on the implementation associated with the 

cognitive model. We ask the reviewer to determine if the cognitive paths and states in 

the model are representative of the decisions associated with the tasks in example 

scenarios, and to walkthrough the scenario, task-by-task and compare to the cognitive 

model of cardiovascular surgery.  
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The intended use of the model of cardiovascular surgery is to predict the 

surgeon’s workload through indirect assessment of cognitive state, linking the paths 

taken through the model to periods in a procedure where workload is high or low. 

Ideally, a method to evaluate concurrent validity of the prediction made by the model 

would be implemented, but given the restrictions due to COVID-19, this is not possible. 

We are aiming to demonstrate construct validity and content validity. Specifically, we 

aim to establish the ability of the model to represent the underlying concept (construct 

validity) and the representativeness of the model to the target population, in this case 

cardiovascular surgeons. For the purposes of this study, we utilize existing Cognitive 

Models in the decision ladder and recognition-primed decision model. These models 

have been widely used and are subject to validation (Rasmussen, 1979; Lintern, 2010; 

Soh, 2007.) Rather than focus on internal validation of the model structure, this study 

focuses on developing a validation approach to answer the question ‘Is a specific model 

representative of the cognitive tasks for which it is built?’. We therefore propose a 

concept for a hybrid cognitive walkthrough (Lewis et al., 1990), argument-based 

validation method (Kane, 2006) to establish construct validity, augmented with 

reflexivity analysis (Davies & Dodd, 2002) to establish content validity. We believe 

including both the walkthrough analysis and argument-based methods provides a broad 

but flexible and adaptable basis for the validation of cognitive models that integrates 

into early iterations of model development and can be used to derive requirements for 

more complex assessments as well as providing evidence for model validity.  
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Define Hybrid Cognitive Validation Framework 

This concept was developed into a specific validation framework detailing specific tasks 

to establish both construct and content validity. The tasks are representative of those in 

the donor validation methods, highlighting surrogate tasks where the restrictions of this 

study limited the scope of initial application. The expected outputs and interpretations 

are also defined.  

Test Implementation of the Validation Framework 

The resultant framework was implemented in a case-study validation of a cognitive 

model of cardiovascular surgery. The wider context of the development of this cognitive 

model is the development of a Decision Support System (DSS) to improve performance 

and reduce risk in cardiovascular surgery. Woods (1985) proposes that integrating 

machine and human cognitive systems is the key to the application of such a Decision 

Support System (DSS) and that considering DSS as a unified Joint Cognitive System (JCS), 

as opposed to a stand-alone machine-based system, enables enhanced understanding 

of the goals and responsibilities of the system.  

Hybrid Cognitive Validation Framework 

The Hybrid Cognitive Validation Framework consists of three core tasks, applied using 

an associated use case to illustrate the context for wider implementation. The three 

core tasks are: 1) Define objective and Interpretation framework (argument-based 

method), 2) Walkthrough analysis 3) Reflexivity analysis. 
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Task 1 is closely aligned to the two-stage argument-based validation method 

(Kane, 2013). The IUA task (Task 1A), requires the definition of a specific validation 

question and a definition of the purpose and scope of the validation framework 

implementation. The Validity task (Task 1B) requires the definition of specific 

interpretations of model validity assessment. These tasks should be conducted prior to 

implementing the remaining tasks within the validation framework implementation to 

prevent bias or fitting interpretations to align with results of the later analyses. Task 2 is 

the cognitive walkthrough validation method. This is aimed at confirming the cognitive 

paths and states within the model align with specific, credible cardiovascular surgery 

scenarios, by comparing defined tasks with the cognitive paths and states in the model. 

This method was developed to enable implementation without the need for face-to-

face contact. This lack of direct exposure of SMEs to a cognitive model walkthrough is a 

key limitation of the Hybrid Cognitive Validation framework, however our walkthrough 

analysis approach consists of two stages. Firstly, Task 2A, scenario development, where 

detailed vignettes of representative situations are generated. Multiple scenarios should 

be developed to provide greater variation of cognitive states and pathways to ensure 

robust validation of the cognitive model. Secondly, a walkthrough stage where Subject-

Matter Experts utilize these vignettes, with reference to the cognitive model to 

determine how representative the states and pathways compare to the vignette 

requirement. Rather than require Subject Matter Experts to record outcomes at each 

decision point and attempting to encode potentially incomplete or inaccurate data, we 

propose a four-level qualitative scoring system to enable a simplified assessment. Task 3 
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is an implementation of the Reflexivity analysis (Davies & Dodd, 2002). This stage aims 

to ensure model validation procedures and assessments are supported by suitable 

evidence and that SMEs used are qualified and documented. Clarity, coherence, and 

completeness are key to all tasks in this framework, in line with requirements defined 

by Kane (2013). The resultant Hybrid Cognitive Validation Framework is detailed in 

Table 1A.1. 
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Table 1A.1 – Hybrid Cognitive Validation Framework 

ID Sub Task 

(Including 
responsibility) 

Task definition 

Qualitative Validation Criteria  

Individual score( 0-3pts) 
Total task score (6 pts) 
Framework score (/18pts) 

Objectivity (Reflexivity) 

Individual Score (0-2pts) 
Total task score (4 pts) 
Framework score 
(/12pts) 

Overall Score 
/Evidence 

Task Score 
(/10) 

Framework 
(/30) 

Task 1 Define the Validation Assessment Objective and Interpretation Framework (Argument-Based Method) 

T1A IUA Task 

(Research Team) 

Define the validation 
assessment question 
and purpose including  
the purpose and scope 
of the validation.  

The validation task is clearly 
stated and in line with the 
limitations of the framework. (+3 
if true) 

Validation objective 
clarity and coherence 
with interpretations 
assessed by second 
researcher. (+2 if true) 

Written 
confirmation of 
assessment. 

(Total /5) 

T1B Validity Argument Task 

(Research Team) 

Define validation 
scoring interpretations 
framework: Establish 
the  implications and 
assumptions of the 
validations. 

Inferences are reasonable, 
assumptions are plausible and 
underpinning descriptions and 
evidence are clear, coherent, and 
complete. (+3 if true) 

Validation objective 
clarity and coherence 
with interpretations 
assessed by second 
researcher. (+2 if true) 

Written 
confirmation of 
assessment. 

(Total /5) 

TASK 2 – Walkthrough Analysis Generate Scenarios, test matrix. Conduct cognitive walkthrough. 

T2A Scenario Development 
Task 

(Research Team) 

Generate  scenarios 
that are representative 
of model use cases to 
enable cognitive 
walkthrough. 

Scenario Assessment  

(Subject Matter Expert)  

Scenarios are representative of 
operational situations (routine, 
emergency, complications).  
(+1 if true) 

Classes of patient and procedure 
types are representative  and 
appropriate (age, underlying 
condition, gender). 
(+1 if true) 

Scenarios clearly represent the 
complete cognitive tasks 
identified in the cognitive task 
matrix 
 (+1 if  true) 
 
 

Scenarios confirmed by 
second researcher. 
(+1 if true) 

Scenarios approved by 
external subject matter 
expert. (+1 if true) 
 

Detail scenarios 
used in the 
validation. 

Provide 
Cognitive Task 
Matrix. 

(Total /5) 
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ID Sub Task 

(Including 
responsibility) 

Task definition 

Qualitative Validation Criteria  

Individual score( 0-3pts) 
Total task score (6 pts) 
Framework score (/18pts) 

Objectivity (Reflexivity) 

Individual Score (0-2pts) 
Total task score (4 pts) 
Framework score 
(/12pts) 

Overall Score 
/Evidence 

Task Score 
(/10) 

Framework 
(/30) 

T2B Asynchronous 
Cognitive Walkthrough 

(Subject Matter Expert)  

SME to Conduct 
cognitive walkthrough.  

if  the model is 
applicable to specific 
tasks and infer 
generalizability to tasks 
not identified explicitly 
in the model 
development. 

 

Cognitive Model Assessment  

There are significant gaps in the 
representation cognitive states 
and pathways for many tasks. (+0 
if true). 
 
The model meets the basic 
requirements of representing the 
underlying cognitive processes 
but may have some gaps 
(+1 if true) 

Cognitive states, actions and 
pathways were clear, complete, 
and coherent and representative 
of all surgical phases in one 
scenario. (+2 if true) 
Cognitive states, actions and 
pathways were clear, complete, 
and coherent and representative 
in at least two scenarios. (+3 if 
true) 

Assessment of model 
representativeness and 
cognitive walkthrough 
confirmed and assessed 
by second researcher. 
(+2 if true) 

 

 

Record 
walkthrough 
results and 
detail cognitive 
states actions 
and pathways 
as appropriate.  

(Total /5) 

 

TASK 3 - Reflexivity Assessment: Determine if appropriate data was collected to support model development? 

T3A Cross-check 
qualifications 
 
(Research Team) 

 
Were appropriately 
qualified subjects used 
in the model 
development? 
 

Subject(s) has/have no 
experience or expertise in the 
field.(0 pts) 

Subject(s) has/have some training 
and minimal experience – less 
than 2 years. 
(1 pts) 

Subject(s) is/are experienced 
practitioner(s) and currently 
practicing –  2-5 years.(2 pts) 

Subject(s) is/are considered 
expert(s) and currently practicing 
– more than 5 years.(3 pts) 

Assessment of subject 
qualifications 
performed by second 
investigator/or 
qualifications and 
experience is known. 
(+2 if true) 

Qualifications 
and experience 
of those 
contributing 
data is 
recorded.  

(Total /5) 

T3B Was the data collection 
process robust and 
complete during model 
development? 
 

Data collection covered the 
breadth and depth of the model 
and a representation can be 
made. 
(+1 if true) 

Data collection conditions were 
consistent across all participants.  

The debrief was 
conducted by a second 
researcher, not present 
in the data collection.  
(+1 if true) 

The debrief was 
conducted within  one 

Identify any 
data collection 
techniques 
used along with 
records of data 
collection. 

(Total /5) 
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ID Sub Task 

(Including 
responsibility) 

Task definition 

Qualitative Validation Criteria  

Individual score( 0-3pts) 
Total task score (6 pts) 
Framework score (/18pts) 

Objectivity (Reflexivity) 

Individual Score (0-2pts) 
Total task score (4 pts) 
Framework score 
(/12pts) 

Overall Score 
/Evidence 

Task Score 
(/10) 

Framework 
(/30) 

(+1 if true) 

Relevant data collection was used 
without omission or bias. 
(+1 if true) 

week of  the data 
collection. 
(+1 if true) 

 

 

The reviewers identified to conduct the cognitive walkthrough are provided with 

the following instructions on the implementation of the method: 

• This is a walkthrough validation of the states and paths detailed in the cognitive 

model of cardiovascular surgery.  

• The aim is to establish validity through comparison with tasks and decision 

points in the scenario.  

• Familiarize yourself with the Cognitive Model under review (Figure 1) 

• Familiarize yourself with the Hybrid Cognitive model validation Framework 

(Table 1) 

• Conduct a task-by task walkthrough of the validation scenario (Table 4 and 5) 

with reference to the cognitive task matrix (Table 3). 

• For each task identified in the walkthrough scenario, record the paths taken 

through the cognitive model and identify where decisions and cognitive states 

and paths do not match.  

These instructions are designed to be sent electronically and can be followed up with a 

discussion with the reviewer to clarify any elements of the walkthrough task. The 

research team can then utilize the results of the walkthrough analysis, in conjunction 

with the validation interpretation framework (Table 1A.2) to assign validity scores to the 
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model. This is an initial implementation of the walkthrough analysis method to support 

cognitive model validation and it is expected that the guidance for reviewers will be 

expanded based on the feedback received during this study.  

Validation Framework Implementation and Scoring  

The Hybrid Cognitive Validation Framework (Table 1) should be used as part of an 

iterative, scalable validation process with tasks completed sequentially. The model 

development stage is not scored but is included to indicate the chronology of the 

development within the validation process.  

The argument-based analysis, walkthrough analysis, and reflexivity analysis 

tasks, detailed in Table 1, each have two sub-tasks with a potential for 5 points. The 

success criteria, or Validation (V) element scores (0-3 points) are summed with the 

objectivity (O) scores (0-2 points) to give an overall Validation Framework (VF) score (0-

5 pts). This gives a potential score of 5 points for each of the six tasks and sub-tasks and 

a total of 30 points for each implementation of the validation framework, with 18 points 

attributable to validation success criteria and 12 points to objectivity scoring.  The 

inferences derived from this scoring are variable, dependent on the validation task, 

defined in the argument-based validation task (Kane, 2013). For a model to be 

considered ‘Good’, some objectivity analysis should be undertaken. For this reason, the 

threshold for ‘good’ should be above 18 out of 30, hence even if the model achieves a 

score of 18/18 on the ‘validation criteria element, the interpretation threshold should 

require a score above this to ensure that some objectivity analysis is completed. 
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Cognitive Model for Case Study 

A generic cognitive model of cardiovascular surgery was developed with cardiovascular 

surgeons from the Miami Valley Hospital, Dayton, OH using a Cognitive Task Analysis 

method (Craig et al., 2012), along with unstructured interviews and cognitive 

walkthrough. Rather than develop a new model from scratch, existing cognitive models 

were considered to represent distinct phases in surgery with the aim of developing a 

more robust model with existing evidence. This was augmented with an analysis of 

existing procedural documentation, specifically the COCATS 4, Task Force 10 training 

procedure (King, Babb, Bates, Crawford, Dangas, Voeltz, & White, 2015) and a stent 

fitting procedure (Stent: Purpose, Procedure, and Risks, 2017). The research team 

observed cardiovascular procedures at Miami Valley Hospital, conducting pre-op and 

post-op interviews with the surgeon to define cognitive states and actions. Finally, 

procedures carried out on the low-cost cardiac catheterization simulator, were 

conducted by the research team to understand first-hand the complexities of the 

cognitive task.  

A unified model representing naturalistic, analytical, and mixed decision types 

was synthesized by modifying and combining existing cognitive models. The RPD Model 

(Klein, 1993; 1999) forms the representation of expert responses to routine situations 

with representation of analytical decisions in non-routine scenarios based on the 

Decision Ladder (Rasmussen, 1974). There are ’shortcut’ paths in the model 

representing mixed decisions, aligned with heuristics of experienced surgeons. This 
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dynamic cognitive model represents the relative distributions of normative and 

descriptive modeling as determined by Craig et al. (2012). 

The RPD model (Klein, 1993; 1999) is used to understand how people make 

quick decisions in complex situations, particularly in expert domains. The model is 

derived from research into intuitive decision making and assumes use of prior 

knowledge and pattern recognition to make decisions. There are two key elements in 

the RPD model: firstly, the way a decision maker assesses a situation and recognizes a 

suitable course of action, and secondly how a course of action is imagined, and 

potential outcomes evaluated. Both of these elements are dependent on the ability to 

recognize both features of the situation and corresponding actions (Klein, 1993). This 

model is more typical of the advanced or expert decision maker, as higher situational 

awareness, and ability to predict outcomes based on experience enables this type of 

nuanced, heuristic decision making (Klein, 1993). The decision ladder model 

(Rasmussen, 1974) is representative of both the analytical decision-making paradigm 

and the heuristic, intuitive paradigm. In this model, the rational decision process follows 

the outer path of the ‘ladder’ whereas the heuristic decision process may start and 

finish anywhere in the model appearing as ‘shortcuts’ (Rasmussen, 1974). These models 

were combined with a single start point as in the Complex RPD Strategy Model (Klein, 

1993; 1999). The three cognitive paths through the model are labelled P1 (Intuitive 

Decision Making), P2 (Mixed Decision Making), and P3 (Analytical Decision Making). 

Cognitive states are denoted by rounded boxes and actions in the square cornered 

boxes. The decision node represents where a surgeon’s cognitive state can switch from 
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intuitive to analytical. An additional external decision support node (labelled D2, Figure 

1A.1) was introduced in the analytical decision phase to illustrate the potential for the 

surgeon to increase interaction with the other members of the team to determine a 

course of action in a complex, unfamiliar situation. The Cognitive Model of 

Cardiovascular Surgery (Stone, 2020) is shown in Figure 1A.1.  
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Figure 1A.1 – Cognitive Model of Cardiovascular Surgery 
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Results 

The following case study implements the three tasks defined in the Hybrid Cognitive 

Validation Framework (see Table 1A.1). These tasks are implemented in the validation 

of a cognitive model. The scores for each task are detailed in Tables 1A.6 and 1A.7.  

Task 1 – Argument-Based Validation  

Task 1A - Define Validation Assessment Question and purpose (Argument Based) 

Our Validation Question is “Does the Cognitive Model of Cardiovascular surgery 

represent the underlying cognitive processes of the cardiovascular surgeon”? This case 

study focusses on the initial validation of a developmental cognitive model, examining 

the approaches, assumptions and techniques that contribute to the model as well as an 

asynchronous, scenario-based walkthrough assessment of the model representation 

and appropriateness.  

Task 1B - Define Validation Interpretations Framework (Argument-Based Validity) 

We defined a five-level interpretation hierarchy with inferences attributable to both the 

validity and reflexivity scores. The validation score interpretation framework is shown in 

Table 1A.2. 
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Table 1A.2 – Validation Score Interpretation Framework. 

Validation 
Status 

Interpretation Criteria 

High Overall 
Validity, 

The model can be said to have a high validity for an early 
developmental model and is suitable for implementation in 
initial research studies only. Model validation should 
continue as part of an ongoing, iterative design process.  

The model has high validity scores across all validation 
tasks. There is good evidence that the underlying 
assumptions are valid, data collection techniques are sound 
and researcher bias has been addressed through reflexivity 
assessment. The model has been demonstrated to be 
representative. The inferences of the Interpretation 
framework are reasonable and the assumptions plausible 
and the definitions of are clear, coherent, and complete.  

Total VF1  Score ≥ 25 (max = 
30) 

Interpretation Score ≥ 7 

Representation Score ≥ 7 

Reflexivity Score ≥ 7 

 

Min Success Criteria Score ≥ 2 

Min objectivity Criteria Score ≥ 
1 

 

Good Validity, 

Poor Reflexivity 

Well defined 
Interpretation  

There is evidence that this model has good validity for an 
early developmental model and clear, complete, and 
coherent interpretations were defined. This model may be 
useful for implementation in initial research studies, 
however reflexivity scores were low so there is a remaining 
caveat on the potential for researcher bias. Further 
external confirmation of the model is required to be used 
with confidence. 

Total VF Score ≥ 19 (max = 30) 

Interpretation Score ≥ 6 (60%) 

Representation Score ≥ 6 
(60%) 

Reflexivity Score ≤ 6 (60%) 

Objectivity score  ≤ 6 (60%) 

Good Validity, 

Good Reflexivity 
Poorly defined 
Interpretation  

There is evidence that this model has good validity for an 
early developmental model and reflexivity assessments 
have been complete. This model may be useful for 
implementation in initial research studies, however 
interpretation frameworks were not provided so findings 
should be treated as somewhat speculative until an 
interpretation framework is defined. 

Total VF Score ≥ 19 (max = 30) 

Interpretation Score ≤ 6 (60%) 

Representation Score ≥ 6 
(60%) 

Reflexivity Score ≥ 6 (60%) 

Poor Validity, 

Good Reflexivity 
Well defined 
Interpretation  

Underlying data and assumptions used in the development 
of this model were somewhat unclear, incomplete, or 
incoherent. Researcher bias has been assessed and 
interpretations are clear, however caution should be used 
when implementing this model outside research team 
development activities.  

Total VF Score ≥ 19 (max = 30) 

Interpretation Score ≥ 6 (60%) 

Representation Score ≤ 6 
(60%) 

Reflexivity Score ≥ 6 (60%) 

Poor Overall 
Validity  

There are significant problems with two or more of the 
validation criteria. Further validation effort is required 
before the model can be used, even in initial research 
investigations.  

Total VF Score ≤ 19 (max = 30) 

 

 
1 Validation Framework (VF) score defined on page 11 of the main text.   
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Task2 – Representation Assessment (Cognitive Walkthrough Analysis) 

Task 2A - Generate scenarios 

Scenarios representative of the use case were developed to enable cognitive 

walkthrough. To ensure scenarios generated for the walkthrough were representative 

of different cognitive states of surgeons throughout the process, a matrix of surgical 

cognitive tasks corresponding to Intuitive, Mixed and Analytical Decisions was defined, 

see Table 1A.3. This matrix was used to define each stage of the scenario. The scenario 

used in this case study is outlined in Table 1A.4. 

Table 1A.3 Cognitive Task Matrix for Generic Cardiovascular Surgery Scenarios 

Cardiovascular Surgery Subtasks and associated hierarchical cognitive decision examples 

Sub-tasks Intuitive example Mixed  Example Analytical example 

Procedure 
Planning 

The combination of patient 
characteristics and 
procedure type and 
complexity are familiar.  

The patient and procedure 
type are largely familiar, but 
some anomalies discovered 
but within situations governed 
by analytical heuristics. 

The patient characteristics 
and/or procedure type are 
unfamiliar and additional 
cognitive resource are 
assigned to develop an 
analytical solution. 

Patient 
Preparation 

Patient responds to sedative 
and initial preparation as 
expected. 

Some anomalous response 
but within experiential 
reference and responds as 
expected. 

Patient response is not 
expected, and initial remedial 
measures are unsuccessful. 

Catheter 
selection 

Patient size, condition and 
vascular geometry are 
familiar and correspond to 
experience of successful 
catheterization 

Some patient characteristics 
are unfamiliar but generally 
within expectations and can 
be extrapolated from 
experience. 

Complex vascular geometry, 
narrowing or blockage 
requiring reassessment of 
entry or catheter choice (size 
shape etc.) 

Catheter 
Insertion 

Vascular location and 
orientation are predictable 
and catheter insertion at 
chosen site is successful. 

Some difficulty in locating 
appropriate insertion point 
but alternatives discovered 
and implemented. 

Problems inserting catheter 
due to depth of vascular 
network. Potential bleeding 
occurs or site reassessment 
required.  

Catheter 
maneuver  

Catheter behaves as 
expected and 
catheterization task can be 
completed 

Some difficulty in 
maneuvering the catheter to 
the desired site but behavior 
is predictable and corrected 
easily 

Catheter does not behave as 
expected and anomalies 
cannot be understood or 
corrected with existing 
heuristics.  
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Table 1A.4 – Case Study Validation Scenario Definition 

Scenario phase Description 
Procedure Type: Planned, routine procedure – Stent fitting to correct narrowing of coronary artery.  

 
Patient Definition: 58-year-old male, 6 feet tall, with a body mass index of 25 

 
Patient Preparation 
Complications:  
 

none 

Catheter Selection 
Complications: 

The Fluoroscopic imaging of the patient reveals a narrower than expected vascular 
structure for a man this size and the initial expectations on catheter size and shape are 
violated. 
 

Catheter Insertion 
Complications:  
 

none 

Catheter Maneuver 
Complications:  
 

The catheter maneuver is unsuccessful due to the narrowed vascular geometry. 

Task 2B - Cognitive Walkthrough 

A cognitive walkthrough of each scenario/vignette was conducted with reference to the 

cognitive model. The cognitive model was scored for representativeness against the 

cognitive paths, actions, and decision points identified in the model in Figure 1A.1. The 

output from the cognitive walkthrough is detailed in Table A1.5 and both initial and 

reflexivity scores are provided in Tables 1A.6 and 1A.7. 
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Table 1A.5 Case Study Validation Scenario Walkthrough with Result (in bold) 

Walkthrough phase Description 
Step 1 A fifty-eight-year-old male has been diagnosed with a narrowing of a coronary artery 

and has been scheduled for a stent fitting to correct the condition. The patient 
characteristics are within the experience of the cardiovascular surgeon and planning 
elements are routine.  

This follows path P1 in the cognitive model and is representative of Intuitive decision 
making. 

Step 2 The preparation is conducted by the anesthetist and the patient responds as expected.  

This follows path P1. 

Step 3 
 

This vascular geometry is assessed creating a decision point at D1. The vascular 
geometry is found to be narrower than expected in line with the scenario definition, 
resulting in the surgeon using their experience and associated heuristics to reselect an 
appropriate catheter based on this new information. 

This is a mixed Intuitive-analytical decision, following path P2. 

Step 4 A suitable insertion point is easily found but catheter insertion task is somewhat 
harder than expected. The surgeon intuitively corrects and quickly achieves a 
successful insertion without requiring consultation with other team members.  

This is within the bounds of the Recognition-Primed Decision model – not requiring 
analytical heuristics so still follows path P1. 

Step 5 
 

The maneuver of the catheter to the procedure site is unsuccessful in line with the 
scenario definition. The surgeon corrects position and tries again but is still 
unsuccessful. 

Expectations are violated and path P3 is adopted. The surgeon may need to  consult 
with external decision support and generate multiple options such as a different 
catheter or entry point. These options are evaluated against through a value 
judgement in the analytical level of the model. 

Task 3 Reflexivity Assessment  

Task 3A - Were appropriately qualified participants used in the model development?  

Underpinning assumptions for the model were developed in consultation with a 

cardiovascular surgeon with over five years’ experience of cardiac surgery. Assumptions 

and representations were also generated through procedural observation and 

consultation with procedures and tasks outlined in COCATS 4, Task Force 10 training 

procedure (King et al., 2015).  
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Task 3B - Was the data collection process robust and complete during model 
development?  

The rationale for excluding computational validation methods was explained in the 

development process. The breadth and depth of data sources were highlighted in the 

model development. The model development utilized existing research to establish a 

credible solution. The development steps are explicitly linked to data collection 

activities and establish a clear rationale for model development.  

Score Summary Results and Interpretation guidance  

The preliminary scores derived from the initial Hybrid Cognitive Validation Framework 

assessment of the case study model are summarized in Table 1A.6. It can be seen from 

these results that there is a ‘0’ objectivity score as the assessment was conducted by 

the primary researcher. In this case, the Interpretation guidance would be that this 

model has poor validity, despite high validation scores, as no objectivity analysis was 

complete at this point. The rationale for this decision is outlined in the Section 

‘Validation Framework Implementation Scoring’. The validation procedure was repeated 

by a second researcher to show the improvement in scoring associated with the 

objectivity scoring element and the results are given in Table 1A.7.  

Table 1A.6 – Hybrid Cognitive Validation Framework Score Summary – Primary Researcher 

 Success Criteria score Objectivity Score Total Score 

Task 1 -  Argument-Based 
Analysis 6/6 0/4 6/10 

Task 2 - Walkthrough 
Analysis 5/6 0/4 5/10 

Task 3 -Reflexivity Analysis 6/6 0/4 6/10 

Total (Vertical Sum) 17/18 0/12 17/30 
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The preliminary validation framework scores from all three validation tasks and 
associated sub tasks are collated and summed to use in conjunction with the 
Interpretation Framework, Table 1A.2. 

Table 1A.7 – Hybrid Cognitive Validation Framework Score Summary including Objectivity Rating 

 Success Criteria score Objectivity Score Total Score 

Task 1 -  Argument-Based 
Analysis 6/6 4/4 10/10 

Task 2 - Walkthrough 
Analysis 4/6 4/4 8/10 

Task 3 -Reflexivity Analysis 5/6 3/4 8/10 

Total (Vertical Sum) 15/18 11/12 26/30 

The complete validation framework scores from all three validation tasks and associated sub 
tasks are collated and summed to use in conjunction with the Interpretation Framework, Table 
1A.2. 

Second researcher variance in the implementation of the validation framework 

scoring stemmed from tasks 3B and 4B in both Success Criteria and Objectivity 

components. Task 3B demonstrated the basic requirements of the framework were 

met, but only on a single scenario. Additionally, this was not found to be completely 

representative of all surgical phases. Task 4B alternatively, demonstrated that data 

collection covered the breadth and depth of the model for a representation to be made 

and collection conditions to be consistent, however there was insufficient evidence to 

determine data was collected without bias or omission. The second researcher was not 

present for a debrief within one week of data collection, limiting the Objectivity score to 

a score of 1.  

Overall, the second researcher scoring lowered the success criteria scoring from 

17 to 15 but improved the objectivity scoring from 0 to 11. This underlines the 
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importance of second researcher involvement in the assessment phase. The VF score 

resulting from the second researcher implementation of the case study was 26. When 

applied to the interpretation guide (Table 1.2), the cognitive model used in this case 

study was determined to have ‘High Overall Validity’.  

Discussion and Conclusion 

The Hybrid Cognitive Validation Framework developed in this study was demonstrated 

in a case study under COVID-19 restrictions. This framework was able to establish 

construct validity and content validity in line with expectations given input of a second 

researcher to evaluate initial validation assessments. This framework provides a 

structured means to approach initial validation studies where traditional validation 

resources are either restricted or projects do not have the means to access them. 

Including this simple validation process in projects can help to determine early on if 

models have potential validity and help to develop model inputs and requirements 

more accurately. 

The Hybrid Cognitive Validation Framework was able to provide evidence-based 

validity scores and associated interpretations given the COVID-19 restrictions with no 

requirement for face-to-face validation assessments. This study demonstrated that the 

framework can be easily implemented by a small team with limited resources, 

highlighting the importance of objectivity elements in the method. The argument-based 

validation elements used are comparable with those outlined by Kane (2013). The 

reflexivity assessments are comparable with the process outlined by Davies and Dodd 
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(2002), however these are contingent on review by a second researcher or external 

subject matter expert. 

A key limitation of this framework is the reliance on retrospective, scenario-

based walkthroughs to replace concurrent assessment during procedures. The impact of 

this limitation is hard to quantify but while it may be considered to have lower 

credibility compared to existing methods, it fulfills the goal of model validation requiring 

no direct contact and minimal reliance on remote usability and observational studies. In 

this study, we discuss the validation of cognitive models under COVID-19 restrictions. 

These restrictions will also impact cognitive model development; however, this was not 

addressed in this study as our model was developed before the restrictions. 

This initial case study implementation of the Hybrid Cognitive Validation 

Framework has shown promise to enable early validation with limited resources, the 

development process was rapid, and many lessons were learned along the way. 

Adapting to new ways of working has been necessitated by the COVID-19 restrictions 

that have become the new normal. The framework detailed in this study should be 

considered the starting point to refine and adjust as new evidence and experience 

informs its development, particularly regarding tuning of the validation scoring 

elements and their links to the defined implications.  

The Hybrid Cognitive Validation Framework allows researchers to rapidly 

establish initial validity for cognitive models, especially given the restrictions associated 

with COVID-19, and other situations where face-to-face contact with SMEs may be 
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limited, due to location or availability of the experts. This implementation focuses on 

the initial validation of the cognitive model of cardiovascular surgery, but we believe 

this approach could be easily used to validate any cognitive model, particularly those 

relating to decision making in complex environments, where access to expert input is 

limited, such as military, petrochemical, medical, or aviation. The keys to broader 

implementation of this method are the ability to establish the interpretive/use 

argument and validity arguments defined in the argument-based validation method 

along with the development of credible scenarios with tasks that represent the 

potential cognitive states and paths defined in the cognitive model (Kane, 2006; 2013). 

While we believe this validation framework has utility under the circumstances 

identified, it is more prescriptive than other methods discussed in this paper and does 

not cover criterion validity. Ideally, we would like to establish concurrent validity 

through correlation tests between the predicted model state and concurrent 

assessments of a surgeon’s employed mental model assessed by SMEs. This approach 

would be potentially less subjective and easier to compare using quantitative tests. 

While this establishes further validity evidence, it is potentially much more complex and 

requires access to resources that are not compatible with the rationale of an early-

stage, low-cost validation approach presented here. The use of interview data as a 

reference for model validity (Thoromon, Salmon & Goode, 2019) would provide a 

potentially more robust means to gather validity data. A simulation approach, as 

employed by Vinod et al. (2016) could potentially establish more objective validity data 

but has potential corresponding validity issues arising from the simulation of human 
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agents in a specialized role. Stanton (2016) notes that small assessment groups are 

frequently a problem with validation in Human Factors Engineering, and this case study 

was no exception, limiting the confidence in the conclusions until further research can 

be completed.  

Due to time constraints, this study only considers a single scenario for the 

walkthrough analysis validation with a single SME. The next stage in the development of 

this validation framework will be to develop a more extensive set of scenarios for the 

cognitive walkthrough to establish more evidence for model validity. To enable this, it is 

expected that a more detailed scoring framework will be required to bridge the gap 

between the reviewer’s cognitive walkthrough responses and the validity scores 

assigned in the validation interpretation framework.  

COVID-19-like restrictions also have the potential to disrupt the development of 

cognitive models, prior to, or in parallel with validation activities. Future studies should 

address potential methods to address the impact on model development.  

The detail in the instructions given is another potential limitation of this study, 

further development of the instructions and the presentation of the cognitive 

walkthrough task is important to ensure clarity and consistency of interpretation 

between reviewers. 

Reliability and Validity are closely related and often combined to establish 

confidence in a model. We have not considered reliability in this study, but in the 
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future, this could be established with intra-rater agreement analysis using Pearson’s 

correlation test. 

As part of an iterative validation process, we recommend conducting a full 

validation in line with the procedure defined by Craig et al. (2012) and compare to the 

validation results achieved in this study. The Hybrid Cognitive Validation Framework 

was primarily implemented by a researcher aware of the development process and 

somewhat familiar with the model. We plan to conduct usability assessment and refine 

the design of the validation framework based on the results. To confirm the utility of 

the framework, it should be implemented by external research teams looking for a 

lightweight, initial validation approach for cognitive modelling.  

The value of this Hybrid Cognitive Validation Framework comes in the early 

stages of model development to ensure validation is considered at an early stage and 

appropriate evidence captured. This framework can be easily and quickly implemented 

by a small research team and provides a structured validation method to increase 

confidence in a cognitive model and provide evidence to support validity claims in the 

early stages of development. This method has been derived from the necessity of the 

COVID-19 response requiring no direct contact, however we believe that it can have 

broader application to lower costs and reduce timelines, enabling faster progress in the 

development of cognitive engineering systems.  
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Please see the Reference section at the end of the document 

End of Paper: Development of a Novel Hybrid Cognitive Model Validation Framework 

for Implementation Under COVID-19 Restrictions 
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Development of a catheterization system AI 

The second section of this chapter details the development of an AI to support experts 

in cardiac catheterization. My purpose here was to understand the complexities of the 

development of machine agents, and the breadth of options available. There are many 

categories of AI I considered, from basic statistical models that have been widely used 

for decades such as linear or logistic regression. More recently, AI has been seen to 

represent complex learning algorithms that many people view as something of a black-

box, providing information without explaining the reasoning behind them to the user. 

The uncertainty in, and importance of, the definition of AI, is discussed by Monett et al. 

(2020), consequently, I adopt the established definition of intelligence in the context of 

AI given by Wang (2008):  

The essence of intelligence is the principle of adapting to the environment while 

working with insufficient knowledge and resources. Accordingly, an intelligent 

system should rely on finite processing capacity, work in real time, open to 

unexpected tasks, and learn from experience. This working definition interprets 

‘intelligence’ as a form of ‘relative rationality.’ (p.373).  

 Therefore, more generally an AI can be classified as any machine capable of 

intelligence. As AI becomes more complex, there is potentially an increased barrier to 

trust in the system and can make decision-making less transparent (Mercado et al., 
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2016). In this stage of the research, I consider machine learning (ML) models as the 

primary candidates for the AI development as they offer potentially the largest 

performance gains but also potentially the most significant considerations in terms of 

human-machine teaming and JCS.  

Here, the problem I faced was to identify a specific problem associated with 

provision of advice on catheterization to practitioners. There are several performance 

measures in catheter insertion as detailed in the IC3ST (Riga et al, 2011), of these,  ‘wall-

hits’ or the number of times the catheter tip hits the side of the blood vessel, is the 

main candidate for AI-based decision support advice. This is a task currently reliant on 

expert oversight, which is both expensive and subject to human variation. Objective 

performance tracking enables surgical progress to be monitored without loss of focus 

and reinforces learning by enabling real-time awareness and faster correction of 

mistakes (Barsuk et al., 2009).  

To enhance my understanding of AI, and specifically DL-based image 

classification, I developed a DL model to detect wall-hits on a catheterization task, 

trained on images obtained from the low-cost catheterization simulator, which I 

developed for the purposes of this research. I conceptualized a cardiac catheterization 

decision support system, including the development of requirements for decision 

support in simulator training and operational angioplasty procedures. This system 

required selection of a catheter and guidewire combination that best suits a given 

procedure, patient, and surgeon (Myler, Boucher, Cumberland, & Stertzer, 1990). The 

deep learning image classifier developed is detailed in the following paper.  
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In the context of the AI copilot example, this paper relates to developing a 

understanding of the underlying AI that powers the co-pilot. This particular example is 

of a deep learning image classifier, but in the example, this could be integration of 

sensor data or other algorithmic systems required for the specific task. Deep learning 

was chosen as it is one of the most challenging cases for explainability. Here the XAI 

framework cues the designer to consider the nature of the AI itself, along with the 

potential for bias in the data, and AI itself.   
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ABSTRACT 

Intravascular catheterization is a complex task requiring expert surgeons to train junior 
doctors. This paper focuses on the development of a deep learning image classification 
model to assist expert assessment of vascular wall hits in a catheterization simulator. 
We utilize a transfer learning approach, taking the VGG16 image classification model, 
and fine-tuning it on wall-hit image data. The retrained VGG-16 classifier achieved a 
precision of 0.94 and a recall of 0.91, along with an f-1 score of 0.92 on test data from 
the catheterization simulator. This study demonstrates that vascular wall hits can be 
detected using a deep learning classification model. These results are in line with the 
expected performance of the VGG16 model and broader state-of-the-art for image 
classification. This model shows promise for enhanced catheterization assessment to 
assist expert analysis or provide objective feedback to trainees. 
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Background 

Intravascular catheterization is a complex, time-critical medical technique that 

underpins minimally invasive procedures from angiographic imaging to angioplasty and 

stent fitting. Typically, the procedure involves the placement of a substance or device in 

the patient’s vascular system by means of a catheter and guidewire combination, 

introduced via a cannulation site typically via the femoral or subclavian vein, described 

in detail by Goldman and Pier in 1993. The surgeon manipulates the guidewire and 

catheter to the desired location monitoring the position within the patient by means of 

X-ray Radio Fluoroscopy (XRF). Although this is a highly skilled procedure, there is no 

structured training process and techniques, and skills are typically passed in an ad-hoc 

manner by supervising surgeons to trainees and junior doctors in their training phase. 

While this has been an effective means of training vascular surgeons, it makes 

standardization and performance tracking somewhat difficult and can limit the 

expansion of best practice within the profession. One way to improve training outcomes 

would be to implement a standardized training system for early phases of 

catheterization training.  

Trainees in cardiac catheterization program must follow specific steps delineated 

in the COCATS4 (King et al., 2015) training requirements to gain appropriate experience 

in the cardiac catheterization lab. COCATS 4 Taskforce 10 
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(King et al., 2015) outlines a structured, three phase framework for training in 

cardiac catheterization and is endorsed by the Society for Cardiovascular Angiography 

and Interventions. The framework outlines milestones in knowledge and skill 

requirements in a detailed timeline. The ability to perform a Right Coronary Artery 

(RCA) Catheterization is a requirement of the first phase of COCATS 4 (King et al., 2015), 

expected to be complete after 24 months of medical training. This procedure is the 

focus of this study, and we believe supporting early phase training can improve 

performance. An interactive model involving digital content can support the 

pedagogical need of teachers to facilitate learning and individualize lessons in a manner 

superior to traditional, more passive approaches. 

Catheterization training is either simulation-based or conducted on cadavers in 

the initial stages and highly reliant on expert mentors to assess performance. The 

requirement for expert oversight limits the amount of time available for training, even 

in the early stages. Barsuk et al. (2009) demonstrated that Cardiac Catheterization 

simulation training can increase both the skill and self-confidence of trainees. In a 

subsequent 2010 study Barsuk et al. also investigated the long-term effect of simulation 

with between 82.4% to 87.1% of trainees maintaining their performance up to one year 

after training. These findings support our assertion that simulator training can 

contribute to improved catheterization performance as part of a structured training 

program such as defined in COCATS 4, Taskforce 10 (King et al., 2015). A key aspect of 

this training is the assessment of catheterization performance. The “IC3ST”, 

catheterization assessment framework previously defined by Riga et al. in (2011). 
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provides an existing baseline for use in catheterization training. While this framework 

was designed for use in the assessment of robotically assisted catheterization, the 

performance metrics were also used to compare to human-only performance and are 

equally applicable to training assessment. An important performance metric defined by 

Riga et al (2011) is contact with the vessel wall/vessel trauma, also called “wall hits”. 

Wall hits are defined as events within the procedure where the tip of the catheter or 

guidewire makes contact with the vessel wall. The procedure requires wall hits to be 

assessed by the catheterization expert overseeing the procedure and the level of 

contact is scored on a five-point scale with a successful procedure having “minimal” wall 

hits and a poor procedure being defined as having “excessive” wall hits. While there are 

no defined thresholds for “minimal” or “excessive” quantifying the total number is an 

important part of the assessment task.  

The assessment task requires high levels of attention and focus from the expert 

and wall hits can be brief events, lasting a fraction of a second and can easily be missed. 

This assessment task itself uses valuable surgical resources, adds to costs and in the 

case of training introduces performance measures that are largely dependent on the 

subjective opinion of the assessing expert.  We believe there is an opportunity for AI to 

be utilized both to improve assessment performance in simulated catheterization and 

increase training time without increasing use of experts.  To do this, we propose using 

the image analysis power of AI, and specifically deep learning, to count wall hits in 

catheterization simulation, to provide cuing to expert assessors in the traditional 

training context, or potentially allow trainees to conduct simulated catheterization and 
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receive feedback without the need for expert oversight. While such a system does not 

replace the rich and nuanced feedback given by experienced practitioners, it does allow 

trainees more opportunity to practice skills with feedback to enable reinforcement of 

good performance.  

Evaluation of competency is a key element of the COCATS 4 (King et al., 2015) 

training framework and it is not intended that such a system could or should replace the 

expert judgement associated with this. The intent of such a system is to support 

additional learning on top of expert guided instruction where needed and could also be 

a source of information to support experts in their guidance and decision making. We 

believe implementing an AI-based hit detection application into a training system could 

support trainees in the early phases of medical school, without compromising any 

aspect of the mentor-trainee relationship. This approach has the potential to reduce 

error and increase objectivity in the assessment of catheterization and along with 

increased exposure to simulation-based training. This increased catheterization 

simulation training has the potential to improve performance and associated patient 

outcomes (Barsuk et al., 2009). While there are many problems that need to be 

explored in the development of an enhanced catheterization training system with wall 

hit detection, the ability of the AI to detect a wall hit from an image is fundamental to 

this concept. Therefore, the key problem we set out to answer in this study is; “Can an 

AI detect wall hits in a catheterization simulator?”.  

Deep learning has shown improved image classification performance over 

traditional machine learning techniques as discussed by LeCun, Bengio, and Hinton 
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(2015). Keskar et al. (2016) defined deep learning as a representation-learning method 

with multiple levels of representation obtained by composing simple but non-linear 

modules that each transform the representation at one level (starting with the raw 

input) into a representation at a higher, slightly more abstract level. Deep Learning 

systems are usually based around a feed-forward deep network or MultiLayer 

Perceptron (MLP) effectively a deep implementation of Artificial Neural Networks 

(ANNs), as detailed in “Deep Learning” by Goodfellow, Bengio, and Courville in 2016. 

The structure of the deep learning network is a feed-forward system that takes an input 

in the form of a tensor and applies a series of hidden layers made up of one or more 

neurons each with a weight and activation function defined within it. The output of 

each neuron then becomes the input for the next neuron in the network. Once an input 

has passed through the system it is then passed through an output layer. The key to the 

learning ability of deep networks is the training. The output of the feed forward 

network is compared to the defined input via a loss function which assesses how well 

the deep learning model has approximated the input (Goodfellow et al., 2016). The 

model then implements a process to minimize this loss function value. Typically, Deep 

Learning systems utilize stochastic gradient descent (SGD) to achieve this implementing 

the back propagation of error through each layer of the model to determine how much 

to update the weights of each neuron (Goodfellow et al., 2016). Most deep learning 

systems also include a learning rate parameter which determines how quickly the SGD 

algorithm attempts to reach the global or local minima in the loss function. This 
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technique is increasingly showing potential to conduct automated image analysis in a 

range of applications from facial recognition to assessment of medical imaging.  

While the deep learning approach is to minimize the pre-engineering of features, 

there are decisions to be made when building the system that can maximize the 

potential for a deep learning system to conduct the selected task. There are many 

different approaches within deep learning that could potentially be used to 

automatically detect wall hits from catheter insertion imagery. In this study, we utilize a 

transfer learning implementation of an existing convolutional neural network (CNN), 

VGG-16 (Simoyan et al., 2013). This allows a framewise analysis of the video stream and 

assumes a wall hit can be determined from analysis of individual frames. For the initial 

study, we focus on the simple case where the wall hit occurs as the movement of the 

catheter and guidewire is roughly orthogonal to the direction of the field of view of the 

camera and the intersection with the wall by the catheter or guidewire tip is clearly 

visible, it is believed both methods should be equally effective. Our research hypothesis 

is that a fine-tuned version of the VGG-16 image-classification CNN architecture, 

developed by Simonyan and Zisserman (2013), will be able to classify images with 

similar precision, recall and f-1 score metrics to the underlying VGG16 network. 

A Deep Learning approach for the identification of metastatic breast cancer from 

image analysis is described by Wang et al. (2016). The authors demonstrate the 

potential for using transfer learning refinement of the VGG16 model in medical imaging 

applications. Accuracies of over 97% were achieved on sample classifications of 90 

Magnetic Resonance Imaging (MRI) images (Wang et al., 2016). By comparison, the 
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initial application of the VGG16 network was to classify images from the ImageNet 

dataset and achieved a top 5 accuracy of 92.9% (Keskar et al., 2016), although this was 

demonstrated on a dataset with considerably more classes. The ImageNet task is more 

complex than the binary classification of the hit/no hit in the case of catheterization 

performance, but it could also be argued that the wall-hit classification is a more 

challenging task as the two classes are highly similar, determined by small differences in 

small areas of an image. As this is a proof-of-concept study, we expect that the 

performance of the fine-tuned VGG16 network to be close to the 93.9% accuracy 

achieved against the ImageNet dataset.  

This hypothesis was tested on data collected during the testing of a low-cost 

catheterization simulator developed by the Human Performance Laboratory at Wright 

State University. This offers a small but readily useable data set that is free from human-

subjects data protection requirements and has expert consideration of “truth” for wall 

hits time-synced to the video data. 

Materials and Methods 

To conduct the comparison of the ability of the Deep Learning networks to classify wall 

hits, suitable baseline data was required to train, validate, and test the networks. In this 

initial study, a catheterization simulator was used as this enabled fast data generation 

with the ability to provide ground truth for each wall hit event. The low-cost 

catheterization simulator developed by the Human Performance Laboratory at Wright 

State University, shown in Figure 1B.1, was used to generate data in this study. 
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Figure 1B.1. WSU Low-Cost Catheterization Simulator (including heater). 

The simulator provides a 16mm catheterization pathway, approximately 450mm 

in length with three branches to simulate different catheterization locations, with 

varying branch diameter and bifurcation angle. Clear silicone tubing with a wall 

thickness of approximately 2mm is used to simulate the vascular system and the whole 

system is immersed in a 60% glycerin, 40% water mix to simulate the viscosity of human 

blood (Riga et al., 2011) The mixture is maintained at approximately 97°F to simulate 

human body temperature. This is particularly important to ensure the catheters are at 

operating temperature as they are designed to operate inside the human body and 

temperature variations can affect performance. In addition to the temperature control, 

catheters used in the simulator during this study were treated with a water-based 

lubricant to minimize friction between the catheter and the silicone tubing.  

Catheter insertion tasks were performed on the Low-cost catheterization 

simulator, developed at the Wright State University Human Performance Laboratory. 
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The simulator set-up, including clear silicone tubing allows for direct line-of-sight 

assessment of wall hits during data collection where the interaction between the 

catheter and the silicone tubing can clearly be seen from all angles and coupled to the 

tactile feedback from the catheter without the mechanical damping from the human 

body. Standard catheterization procedures were followed in the data capture process 

conducting multiple insertion tasks until a minimum of 20 separate hits were observed 

for each condition. Hits were not predetermined but were noted when observed 

imagery was recorded using a fixed webcam directly above the simulator with a Field of 

Regard (FoR) of approximately 5x3 inches focused on each location in turn. Video 

imagery was captured via a Hue HD pro webcam using a 1280x720 avi format with mp4 

encoding at 30 frames per second. The video was encoded with RGB color and has 3 

channels of data per pixel. The images were manually classified prior to the study. The 

criteria for a wall-hit was any contact between the tip of the catheter and the “vascular 

structure” of the simulator. This was achieved through framewise analysis of the video 

capture.  

Image capture was conducted at two locations on the simulator. These two 

locations were associated with typical navigation tasks from a catheterization 

procedure, specifically curvature and bifurcation navigation tasks. The two locations are 

shown in Figures 1B.2 and 1B.3.  
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Figure 1B.2. Field of Regard from curvature navigation task. 

 
Figure 1B.3. Field of Regard from bifurcation navigation task. 

This set-up is not representative of the fluoroscopic imagery used in vascular 

surgery, lacking the complexity of vascular structures, low contrast and temporal 

properties associated. Despite these limitations, the experimental set-up is relevant to 

the proof of concept for a catheterization simulator automatic image assessment tool. a 

proof-of-concept study to evaluate comparative performance of Deep Learning 

architectures. 
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Four cardiac catheters were used including: two variants of the Amplatz-Left 

catheter (c1, c2), one Multipurpose catheter (c3) and one Judkins-Right catheter (c4). 

The catheters, shown in Figure 1B.4, were available for testing based on availability of 

unusable stock and while typical of potential catheters used in training, only represent a 

small fraction of available catheters. These were used on two different simulator tasks 

(navigation to two different branches of the simulator). These catheters represent a 

range of the different tip shapes and sizes available to surgeons but are only a small 

fraction of the hundreds of designs available.  

 
Figure 1B.4. Coronary Catheters used in the study (Judkins Right A(C1), Judkins Right B (C2), 

Multipurpose (C3), Amplatz Left (C4). 

In each case ten videos with no wall hit were collected along with ten videos 

containing single wall hit events. This resulted in a total of 80 videos split into 40 “no 

hit” samples and 40 “hit” samples accordingly. This is a relatively low sample size for 

Deep Learning purposes with typical training sets being made up of hundreds or 

thousands of samples, if not more. While this is not ideal and could mean resultant 
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Deep-Learning models do not generalize well, this limitation will be considered in the 

application of the results of this study.  

Image data were collected at two maneuver locations in the simulator for four 

catheters, resulting in eight experimental conditions. Twenty repetitions were 

conducted at each condition resulting in 160 images. This was repeated for the hit and 

no-hit classes to ensure a symmetrical dataset for ease of analysis. In total, 320 images 

of the catheterization simulator were captured and utilized in this study. The images 

were randomly split in code to ensure no bias in the split. The data were split into a 

training set (60%), validation set (20%) and evaluation set (20%). Data were drawn 

symmetrically from the “hit” and “no hit” classes when generating these data sets 

resulting in equal numbers of images from each class in all three datasets. The test data 

were put aside and not used in the design and training phase of model development.  

The measures of Precision, or Positive Predictive Value (PPV), Recall or 

Sensitivity and f1 score are widely used to assess the performance of Machine Learning 

models and we use them in this study to ensure consistency with standard practice. In 

addition to these summary metrics, the Receiver Operating Characteristic (ROC) Curve is 

plotted to show the potential sensitivity of the model to the probability threshold for 

classification. This metric may also be useful in assessing potential tuning of the model 

to align with requirements for limiting false negatives or tuning the sensitivity or PPV of 

the model. 

The transfer learning implementation of the VGG16 CNN was based on the 

approach defined by Rosebrock (2019). The model was built using Python 3 in Jupyter 
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Notebook on the Anaconda Platform. Full details of the code and Libraries utilized are 

given in the accompanying code. The most significant libraries used along with the 

Python distribution were the Keras (Chollet et al., 2013) and Tensorflow (Abadi et al., 

2016) libraries used in the development of the Deep Learning Model and the OpenCV 

library (Bradski & Kaehler, 2008) and FFMpeg (Tomar, 2006). frame extractor used in 

the preparation of input files for the models.  

As described by Rosebrock (2019) the model output layer was initially modified 

to conduct the first stage of the transfer learning process. In this stage, the ImageNet 

weights from the VGG16 model are frozen and the output layer was modified so the 

Fully Connected layer had the same number of outputs as the number of classes in this 

image classification task, in this case, two. Due to the small size of the dataset, 200 

epochs were necessary to ensure training convergence in the development of the 

model.  

In addition to this data augmentation was implemented in the training to 

compensate for the small dataset. The data augmentation was implemented on the fly 

for each training epoch in line with the transfer learning method described by 

Rosebrock (2019) This meant the dataset remained the same size, but training images 

were adjusted in line with the data augmentation policy in each epoch. The data 

augmentation characteristics implemented were randomized according to the following 

rules; rotation range 30°, zoom Range 0.15 or 15%, width shift range 0.2 or 20%, height 

shift range 0.2 or 20%, shear range 0.15 or 15%, horizontal flip – true 
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This augmentation policy provides a wide variation in training data for each 

epoch to ensure the trained model generalizes to unseen data better than if raw data is 

used. The model can then be trained on this data using the validation dataset to assess 

the model against while retaining the unseen test data for final evaluation. 

The model was then trained on the initial data and resulted in a training 

accuracy of 77.9% with an associated validation accuracy of 88%. This result showed 

that even training the output layer in isolation could achieve moderate image 

classification performance, however this was not comparable to the VGG16 

performance on the ImageNet dataset. To achieve this, the VGG16 model weights were 

unlocked and the whole model was retrained on the Catheterization dataset, again over 

200 epochs.  

This resulted in training performance similar to the image classification 

performance of VGG16 on the ImageNet dataset. An accuracy of 96% was achieved on 

both the training and validation datasets, which compares well to state-of-the-art and 

transfer learning implementations of VGG16 in healthcare applications. As training and 

validation accuracies were in line with expectations, the model was believed to have 

acceptable image classification performance and the model evaluation phase was 

conducted against the unseen test data set aside at the beginning of the model 

development process. 
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Results 

The transfer learning fine-tuned variant of the VGG16 CNN was assessed for image 

classification performance against the catheterization wall-hit data set. This image 

classification task was to identify which of two classes (hit or no hit) an image belonged 

to. The test dataset consisted of 64 images, equally split between “hit” and “no hit” 

classes. The raw image classification results are presented in the confusion matrix 

shown in Table 1B.1. 

Table 1B.1. Confusion Matrix of catheterization Image classification. 

N=64 Predict Hit Predict No Hit Total 
Actual Hit 30 2 32 

Actual No Hit 3 29 32 
Total 33 31 64 

This shows the successful training performance generalized well to the test data 

with a 93.8% True Positive rate and a 90.6% true negative rate. This translates to a 

Precision, or Positive Predictive Value (PPV) of 90.9% and a Recall, or sensitivity value of 

93.8%. The f1 score for the image classification was 92.0% overall. The raw probability 

output from the model was used to generate the receiver operating characteristic (ROC) 

Curve for the catheterization image classifier. The ROC Curve for the image classifier is 

shown in figure 1B.5. 
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Figure 1B.5. ROC Curve for the wall-hit image classifier.  

This shows catheterization classification model can achieve high true positive 

rates with a low false positive rate with a range of thresholds for classification 

probability. 

Discussion and Conclusion 

This initial proof of concept study, while showing good potential for wall hit 

classification in a catheterization simulator had several limitations to note. The 

catheters used in this study were not specifically selected based on their properties or 

representativeness but available on an opportunity basis. Although representative of a 

range of catheters used in coronary catheterization are potentially not those that would 

be used on the simulated task. The low-cost simulator is designed to replicate an RCA 

catheterization procedure and as such, future trials should utilize catheters which are 

more appropriate to this procedure.  
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Data used in this study were collected by the research team for sole use in this 

study. This was necessitated by time constraints and limitations of access to medical 

professionals associated with the COVID19 outbreak during 2020. The study should be 

replicated using trainee surgeons utilizing the low-cost catheterization simulator where 

their focus is the successful completion of the task, and they are unaware of the need to 

collect wall hit data. This will reduce the potential for bias in the study and ensure data 

captured is representative of the proposed application.  

The “hits” were recorded with the catheter tip moving in the x-y plane of the 

field of regard. Future work should cover wall hits in any direction, which may be less 

easy to classify. The transfer learning implementation of the VGG16 network is a CNN 

based on a framewise data from the video. This classification technique was shown to 

be effective in the proof-of-concept data, but it is believed a 3D CNN or Recurrent 

Neural Network (RNN) solution may be better able to classify more subtle wall hits or 

those that occur along the z-axis of the field of regard or viewing axis. These solutions 

are sensitive to time data, which in the case of video means being able to analyze data 

between frames as well as within them. This could be critical to classifying wall hits that 

are not apparent from a single frame.  

Deep learning and neural network implementations on visual data have the 

ability to do more than predict or classify data. Increasingly the output can be visualized 

and implementations of image segmentation in Neural Networks can be used to visually 

identify areas of interest in an image. This technique could be used to not only classify 

the wall hit but alert the user as to the location of the hit. This provides visual 
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confirmation that increases trust in the system but can also highlight historical data or 

trends in wall hit location to provide a more engaging feedback mechanism in the 

training context. 

This study demonstrates that Deep Learning can be used to detect wall hits in 

catheterization simulation, this information can be used to create training methods in 

the future to improve expert assessment or trainee performance. The image 

classification system utilized transfer learning on the baseline VGG-16 model  (Simoyan 

et al., 2013) and achieved results in line with similar implementations both in medical 

image classification and the original ImageNet task. We conclude that the 

catheterization classification model was able to classify reference images taken from a 

cardiovascular training simulation as either containing a wall hit or not containing a wall 

hit. The high Precision, Recall and F1 Score associated with the catheter wall hit 

classifier indicate that this method could successfully be used to augment existing 

training systems and provided objective evidence of wall hits. This could underpin the 

objective metrics of an enhanced training system could be integrated into COCATS 4, 

Taskforce 10 (King et al., 2015), phase 1 training to provide objective performance 

feedback and aid expert evaluation, helping to shape training and development goals.  



   
 

74 
 

 

Please see the Reference section at the end of the document 

End of Paper: Deep Learning for Classification of Wall Hits in Cardiac Catheterization 

Simulators 
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Chapter 2 – An Initial Design Thinking Framework for XAI in TCS 

In chapter one, I consider cognitive modelling and the application of AI in the 

development of expert systems to a specific problem, whereas here I focus on a more 

generalizable approach to the design and development of AI in human-machine 

systems. In this chapter, I apply the principles/findings from chapter 1 to the 

development of user-experience and user-interface elements of a system, specifically in 

the context of explainability in AI systems, establishing XAI as the key design problem 

and the subject of the generalized approach.  

Explainable Artificial Intelligence 

This paper focuses specifically on Explainability in AI systems to improve human-

machine teaming. To this end, one of the first questions that needs to be asked is ‘what 

is XAI? In the introduction to this document, the need for XAI is discussed in some depth 

but it is also important to understand exactly what is meant by XAI. As XAI is still a 

developing area of research there are a range of definitions that require consideration. 

Hagras, (2018) defines fives aspects of explainability: Transparency, Causality, Bias, 

Fairness and Safety. Key among these is transparency, which is the means to provide 

information on Causality, Bias, Fairness and Safety.  

Indeed, the concept of transparency is sometimes used interchangeably with 

explainability and interpretability. Doshi-Velez Kim (2017) suggest that to interpret is to 
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explain or to present information in understandable terms, where Montavon, Samek 

and Muller (2018) define interpretation as the mapping of an abstract 

concept into a domain more readily made-sense-of by humans. The difference in 

these definitions is subtle but important – this can be explained in the terms of human 

languages – where explaining a statement in each language involves rewording a 

statement where the individual words are understood but the meaning of the sentence 

is not, versus interpreting a statement in a foreign language to a language known by the 

reader. This interpreted statement may still require further explanation. 

Given these definitions, interpretability can be considered a step along the way 

to explainability. For deep learning to be explainable, there may need to be an 

interpreting of the model rationale from terms that the deep learning designer might 

understand to those more easily understood by the user. This stage of the process is 

important no matter which definition of interpretability and explainability are used. 

Explainability therefore combines the need for both transparency and interpretability. 

Specific instances of XAI will need transparency measures and if appropriate, the 

transparency information may require interpretation or translation to terms that the 

end user may understand.  

Structured design methods 

There are many approaches to structure design problems that seek to give engineers 

and designers the tools to address these complex problems. Failure Mode Effect 

Analysis (FMEA) is a widely used and adapted method for structured problem analysis. 

Design FMEA (i.e., DFMEA) adapts this, establishing eliminating failure as a purpose of 
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design (Bueno, et al. 2020). The theory of the resolution of invention-related tasks, 

known by its Russian Acronym ‘TRIZ’, is a design framework that focuses on the 

assumption that most complex design problems require a trade-off between competing 

requirements (Alʹtshuller, 1999). Design Thinking is an approach that covers the design 

problem from understanding of the problem to testing and highlights the importance of 

the mindset of the designer and fast iteration of solutions. The Kembel (2009) 

adaptation of design thinking is noteworthy as it specifically requires designers to 

empathize with users, and those the solution may impact. These approaches are not 

exhaustive but give an idea of the breadth of approaches that can be adopted in 

structuring the design process.  

While these methods provide structure to the design process, they are typically 

iterative and non-linear (Kumar, 2012). Selection of a suitable design framework can 

also be a complex problem. It is important to understand the strengths and weakness of 

the framework and the ways in which the strengths complement the design problem at 

hand. The problem of integration of AI transparency in time-critical decision support is 

unpredictable and requires the ability to understand specifics of human-machine 

teaming and the impacts of modifying existing relationships in a given task. In addition 

to this, it is necessary to be able to iterate quickly and maintain a flexible approach. For 

these reasons we selected the Design Thinking process defined by Kembel (2009) as the 

most suitable candidate as it specifically addresses development of a deep 

understanding of the problem through empathy with stakeholders. 
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Situational Awareness 

The way in which humans frame problems impacts the decisions they make to solve 

those problems. Good decision-making is highly dependent on SA, and time-critical 

decision making is particularly dependent on maintaining SA and, in turn, can be 

associated with diminished SA when tasks become unpredictable, or user resources 

become saturated (Endsley, 1995). Expert decision making in TCS, particularly complex 

systems, is described by Naturalistic Decision models like Klein’s (1993) Recognition-

Primed Decision (RPD) model. The  

The importance of SA in TCS and the relationship to technological systems is 

explained by the model of situated cognition (Shattuck & Miller, 2006). This model 

represents how technological systems transfer information to humans and the 

perceptual and cognitive processes that result in a state of situated cognition or SA, see 

Figure 2.1.  
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Figure 2.1 A model of situated cognition (Shattuck & Miller, 2004)  

This model shows how HMTs work to achieve the three levels of situational 

awareness in users; perception, comprehension, and projection. But also, how there are 

decisions made by technological systems that limit the focus of the user – through the 

lenses on the left-hand side of the model. This model is augmented to become a 

dynamic model of situated cognition, including feedback loops, that represent the way 

experts modify their view of the world based on experience and the evidence presented 

to them, see Figure 2.2. 
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Figure 2.2. A Dynamic Model of Situated cognition (Shattuck and Miller, 2006) 

In addition to the representation of SA in TCS, this model can be adapted to 

represent XAI in TCS. The right-hand-side of the model remains the same, and confirms 

the importance of SA, where the left-hand-side of the model becomes a representation 

of the AI. The feedback loops represent trust and the sizes of the perceptual lenses, 

particularly lens A, are modified by workload – the lower the workload of cognitive 

demands, the more the user can absorb additional information.  

This explains how XAI, through transparency along with, trust and Workload 

contribute to SA and correspondingly can lead to reduced or imperfect SA if they are 

compromised. Trust acts as a feedback loop and is modulated by the accuracy of the AI 

system and the ability to calibrate trust provided by the XAI. Workload modulates the 

amount of information available to the user but the amount of XAI information 
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displayed can also limit information transfer. The tradeoff can be optimized by 

understanding how much information can be transferred for a given level of workload 

and is dependent on the user’s cognitive ability, their trust, and the requirement for SA 

in any given task. If SA becomes compromised, this can lead to imperfect SA. The 

problem of imperfect SA relates to how decision makers can recognize problems in SA 

and seek to correct them (Middleton, 2010). While there can be additional cognitive 

load in interpreting transparency information, either reducing the potential for 

imperfect SA or providing intuitive means to identify or predict uncertainty in the 

decision context can allow decision makers to quickly identify mitigation strategies 

(Middleton, 2014). Intelligent systems, capable of predicting task requirements and 

tracking the expected knowledge states of decision makers can enable DSS to predict 

when imperfect SA might arise and potentially optimize information provision to reduce 

workload impact. (Betts, 2005).  

Time-Critical Tasks 

Time critical systems were chosen as the focus of this research as they represent a 

complex implementation of XAI and transparency. Not only is there the positive impact 

of XAI information on trust and task performance, but there is also a need to consider 

the negative impact of additional information, and the cognitive processing required 

from a user. Where the user is subject to high temporal demand and high workload, 

with potentially minimal cognitive resource available to attend to new information, this 

additional burden may mean XAI having unintended negative consequences, which 

designers and developers need to be aware of.  
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In the following paper titled ‘Design Thinking Framework for Integration of 

Transparency Measures in Time-Critical Decision Support’ (Stone et al., 2022), published 

in the International journal of Human-Computer Interaction, I detail the development of 

the design thinking framework, and further explore the importance of trust, workload, 

and SA in developing XAI and transparent AI systems.  

In the context of the AI copilot example, this stage establishes the five-stage 

design thinking approach as the basis for the XAI design framework, integrating the 

deep understanding of the user and the AI established in chapter one into the first of 

these five stages – empathy. Furthermore, this chapter establishes specific tools to 

enable the definition of design goals for XAI. In the context of the copilot example, this 

would give the prospective designer of the system, a guide as to the scope of 

explainability and the potential areas that solutions may be developed, without 

requiring XAI expertise in addition to their ability to design flight systems for drones. 

This element of the framework aims to facilitate development of design goals and early 

concept development without introducing specific goals that might be too restrictive 

given the broad application of XAI and the task-specific nature of potential solutions.  
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Design Thinking Framework for Integration of Transparency Measures in Time-Critical 

Decision Support 

Stone, P. B, Jessup, S. A., Ganapathy, S., Harel, A. (2022). Design Thinking Framework for 
Integration of Transparency Measures in Time-Critical Decision Support International 
Journal of Human-Computer Interaction (IJHCI) Special Issue on Transparent Human-
Agent Communications. 
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ABSTRACT 

The integration of artificial intelligence transparency in time-critical decision 
support is complex and requires consideration of the impact on human-machine 
teaming. The relationships between transparency, trust, workload, and situational 
awareness are key to understanding this impact on performance. We detail the 
development of a novel design framework for transparency integration in Decision 
Support Systems. We selected the design thinking approach as the baseline for our 
framework as this focuses on developing empathy with users and rapid design iteration. 
We adapted this framework by introducing the concept of empathy for both human and 
machine agents. In this situation, ‘empathy’ provides a deep understanding of the 
model, its purpose, and the underlying data for AI. We developed a structured problem 
definition focused on understanding the relationships between constructs and 
established solution themes to guide the designer. We demonstrate this transparency 
integration framework on a Transfer of Care Decision Support System.  
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Introduction 

As Artificial Intelligence (AI) systems become more widespread and integrated in our 

lives, the need for effective and efficient Human-Machine Teaming (HMT) is increasingly 

important. This paper describes the development of a design framework for the 

integration of AI transparency measures into time-critical decision support. We 

introduce this subject by discussing the importance of transparency in AI, and its impact 

on HMT. Next, we analyze the specific contributing factors to transparency in AI such as 

trust, workload, and situational awareness, and the tools for improving HMT in decision 

support in time-critical situations. Finally, we introduce the concept of design 

frameworks as a means to solve the integration problem. In the subsequent sections, 

we detail the development of a specific design framework and a preliminary 

implementation conducted on an existing decision support interface.  

As AI-based systems become increasingly complex and abstract from traditional 

decision making, transparency to users becomes more important and harder to 

establish, posing conceptual, legal, and technological challenges (Wachter et al., 2017). 

So called “black-box” systems can lead to reduced trust, a lack of understanding of the 

rationale behind the problem, or potentially an over-reliance on high-level advice (Kim 

et al., 2020). In this paper, we adopt Chen et al. (2014)’s definition of transparency: 

“…the quality of an interface pertaining to its abilities to afford an operator's 
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comprehension about an intelligent agent’s intent, performance, future plans, and 

reasoning process” (p. 2). As for the definition of machine/computer/AI agent, 

throughout this paper we combine two complementary definitions: firstly, as possessing 

“autonomy, observation of the environment, action upon the environment, and activity 

toward achieving certain goals” (Mercado et al., 2016, p. 401); and secondly, “as an 

entity that runs by computerized algorithms and that interacts with humans” (Jessup et 

al., 2019, p. 482). These two definitions cover the meaning of an agent in terms of 

external and internal characteristics, respectively. Mercado et al. (2016) highlight the 

importance of transparency, demonstrating a significant multivariate improvement in 

operator performance through the implementation of transparency in AI. 

AI-based Time-Critical Decision Support Systems 

In the current paper, we focus on Decision Support Systems (DSS) as a prime example of 

a domain that can benefit immensely from increased transparency. Decision support 

systems allow decision makers to utilize data and models to reduce errors and workload 

and improve Situational Awareness (SA). Integrating AI into DSS, therefore, has the 

potential to make them more responsive, personal, and ultimately useful, with the 

potential to overcome equivocality in decision making, lowering user workload, and 

improving performance (Jarrahi, 2018; Woods, 1985).  However, DSS often use Machine 

Learning (ML) algorithms (e.g., agent-based DSS, genetic algorithms, deep learning 

algorithms), which tend to become less transparent and less interpretable as they 

become more complex, leading to lower trust (Strobel, 2019). The major flaw with deep 

learning is that, despite its power to analyze large data and form complex 
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representations and predictions, there is often little clarity provided to users about how 

the output is determined (Topol, 2019). Moreover, ML algorithms rely on big data 

pulled from areas such as social media, organizations, and census records, just to name 

a few. Because biases are present in humans, and consequently the data they generate, 

these biases can influence the information generated. For example, Datta et al. (2015) 

found that based on users’ genders, ads for higher paying jobs were shown to more 

males than females through Google. Perhaps one of the more of the more memorable 

examples of bias in AI was from Microsoft’s Twitter chatbot, Tay, which was shut down 

for harassing other users and posting tweets endorsing Nazi ideology (Johnson, 2020). 

Such biases can perpetuate inequality and discrimination in our society, leading to 

distrust in AI (Thelisson et al., 2017). In other words, AI and automation have wider 

societal implications that can affect trust and the biases in human agents, and thus, 

increased transparency is key to improving communication, increasing trust, and 

facilitating effective HMT (Hoffman et al., 2002; Mercado et al., 2016).  

The Effects of Transparency on Trust, Workload, and Situational Awareness 

Time-critical tasks increase the need for human operators to rapidly process 

information and make decisions, potentially resulting in errors and delays (Horowitz & 

Barry, 2013). Thus, although it is important to consider the strengths and weakness of 

machine agents, it is also important to understand the human user. Consideration of 

both human users and machine agents can improve collaboration and performance by 

reducing errors due to poor communication and task assignment (Woods, 1995), as well 

as improving HMT (Hollnagel & Woods, 1983). Shared mental models can enable 
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anticipation of other team members actions but depend on the ability of the machine 

agent to collect enough information to predict the user state (Fan & Yen, 2010). 

Specifically, advanced AI systems need to identify human cognitive processes through 

pattern recognition capabilities and real-time feedback to predict changes in their 

cognitive model before they are implemented to provide optimal timing of transparency 

advice (LeCun et al., 2015). Transparency in AI also impacts workload (Helldin, 2014) 

and the legitimacy of information (de Fine Licht, 2011), which can in turn affect trust 

(see below) which can all impact primary task performance, particularly in time-critical 

situations. Delays and failures in making time-critical decisions are often expensive, can 

affect system performance, and may even cost human lives (Sheridan, 1997). 

Environments demanding time-critical DSS inherently require minimal user interaction 

with the system to maximize attention on the primary task (Horvitz & Barry, 2013). 

Therefore, there is an important trade-off in the integration of transparency in AI; 

although additional transparency information is needed to increase trust, this may also 

increase workload and reduce SA in situations when users already have minimal mental 

capacity to spare. Thus, a better understanding of both trust and workload is required in 

order to better understand the integration transparency in AI.  

Trust  

Transparency is key to establishing trust in both human and human-machine teams, to 

prevent negative outcomes and create accountable systems (de Fine Licht & de Fine 

Licht, 2020). Trust is a willingness to be vulnerable to another, without the capability to 

monitor their actions. When there is an element of risk and the trustor (the one who is 
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trusting) needs to interact with another party or entity (the trustee) to accomplish a 

task or foster a relationship for long-term interactions, trust is essential (Mayer et al., 

1995). Trust is a social construct that has been identified as important for not just the 

development and lifetime of interpersonal relationships (Jones & George, 1998; Lewicki 

et al., 2006; Simpson, 2007), but also for interactions with non-human entities such as 

machines (Muir, 1987), robots (Hancock et al., 2011), automation (Schaefer et al., 

2016), and AI (Glikson & Woolley, 2020). 

Malle and Ullman (2021) reviewed numerous definitions of trust from 

interpersonal, business, and automation domains. They found that overall, trust is 

comprised of two factors: performance trust and moral trust. Performance trust 

contains facets of competence and reliability, whereas moral trust contains facets of 

sincerity, benevolence, and integrity. Compared to human-human or human-robot 

interactions, human-automation interactions usually involve non-social tasks (Malle & 

Ullman, 2021), which do not require moral trust. As such, performance is the main 

factor related to the automation itself that influences trust (Hoff & Bashir, 2015; 

Hoffman et al., 2013; Malle & Ullman, 2021). Consequently, most trust definitions in the 

automation literature do not reference the automation’s moral characteristics. Indeed, 

Lee and See (2004) define trust in automation as an attitude an agent will help the 

trustor achieve their goal in times of vulnerability and uncertainty.  

Trust is a process with several components that influence some sort of outcome. 

Antecedents to trust (characteristics of the trustor and characteristics of the trustee), 

trust intentions (willingness to be vulnerable), risk-taking behaviors (behavioral trust, 
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which has also been referred to as reliance; Lee & See, 2004), and perceived risk, which 

moderates the relationship between trust intentions and behavioral trust, are all 

components of the trust process (see Figure 2A.1). Behavioral trust has also been 

referred to as reliance in the trust in automation literature (Lee & See, 2004). Trust and 

reliance in machines are subtly different concepts, and sometimes confused with each 

other. Trust is an intention to be vulnerable, whereas reliance is the behavioral outcome 

related to trust (i.e., being willing to drive in an automated car versus getting behind the 

wheel and going for a drive). In developing a wider understanding of trust, it is 

important to define the characteristics of automation and the user. It is also important 

to point out that human-human teaming often entails two-way, reciprocal trust. 

However, in human-machine teaming, typically the human will be the trustor and the AI 

or machine agent will be the trustee. Hence it is important to understand not only trust, 

but also trust calibration.  



   
 

91 
 

 

Figure 2A.1. Trust Process Model 

Trust Process model based on Mayer et al.’s (1995) theoretical conceptualization of the trust 
process, and Lee and See’s (2004) conceptualization of the three trustworthiness factors related 
to trust in automation. 

Perceived trustworthiness of automation is comprised of three factors: a) 

performance, b) purpose, and c) process (Lee & See, 2004), which were derived from 

Mayer and colleague’s (1995) factors of perceived trustworthiness in humans (i.e., 

ability, benevolence, and integrity). In support of Malle and Ullman’s (2021) delineation 

of performance and moral trust, one can see that perceived trustworthiness of 

automation factors are strongly related to the performance of the referent, whereas 

Mayer et al.’s factors of interpersonal trustworthiness contain both performance and 

moral trust. Performance conveys information to the user about what the system does, 

as well as the boundaries of its capabilities and limitations. The reliability of the agent, 

as well as the predictability and severity of errors will influence users’ perceptions about 

the agent’s performance (Lewis et al., 2018). Purpose refers to why the system was 

created (i.e., for what tasks will it be responsible), and whether it actually performs 
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those functions. Process describes how the agent will operate. Information about the 

agent’s reasoning, and transparency of the algorithms are important for users to glean 

understanding about how the agent functions. All three of these factors can increase 

transparency of the system for users, depending on how much or how little information 

is relayed because it provides users with knowledge about what, why, and how well 

functions are being performed. Indeed, researchers have empirically demonstrated that 

increased transparency leads to increased trust in a system (Lyons et al., 2017). 

Hengstler et al. (2016) conducted a case study on the factors that influenced trust in 

applied AI (e.g., autonomous vehicles and medical assistance devices), and identified 

factors that correspond to Lee and See’s (2004) proposed trustworthiness factors. 

Hengstler and colleagues found that factors such as data security and privacy were 

related to the performance of the AI, cognitive compatibility (i.e., understandable 

algorithms) and usability aided in understanding the process of the AI, and defined 

context (i.e., the environment or task in which the AI was to be implemented) and 

design (i.e., the feedback provided to users) were used to ascertain information about 

the AI’s purpose. The more information users have regarding the capabilities and 

limitations of an agent, the better they can calibrate their trust in that agent.  

Trust calibration 

This refers to “the correspondence between a person’s trust in the automation and the 

automation’s capabilities” (Lee & See, 2004, p. 55). One can over-trust, which can lead 

to compliance and a lack of SA regarding the system (also referred to as misuse; 

Parasuraman & Riley, 1997). Conversely, one can under-trust (i.e., disuse; Parasuraman 
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& Riley, 1997), which can lead to inefficiency in performance and increased workload 

for the user. Properly calibrated trust allows the user to appropriately monitor the 

system (depending on the level of automation; Parasuraman et al., 2000; Sheridan & 

Verplank, 1978), while also benefiting from the automation performing tasks in tandem 

with the user to decrease the user’s workload and improve performance (Balfe et al., 

2015; Lewis et al., 2018).  

Just as characteristics of automation can influence trust, so can characteristics of 

the user. These characteristics include but are not limited to dispositional trust, self-

confidence, and biases. Dispositional trust is the general tendency and willingness for 

humans to trust others (Mayer et al., 1995), and influences how users will trust others 

or agents in novel situations, prior to any knowledge about the referent (Lee & See, 

2004; Mayer et al., 1995). Another individual difference that can influence trust and 

reliance is self-confidence (Lee & Moray, 1994; Lee & See, 2004). Empirical evidence has 

shown that when users have a high level of trust in a system and low confidence in their 

own abilities, users opt for automatic over manual control to aid in task completion (de 

Vries et al., 2003). Similarly, biases users have about automation can influence user 

interactions with automation. Though biases are not inherently bad or good, they do 

influence people’s judgment and decision making (Haselton et al., 2015; Tversky & 

Kahneman, 1974). Perfect automation schema (Dzindolet et al., 2002; Merritt et al., 

2015) is the belief that automation should perform without errors (i.e., high 

expectations), and if/when the automation fails, it is no longer useful (i.e., all-or-none 

thinking), which leads to disuse, inefficiency in performance, and increased workload for 
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the user (Dzindolet et al., 2003; Parasuraman & Riley, 1997). Researchers have found 

that high expectations are positively correlated with trust, whereas all-or-none thinking 

is negatively related to trust (Lyons et al., 2020). Designers can help to combat this bias 

by increasing transparency of the automation. Indeed, Dzindolet and colleagues (2003) 

found that providing participants with an explanation of why the automation failed, 

increased both trust in, and reliance on, the automation. Informing users of  limits, 

capabilities, reliability, and points where failure might occur will help the user to set 

realistic expectations and be prepared to intervene, if necessary. 

Another bias that influences reliance is automation bias. Automation bias is the 

tendency of users to over-rely on recommendations from automation, forgoing 

cognitive processing, even the information received may be contradictory (Mosier & 

Skitka, 1996). Automation bias most likely occurs when users are trying to conserve 

mental resources during instances of high workload, during complex, time-critical 

situations (e.g., command and control), when the operator receives confusing 

information from the agent, or the user is not properly trained (Cummings, 2004; 

Goddard et al., 2012). Consequently, automation bias can decrease SA and lead to 

complacency, possibly leading to catastrophic issues in areas such as patient safety 

(Schulz et al., 2016) and aviation (Jones & Endsley, 1996). In order to reduce instances 

of automation bias, researchers have recommended training, providing users with the 

agent’s reasoning process, and determining an appropriate level of automation for the 

agent to ensure the human remains in-the-loop enough so that SA is maintained 

(Cummings, 2004; Goddard et al., 2012). Additional factors related to the environment 
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or situation, such as SA, workload, and time constraints can also influence trust and 

reliance (Lee & See, 2004; Lewis et al., 2018). 

Mental Workload and Situational Awareness 

Although trust is perhaps the construct most closely associated with transparency, 

workload is also an important consideration. The impact of transparency on workload is 

complex and dependent on the nature of the task, the experience of the individuals 

involved, and any parallel tasks; transparency has the potential to increase, as well as 

decrease, workload (Helldin, 2014). This increase can be minimized by effective, 

efficient display of information (Chen & Barnes, 2013) and increased trust and 

collaborative HMT by contributing to a more intuitive, information dynamic between 

human and machine agents (Mercado et al., 2016). 

The negative impacts of poor implementation of automation can be manifested 

in many ways, all with significant effects on workload and task performance 

(Parasuraman & Riley, 1997). When automation acts outside intended parameters and 

fails to respond to human commands, it can lead to catastrophic failure. Introducing 

transparency aims to reduce potential for this extreme failure but the potential should 

not be ignored, particularly in safety critical applications. Recovery from these types of 

failure can present steep increases in workload or severely impact task performance 

(Sarter et al., 1997). A more frequent but less well understood problem is when 

automation behaves as intended but human collaboration is ineffective, causes 

additional workload (Sarter et al., 1997), or leads to misuse and abuse, which can result 

in negative consequences because of human error (Parasuraman & Riley, 1997) or 
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automation bias. As with catastrophic failure, these complications can lead to additional 

workload, or resources required to recover, and  diminished SA. 

The way in which humans frame problems, impacts the decisions they make to 

solve those problems. Good decision-making is highly dependent on SA, and time-

critical decision making is particularly dependent on maintaining SA and, in turn, can be 

associated with diminished SA when tasks become unpredictable, or user resources 

become saturated (Endsley, 1995).  

The Structured Design Approach 

The problem of AI transparency integration in time-critical decision making is complex 

with many inter-related constructs. The impact on HMT may be difficult to predict and 

as such presents designers with a problem. Concepts may behave as expected in certain 

circumstances but small variations in the environment or task can have large impacts on 

performance. Solving complex innovation problems requires an in-depth knowledge of 

the task, the user, and the systems with which they interact. Great innovation can be 

hard to achieve and requires organizations to develop systems and cultures to support 

innovation (Kumar, 2012). Although structured design methods provide order to the 

design process, selection of a suitable design framework can be a complex problem 

(Kumar, 2012). We suggest that adopting a structured design process that explicitly 

guides the designer to consider these problems and developing it into a framework that 

provides tools and design goals can help ensure that transparency issues are considered 

in the integration of AI in time-critical DSS.  



   
 

97 
 

Framework Rationale 

The key question designer should ask in this development process is: how can HMT be 

improved by the integration of transparency in time-critical decision support? To assist 

the designer in this task, we developed a novel design framework which directly tackles 

some of the aforementioned problems with HMTs containing an AI-based agent and 

increase transparency. The rationale of this framework is to apply the design thinking 

process to enable effective HMT that, in turn, allows better human performance, user 

experience, and task outcomes. The fast, iterative nature of design thinking is ideal for 

framing problems to develop understanding of paradoxes and inherent trade spaces in 

design (Dorst, 2011). We map specific concepts relating to transparency in time-critical 

decision support into this process to provide a framework for integration of 

transparency. Specifically, this framework can then be used as a tool for the designer to 

structure the key elements of the transparency integration process. We believe this 

framework reduces the potential for design error and speeds up the integration of 

transparency measures into time-critical decision support applications.  

Objective 

The objective of our study is to develop a design framework for the integration of AI 

transparency into time-critical decision support systems. To achieve this, we aim to 

transform the transparency considerations into additional, context-specific concepts 

and design strategies to underpin the framework. We will provide structure by 

combining these design concepts and establishing specific tasks and goals. In addition to 

the generation of this framework, we conducted an initial implementation of the 
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integration of transparency measures in a previously developed prototype DSS for 

Transfer of Care (ToC) (Stone 2019).  

Framework Development 

Rather than develop an entirely new design framework, one of the key innovations in 

our approach is to map transparency considerations on to an existing, proven design 

framework. After consideration of several alternatives, the design thinking approach 

defined by Kembel (2009) was selected as the most suitable candidate as it is a widely 

used approach to design that covers understanding of the problem through to testing. 

Design thinking highlights the importance of the mindset of the designer, open and 

honest exchange of ideas and fast iteration of solutions and specifically addresses 

development of a deep understanding of the problem through empathy with 

stakeholders. It is often a quick process aimed at rapidly developing and testing 

innovative solutions to difficult problems (Kembel, 2009). In addition, the design 

thinking approach is highly flexible and adaptable to a wide range of design problems 

but offers a proven concept that designers understand (Thoring & Müller, 2011). The 

design thinking approach defined by Kembel (2009) differs from similar methods as it 

establishes empathy as the first of the five stages. The five stages of design thinking 

process as defined by Kembel are shown in Figure 2A.2. 
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Figure 2A.2. Five-Stage Design Thinking Process  

Note. Figure above was created by authors to illustrate the five-stage design thinking process 
outlined by Kembel (2009). 

We adapted this framework for the design and implementation of transparency 

measures into time-critical decision support systems by considering each phase and 

defining the associated sub-tasks and information specific to the challenge of 

integrating transparency in a DSS. The impact and relationships between trust, 

transparency, workload, and SA are considered throughout the development to 

maintain the importance of these concepts in the mind of the designer. The output of 

this development process are the goals and tasks, which are summarized in Table 2A.1. 

Next, we detail the stages of the development approach in turn. 
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Table 2A.1. Design Framework Task Summary 
Design Stage Framework goals Framework tasks 
1 Empathy • Develop a deep understanding of human and 

machine stakeholders, their challenges, 
limitations, and requirements in the context 
of decision support transparency. 

• Understand the potential for bias in both data 
and human users. 

Task 1A - Task analysis: Conduct a hierarchical task analysis (HTA), including open 
questions bearing in mind the requirements for presence, open-mindedness, and 
lack of judgment.  

Task 1B – User analysis: Conduct a user analysis to understand the characteristics, 
motivations, and background of the user population. 

Task 1C - System analysis: Research the data provision, data requirements, and the 
impact of missing or incorrect data. Additionally, researching the underlying model 
and how it handles both existing data and data collection are important during this 
task.  

2 Define • Establish problem definition with respect to 
the level of transparency, transparency types, 
and testable design requirements,  

• Formalize the relationship between 
transparency, trust, workload, and SA in the 
context of the specific time-critical decision 
support task. 

Task 2A –Transparency task definition: Define specific questions formulated from 
the understanding of the nature of transparency integration. These questions 
ensure that the framework guides the designer to think of the key drivers and 
potential impacts in the Formative stages of the project. Specific questions should 
include:  

• What are the specific issues relating to transparency between human 
and machine agents in this specific context?  

• What are the existing or future impacts of a lack of transparency?  
• How can these transparency implementations improve outcomes?  
• How might poorly implemented transparency negatively affect 

outcomes? 
Task 2B – Identify required transparency level: Select the appropriate according to 
the three levels of transparency (Mercado et al., 2016) based on the SAT model 
(Chen et al., 2014):  

• Level 1 no additional transparency, measures – This effectively means 
no requirement for transparency exists or could be identified and a 
more traditional design approach can be adopted.  
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• Level 1+2 baseline plus descriptive reasoning and rationale or why the 
model is giving the advice. 

• Level 1+2+3 included all the previous information plus projection of 
uncertainty or the potential for error in the advice.  

Task 2C - Define prospective and retrospective transparency elements, sort the 
requirements developed into prospective and retrospective elements (Felzmann et 
al., 2019). Specifically, each of the requirements should be considered according to 
the following definitions: 

• Prospective transparency requirements relating to information on what 
input data will be used for 

• Retrospective transparency relating to information on why decisions 
were made and the origins of data 

Task 2D - Define expected responses: Given the complex and non-linear 
relationships between the competing design drivers in transparency integration, it 
is important to define how potential transparency measures might affect user 
performance. Define the expected impacts, relationships and co-dependencies 
between trust, workload, and SA in the transparency task context.  

Task 2E - Requirements definition:  defining the problem in terms of specific 
transparency requirements.  

3 Ideate • Generate concepts to meet the transparency 
requirements identified in the Define stage. 

Task 3A - Transparency solution conceptualization: Using the solution themes 
defined in Table 2 as a guide, match potential solutions to the transparency 
problem definition and requirements. The expectation for any design is that 
multiple solutions may be required and assessed in multiple configurations.  

4 Prototype • Develop candidate DSS solutions with 
integrated transparency to take forward to 
the test stage. As the prototypes mature, 
increased fidelity iterations allow 
operators/users more opportunity to interact 
with the agent, and to provide designers with 
more detailed feedback related to their 

Task 4A -  Prototype development: develop high, medium, or low fidelity 
prototypes of the transparency integration solution based on concepts from the 
Ideate phase.  

Task 4B/5B Test Iteration: this task calls for a fast iteration between the prototype 
and test stages (joint task).  
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perceptions of the agent, which is the second 
goal for this stage. 

5 Test • Evaluate the prototype against requirements 
developed in the Define stage.  

• Establish elements of the transparency 
integration that work to guide iterative design 
process. 

• Understand the potential positive and 
negative impact on trust, workload, and SA of 
the transparency measures. 

Task 5A – Test: Define test metrics based on requirements and the projected 
impact of transparency measure developed in the Define stage, developing a test 
plan covering required metrics, and evaluating prototype DSS with enhanced 
transparency against defined metrics.  

Task 4B/5B Test Iteration: this task calls for a fast iteration between the prototype 
and test stages (joint task).  
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Empathy Stage Development 

There are two dimensions to empathy in design – emotional and cognitive (Gasparini, 

2015). Emotional empathy is perhaps closer to the traditional understanding of empathy 

in psychology, being an affective state derived from shared experience. Although there is 

some requirement for emotional empathy in the design of a product or service, Cognitive 

empathy, or the ability to understand the world from a different point of view, is more 

broadly applicable in design and the design thinking method (Gasparini, 2015). Both 

cognitive and emotional empathy can help the designer but, in many cases, especially in 

designing for complex and specialized tasks, cognitive empathy is more readily achieved. 

Empathy is developed through a deep understanding of user’s needs and the methods of 

application of the product (Gestwicki & McNely, 2012). Lucas (2018) develops guidelines 

for developing empathy in design, especially as it relates to interview and observation. 

Although these guidelines are extensive and cover the specifics of empathy in design, we 

implement three core approach-based guidelines from this study – presence, open-

mindedness, and lack of judgement. 

 It is important to empathize and understand the fundamentals of the task and the 

relevant human and machine agents in terms of transparency and time-critical decision 

support. Thoring and Müller (2011) define three tasks that underpin the development of 

empathy for the agents in a given task: interviews, observations, and interpretations. A 

key innovation of this framework is to encourage the designer to consider understanding 

of the machine agent in terms of empathy, as one would with a human user. Where we 

can aim to develop empathy with the human agent through interviews, observations, and 
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development of an emotional bond, this is not possible with the machine agent. In lieu of 

this, the researcher needs to understand as much as possible about the specific nature of 

the machine agent. This involves understanding the data that drives the models, 

dependencies of the model on data gaps, or incorrect data, and strengths and limitations 

of the model. Although this may not immediately fit the understanding of empathy 

between humans, considering human and non-human agents in the ‘empathize’ stage of 

design thinking allows for a unified process. Though this may be somewhat of a 

conceptual leap for some prospective designers, we include task 1C (see Table 1) to 

provide guidance as they move toward a deeper understanding or ‘empathy’ with AI 

agents. 

Defining the understanding of the machine agent in terms of empathy has two 

benefits to the design process. First, it simplifies the definition of the framework by 

matching the understanding of human and machine needs and dependencies, and 

secondly, framing this as empathizing aligns with the consideration and assessment of 

human and machine agents as a combined system with aligned motivations.  

Define Stage Development  

The aim of the define stage in traditional design thinking is to take the understanding 

developed in the empathy stage to define the problem and output specific requirements 

to guide the ideate phase. This stage aims to define the purpose of the machine agent 

(i.e., why the agent was developed and for what tasks will the agent be responsible), and 

how will the addition of an agent teammate assist operators/users? We include structured 

tasks to guide the designer in defining the level of transparency, type of transparency and 
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prompt consideration of the impacts, trade-offs, relationships and dependencies between 

trust, workload, SA, and transparency integration. These tasks should be conducted 

sequentially to incrementally build a problem definition.  

In the define stage, we introduce a specific task to define the level of transparency 

required in the design. We use the three transparency levels (Mercado et al., 2016) 

adapted from the three levels of the SA-based Agent Transparency (SAT) model (Chen et 

al., 2014). The SAT model defines the level 1 requirement for an agent to  enable the 

human operator  to understand “what is going on and what the machine agent is trying to 

achieve?” (Chen et al., 2014. p. 2). This relates to basic information on the operation and 

goals of the system, and we will consider a baseline level of transparency needed to 

operate and conduct operations with a machine agent. The level 2 transparency 

requirement is to convey rationale behind the machine agent’s decisions “Why does the 

agent do it”? (Chen et al., 2014. P.2). This could be information highlighting specific 

reasons for a decision potentially regarding task or operator characteristics or a 

combination of both. For instance, if the size or age of a patient was a key driver in advice 

given by a clinical DSS, this could be highlighted along with the specific advice. The level 

three transparency requirement is to give prognostic information along with uncertainty 

or likelihood of error, “what should the operator expect to happen” (Chen et al., 2014. p. 

2). This could be providing the operator with a probability of success or a series of options 

to choose from combining the level two transparency requirements for each and historical 

outcomes in similar cases for each.  
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Ideate Stage Development 

A key appeal of ideation philosophy in design thinking, and its application to transparency 

integration is the enabling of designers to develop a wide range of solutions without 

restriction. We use the existing design thinking ideate process to provide the approach for 

this stage of our framework, adopting the five core ideation philosophies from Kembel 

(2009): (a) share ideas, (b) all ideas worthy, (c) “yes and” thinking, (d) converge/diverge, 

and (e) prioritize.  

This stage of the framework assists the designer in conceptualizing how the agent 

will operate, the level of automation-intelligibility, transparency of algorithms, and to 

what degree the agent will describe its reasoning. The framework maintains the flexible 

approach to the generation of ideas but includes several solution themes rather than a 

prescriptive ‘toolbox’ of solutions. These solution themes represent the range of 

approaches that may enable transparency of information in time-critical decision support 

but prevent rigid focus on specific implementations. For each of these themes, we 

establish potential advantages, disadvantages as well as requirements and dependencies. 

The aim of these themes is to both guide thinking and aid innovation. The themes we have 

defined in this framework are shown in Table 2A.2.
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Table 2A.2 Transparency Solution Themes, Properties, and Potential Impacts 

Transparency Solution Themes 
 Information themes User Interface enhancement themes  
 Integrate additional 

transparency 
information or 
transfer 
functionality 

Enhanced 
provision for 
two-way human 
machine 
communication: 

Remove non-critical 
information 
obscuring 
transparency goals 

Modify information 
display to improve 
transparency 
efficiency 

Modify the timing of 
presentation of 
information 

Modify the display 
modality of 
information transfer 

Other transparency 
integration solution 

Description  Provide explanatory 
information for: 
Algorithm 
transparency 
• Explainable AI  
• Uncertainty 

information 
Data transparency 
• Data Integrity  
• data Bias  
• Human bias 

 
 

Two-way 
transparency 
requirement -
enhance machine 
agent 
understanding of 
human agent 
state.  

 

Identify information 
in existing systems 
that may obscure the 
intent or undermine 
trust between 
machine and human 
agents.  

Intuitive displays to 
minimize workload in 
transparency 
information.  
Utilize users existing 
mental models, 
consistency, and 
recognition over 
recall.  

In time-critical 
decision support, 
there are potentially 
lower workload 
phases that can be 
utilized to give 
additional 
transparency 
information.  

 Use visual, audio, 
and haptic displays 
where appropriate. 
The development of 
natural language 
voice assistants may 
enable enhanced use 
of the audio 
modality, and smart 
systems offer 
potential for haptic 
display integration.  

To maintain the 
flexibility of the Design 
Thinking approach, we 
explicitly include a non-
specific solution theme. 
This might seem 
unnecessary, but it 
ensures the designer 
considers solutions 
outside the bounds of 
these themes.  

Dependencies Identification of 
information required 
to improve the 
transparency of the 
specific application.  

Additional 
modalities 
require displays 
and definitions of 
the information 
required. 
Input devices 
(manual, voice, 
gesture) are 
required.  
 

Redundant 
information or 
inaccurate 
information that 
negatively impacts 
transparency, it 
needs to be 
identifiable in order 
to remove it.  

Utilize Nielsen’s 
heuristics of usability 
to make display of 
transparency 
information more 
efficient, effective, 
and interpretable. 

To utilize this time, 
first there needs to 
exist lower workload 
times and secondly, 
these need to be 
either detected or 
predicted by the 
decision support 
system.  

Attention resource 
theory suggests that 
separating 
information into 
multiple modalities 
can increase the 
ability of the user to 
attend to them.  

Task/implementation 
dependent. 

Transparency 
Impact 

requires the 
attention of the user 
to be ultimately 
useful.  

Enables 
prediction of 
human and 
machine agent 
state and 

Reduce clutter and 
extraneous alerts 
that can distract, 
mislead, or 
contribute to alert 
fatigue. 

More intuitive 
displays can make 
transparency 
information easy to 
interpret, reduce 
additional cognitive 

Improve 
transparency by 
enabling attention or 
can undermine trust 
and transparency if 
timing is poorly 

Careful consideration 
of the system 
environment and the 
capabilities of human 
agents is needed to 

Task/Implementation 
dependent 
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optimization of 
information. 
Enhances data 
integrity and 
counters 
operator bias  

processing and 
reduce workload. 

implemented and 
leads to confusion.  

deconflict secondary 
display modalities. 

Workload 
Impact 

 
Increase 

 
Increase Decrease Decrease 

Balance over 
time/minimize 

increase 

Decrease if 
additional resources 

available 

Task/implementation 
dependent 

Trust Impact 
 

Increase 
 

Increase Increase Task/implementation 
dependent 

Potential decrease if 
time delta too long 

Task/implementation 
dependent 

Task/implementation 
dependent 

Situational 
Awareness 
Impact 

Task/implementation 
dependent Increase Task/implementation 

dependent 
Task/implementation 

dependent Potential decrease Task/implementation 
dependent 

Task/implementation 
dependent 

Task 
Performance 
Impact  Task/implementation 

dependent 

Improved short 
term 

teaming/long 
term data 
integrity. 

Potentially improve Task/implementation 
dependent 

Task/implementation 
dependent 

Task/implementation 
dependent 

Task/implementation 
dependent 

Potential 
unintended 
consequences 

Increase workload, 
reduce task 
performance 
through information 
overload 

Contribute to 
information 
overload, 
decrease trust in 
automation 

Removal of required 
information and 
change to familiar 
interfaces reduces 
trust and 
performance 

Unfamiliar or novel 
displays may reduce 
trust in the system 
and fail to 
communicate 
transparency info.  

Reduced trust and 
increased workload if 
timing of information 
is poorly predicted or 
too distal. 

Information in 
unfamiliar channels 
may be ignored or 
conflict with external 
systems or teaming.  

Task/implementation 
dependent. 
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Uncertainty and how to determine and convey uncertain information are key 

aspects of transparency integration. Bhatt et al. (2020) discuss the idea of introducing 

uncertainty into HMT as a form of transparency. This enables a broader understanding of 

the probability that information is to be trusted, but results in a requirement for 

increased cognitive resources (Bhatt et al. 2020). This leads into a second, connected 

problem, how to provide this information to the human agent in a way that is 

interpretable. Zuk & Carpendale (2007) discuss approaches to visualization of 

uncertainty and how it can improve performance, noting the potential hazard if such 

visualizations increase cognitive load. 

The Ideation stage aims to conceptualize solutions for the inclusion of 

transparency information in time-critical tasks. Including additional information 

processing requires additional resources, that can impact task performance. Mercado et 

al., (2016) highlight an important consideration in machine agent transparency - that it 

should not be the goal to provide all underlying information relating to transparency, but 

to relate clear and efficient information succinctly to minimize the impact on workload 

and maximize SA in the human agent. This is particularly important in time-critical tasks 

as attentional resources are limited. 

The requirements defined in the previous stage provide targets for the designer 

in the ideate stage but, the relationships and dependencies between elements can be 

complex and non-linear or unidirectional. The designer should be aware of this and 

expect some unpredictability in results. To enable users to calibrate trust in machine 

agents, it is important that users are aware of the machine agent’s limitations and can 
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predict its errors. Concepts should aim to provide information about the AI performance, 

describing what the agent does and how well it does it. 

Prototype Stage Development 

Traditional design thinking establishes processes for prototyping such as storyboarding, 

mockups, and retaining an iterative approach. Our framework maintains these 

prototyping philosophies to maintain the fast iteration through the test and prototype 

stages. There are no specific requirements incorporated into this stage of the design 

thinking process adaptation. Prototypes should however be developed to an appropriate 

level of fidelity to enable appropriate transparency information or interface design to be 

incorporated and tested. Prototypes will generally increase in fidelity and complexity as 

the iterations increase.  

Test Stage Development 

Our framework preserves the key elements of the design thinking philosophy to enable 

fast iteration prototyping. We adopt the following three tasks from the baseline design 

thinking model: (a) assess performance (are transparency requirements met), (b) identify 

what works (converge/diverge in fast iteration), and (c) understand the impact of 

transparency integration. Although these are the processes associated with existing 

design thinking process, each of the three needs to be understood in terms of trust, 

workload, and SA.  

When designing test plans to for assessing the performance of the prototype and 

specifically the machine agent, it is important to consider the reliability, faults, and 

predictability of errors in the system to understand the impact of the transparency 
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implementation on trust. The specifics of the test phase will be dependent on the 

solutions defined. We highlight the importance of understanding the impact of 

transparency on trust, workload, and SA. As a minimum, tests should include qualitative 

or quantitative assessments of all three of these constructs, along with assessments of 

the relationships and potential impact on Transparency.  

Framework for Transparency in Time-Critical Decision Support 

The framework developed in the previous section is summarized in Figure 2A.3, and 

Tables 1 and 2, outlining the adaptations and key tasks in a five-stage process aligned 

with design thinking model defined by Kembel (2009). This framework maintains the key 

strengths of the design thinking approach; focus on user needs, enabling innovation and 

fast iteration, along with additional structure to facilitate the effective integration of 

transparency measures.  
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Figure 2A.3. Design Thinking XAI Integration Process – refer to Table 1 for task definitions
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Framework Implementation 

This implementation focuses on a concept for a digital ToC assistant, enabling Emergency 

Medical Service (EMS) users to record patient and injury information and predict patient 

states during ToC. Each stage of the implementation is discussed in detail in the following 

sections. This implementation consists of the first four phases of the design thinking 

framework, and we address the future implementation of the test phase in the 

discussion. The test stage was not completed due to the required involvement of human 

subjects in the test phase and incompatibility associated with the COVID-19 restrictions 

in place during Spring 2021. 

Framework Implementation – Empathy Stage 

Task 1A – Task Analysis 

ToC is the transfer of a patient from one agent (referring) to another (receiving). Those 

agents can be Emergency Medical Teams (EMT), physicians in trauma centers, medical 

center nurses and so on. Accurate and timely transfer of information plays a key role in 

ensuring safe ToC. Poor transfer of a patient’s information may result in 

poor ToC, resulting in additional healthcare cost, holding up patient recovery time, and 

threatening life (Karnon, 2003). The problem of transparency in ToC has several 

elements requiring consideration, such as identifying which aspects of the 

ToC decision support are lacking in transparency, identifying potential solutions to 

improve ToC, and analyzing the potential impact of implementing solutions to 

improve transparency, while considering both the impacts of solutions and the impact of 
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the ‘do nothing’ option. 

Hierarchical Task Analysis (HTA) was conducted to deepen understanding of the tasks 

specific to the information transfer between medical professionals during ToC. HTA was 

conducted through consultation with Subject Matter Experts (SMEs) based at the 

National Center for Medical Readiness (NCMR). Data was collected through structured 

interviews where, users were asked to walk through the ToC process with probes to 

establish detail or clarify or isolate individual task components to establish detailed 

understanding of the task, as well as its dependencies and user motivations. No personal 

information was collected during the interview process. This HTA was based on the 

existing, unaided ToC process to gain an understanding of the context and transparency-

trust requirements. In addition, the Standard Operating Procedure (SOP) for Patient 

Handoff Between a Healthcare Facility and a Transporting Ambulance (2016) was 

analyzed to understand the operational ideals and motivators for the ToC task. The HTA 

is shown in Table 2A.3.  
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Table 2A.3. Hierarchical Task Analysis of Transfer of care task 

0 EMS Transfer of Care to triage professional 
Plan 0.  
1.   Assess patient—throughout emergency situation 
Plan 1. Do 1.1 and 1.2—repeat 1.0, 2.0 and 3.0 as needed 
 1.1 Visual Inspection of Patient condition 

Plan 1.1. Do 1, 2 then 3 in sequence 
1.1.1 Check outward signs of consciousness, hemorrhage, breathing 
1.1.2 Consult electronic heart/blood pressure indication 
1.1.3 Verbal consultation with patient if able. 

1.2 Recall prior condition 
Plan 1.2. Do 1, then 2 in sequence 

1.2.1 Recall previous patient condition from chart/record if available 
1.2.2 Recall from memory if not on chart and recall is possible 

Build mental picture of patient condition—throughout emergency situation 
Plan 2. Do 1, 2, if mental picture is insufficient repeat 1.1 and 1.2. Do 2.3 and 2.4. 
 2.1 Determine current status 

2.2 Determine past status 
2.3 Establish perceived condition delta    
2.4 Determine potential improvement/degradation probability 

3.  Perform treatment—throughout emergency situation 
 If 2 requires Plan 3. Do 1-2-3-4,  
 3.1 Establish appropriate treatment 

3.2 Execute treatment 
3.3 Check effectiveness of treatment 
3.4 Record treatment 

4.  Transfer information—on arrival at primary care facility 
Plan 4. Do 1, iterate through 2-3-4, 5 for all characteristics repeat from 3 if error detected 
 4.1 Identify triage nurse/appropriate handoff professional 

4.2 Recall patient status 
4.3 Verbal transfer of individual patient characteristic 
4.4 Await accurate confirmation through talkback protocol from receiving agent. 
4.5 Check for error in talkback protocol 
4.6 Once complete and content with accuracy and completeness of information transfer 

conduct formal hand over, including paperwork. 
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Task 1B – User Analysis 

EMT, triage professionals and trainees, and military Medivac and receiving medics were 

considered to be the primary users of the DSS. A user analysis was conducted to further 

understand the characteristics, motivations, and background of the user population. 

Users were questioned on personal characteristics such as age, experience, visual and 

auditory capabilities as well as impairments. Unstructured interviews with open-ended 

questions were used to elicit additional detail from users on how their characteristic 

impact how they conduct tasks. In addition, more general data on the age ranges, gender 

profiles and user education levels were conducted. The main findings of this process 

were that clear, unambiguous information was key to accurate recall by the receiving 

agent. Talkback protocol, where verbal confirmation of information transfer is given by 

both transferring and receiving parties, is key to information assurance. The task is 

generally high workload but depending on the severity of the injury there are times 

where workload is reduced. Understanding the accuracy and integrity of the system was 

considered important to all users. There was some reluctance towards including personal 

information in a system that could be used to gather individual performance data. Visual 

display modalities were preferred for permanence, although auditory displays were 

generally considered acceptable but may suffer in louder environments. Simplicity was 

considered important in all aspects of a ToC DSS.  

Task 1C – System Analysis 

The prototype ToC DSS interface is based on a prototype previously developed (Stone, 

2019). The system summarizes current patient information but also predicts potential 
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future states based on a predictive AI model trained on data from the National 

Emergency Medical Service Information System (NEMSIS) database (Mann, 2016). This 

predictive model is the AI element requiring transparency information. 

The AI in this model is primed by user input of patient parameters: age, gender, injury 

type (gunshot, blunt force trauma, etc.), injury location and vitals (3 level input for 

hemorrhage, circulation, respiratory, airway, consciousness). The model then predicts 

potential future patient states based on information drawn from events with correlated 

parameters in the NEMSIS database (Mann, 2016). The model outputs a predicted 

patient state at the estimated time of arrival at a primary care facility. Screenshots of the 

prototype ToC DSS are shown in Figures 2A.4 and 2A.5.  

 
Figure 2A.4. Baseline Transfer of Care DSS – Patient Status Input Interface 
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Figure 2A.5. Baseline Transfer of Care DSS – Patient Status Tracking Interface 

Framework Implementation – Define Stage 

Task 2A – Transparency Task Definition 

What are the specific issues relating to transparency between human and machine 

agents in this specific context?  

• The ToC task requires efficient information flow between the EMT and triage 

professionals.  

• The task requires sensitive information to inform decision support. 

• The system improves as it collects additional information on the task through 

reinforcement learning. Developing understanding of this goal in human agents 

allows for improved human-machine teaming.  

What are the existing or future impacts of a lack of transparency? 

• Users less likely to trust the system if predictions do not match outcomes. 

• Users may be unlikely to share information with machine agents if the potential 

uses of the data and associated consequences are unknown.  
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How can these transparency implementations improve outcomes? 

• Introduce uncertainty associated with prediction of patient states can allow users 

to calibrate their trust of the system and have a clear understanding of 

uncertainties in advice provided by machine agents.  

• Introduction of transparency information on prospective and retrospective data 

use can improve data integrity and feedback for reinforcement learning as well as 

improve trust between human and machine agents.  

• Introducing transparency measures and improving trust can enable users to 

better predict machine behavior, potentially reducing workload and improving 

SA.  

How might poorly implemented transparency negatively affect outcomes? 

• Poorly implemented transparency measures where users existing mental models 

are disrupted can negatively impact both task performance and trust.  

• Poorly prioritized use of alerts to cue users to transparency information, 

particularly audible or haptic, can increase alert fatigue, reducing trust and 

increasing workload.  

• ToC is a high workload task. Providing additional information can increase 

demand for user’s cognitive resources, impact task performance and undermine 

trust. 

Task 2B – Identify Required Transparency Level 

The transparency task definition highlights the need for both descriptive transparency 

measures and uncertainty information so in this case we define the required 

transparency level as Level 3. 

Task 2C – Define Prospective and Retrospective Transparency Elements 

The prospective transparency elements are comprised of use of user information for 

performance assessment and use of task input information for ToC task. The 
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retrospective transparency elements are comprised of uncertainty in vital state 

predictions provided by the DSS, biases in existing data, incomplete or incorrect data, 

and sparse data. 

Task 2D – Calibrate Responses  

Expected relationships between constructs: 

• Improving transparency improves trust in the system (Mercado et. al. 2016; de 

Fine Licht & de Fine Licht, 2020). 

• Improving transparency improves user performance (Mercado et. al. 2016).  

• Additional transparency information increases workload and reduce the 

availability of cognitive resources (Helldin, 2014). 

• Increased SA improves task performance (Ikuma et al., 2014). 

• Increased trust improves SA (Yoko, 2006). 

• Increased workload can reduce SA in the time critical task and vice versa (Endsley, 

1995). 

• Expected impacts derived from these relationships: 

• Improved trust in ToC DSS 

• Improved SA in both EMT and triage professionals 

• No effect on task workload 

Task 2E – Requirement Definition 

Requirements: 

• The system will provide uncertainty information to the user to improve trust 

calibration in the vital state prediction display. 

• The system will provide information or alerts to the user to notify sparse or 

incomplete data driving advice provided by the system.  

• The system will inform the user of the limitations of use of required user 

information and inform of all legal information. 
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• The system will prompt the user if required input task information (user actioned) 

is missing.  

• The system will alert the user to potential biases in existing data (e.g., age or 

location related variations in decision support advice).  

• The system will provide additional transparency advice without increasing task 

workload. 

Framework Implementation – Ideate Stage 

Task 3A – Transparency Solution Conceptualization 

Requirement 1: The system will provide uncertainty information to the user to improve 

trust calibration in the vital state prediction display. 

Solution concept: 

• Integrate additional transparency information: The existing DSS provides 

projected patient status probabilities for each vital statistic indicating the 

percentage likelihood that the end state of the patient will be normal (green), 

poor (orange) or critical (red). Introducing an error bar based on one standard 

deviation of the underlying data will give the user an indication of how uncertain 

each parameter projection is.  

• In addition to this, the DSS provides an estimated recovery probability. Here a 

less complex transparency implementation detailing a recovery probability range, 

utilizing a single standard deviation could provide uncertainty information with 

minimal additional attentional requirement.  

Requirement 2: The system will provide information or alerts to the user to notify sparse 

or incomplete data driving advice provided by the system.  

Solution concept: 
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• Integrate additional transparency information: Introduce a red, orange, green 

scale labelled ‘Data Integrity’ to highlight potential issues (orange) and definite 

issues (red). When the indicator is green, no action is needed. Implementing an 

interrogatable warning where the indicator can be clicked to provide additional 

information could enhance transparency and minimize the increased workload, 

allowing the user time to determine the detail of the problem.  

Requirement 3: The system will inform the user of the limitations of use of required user 

information and inform of all legal information. 

Solution concept: 

• Integrate additional transparency information: Provide a clickable information 

button with a short cue phrase to highlight use of data and provide the means to 

interrogate the interface further. No alerts will be associated with this, and it is 

assumed users will utilize this transparency functionality if needed.  

Requirement 4: The system will prompt the user if required input task information (user 

actioned) is missing and highlight the specific areas requiring attention. 

Solution Concept: 

• Enhanced provision for two-way human machine communication: The system will 

provide additional input mechanisms in the interface to enable users to input key 

data more easily. Initially, this will be a passive visual display option. Where vital 

information regarding patient status is missing, the system will include provision 

for a voice alert combined with either voice or manual input modalities. Only one 

audio alert will be given but a visual marker indicating the missing information 

will be provided. This will include a secondary transparency message to inform 

the user of the impact of the missing information.  

Requirement 5: The system will alert the user to potential biases in existing data (e.g., 

age or location related variations in decision support advice.) 
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Solution Concept: 

• Integrate additional transparency information: Introduce a red, orange, green 

scale labelled ‘Data Bias’ to highlight potential issues (orange) and definite issues 

(red). When the indicator is green, the user does not need to take action. 

Implementing an interrogatable warning where the indicator can be clicked to 

provide additional information could enhance and minimize the increase 

workload, allowing the user time to determine the detail of the problem.  

Requirement 6: The system will provide transparency advice without increasing 

workload. 

Solution Concept:  

• All transparency solutions are designed to minimize time dependency and 

additional cognitive resource requirement. Where provided, additional 

transparency information is scalable – immediate alert of potential issues with 

further detail available when user has cognitive resources to spare. 

Framework Implementation – Prototype Stage 

Task 4A – Prototype 

A low-fidelity prototype was developed in photoshop to include the transparency 

concepts outlined in the ideate stage, specifically the input and patient vital displays. The 

transparency measures included in the prototype including transparency measures are 

annotated in Figures 2A.6 and 2A.7 (baseline interface elements are shown greyed out 

for clarity). 
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Figure 2A.6. Transfer of Care DSS with Transparency Measures – Patient Status Input 

 
Figure 2A.7. Transfer of Care DSS with Transparency Measures – Patient Status Tracking 

Discussion 

Transparency in AI-based systems is essential for effective HMT. This is especially true in 

scenarios that are inherently risky and time-critical (e.g., ToC during emergency medical 

treatment). It is imperative that the information users receive from the systems they 

work with be interpretable, and that contributing factors and rational that lead to the 

agent’s recommendations and/or actions are clear. We have proposed a framework for 
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the integration of transparency measures in time-critical decision making, which takes 

into account the complex ways in which transparency influences trust, workload, and SA, 

and demonstrated an implementation of the first four stages of this framework in a 

prototype ToC DSS. The framework maintains the advantages of design thinking and 

integrates additional structure to streamline design choices. We establish three novel 

adaptations to design thinking to accommodate transparency integration. First, we 

consider all agents, both human and machine as equal stakeholders when developing 

empathy and a deep understanding of the problem. Second, we define key constructs for 

design and test of transparency in time-critical decision support: trust, workload, and SA.  

In addition to these measurement constructs, we include definitions of three 

transparency levels and the concepts of prospective and retrospective transparency to 

structure our adapted design thinking. We establish the complex, non-linear and task 

dependent nature of these relationships and rather than prescriptive design rules, 

suggest these be considered as trade-offs in the design process. Finally, we establish 

solution themes which guide the designer in thinking about the methods, both to 

integrate transparency, and mitigate impacts across the key constructs we have defined.  

As AI becomes more powerful and complex, the need for transparency designers 

to develop a deep understanding of the model, its purpose, and the underlying data 

becomes even more important. Including machine agents in the empathy stage of design 

thinking aims to ensure that consideration of both humans and machines in the design 

stage. To ensure AI is human-centric, the transparency designer must ensure that this 

understanding is passed in suitable detail to the end-user.  
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We believe that this framework can be followed to expedite the integration of 

transparency in time-critical decision support. Allowing flexibility and adaptability to 

produce task specific solutions but giving enough structure and understanding of the 

potential benefits and drawbacks of solutions to enable transparency requirements and 

solutions to be more quickly developed and tested. Although we have established 

evidence for the contributions to this framework, and demonstrated the first four stages, 

it remains to demonstrate the testing stage to understand the entire framework. We 

therefore propose a case study implementation of the framework test stage. 

As noted, the test phase was not completed due to the impossibility of human 

testing due to COVID-19 restrictions in place during Spring 2021. The elements of the 

implementation task conducted used task analysis and user profiling in the empathy 

stage from the baseline system development. As the tasks are identical, we believe this is 

not a major limitation. The remaining stages formed most of one iteration of the design 

thinking framework for the integration of AI transparency and were completed in 2 days. 

In a full iteration, the empathy and test stages are likely to be more time consuming and 

complex than these stages. During the implementation of the framework, it was found 

that the define stage needs less restrictive, definition of levels and types of transparency 

as a system might require different levels of transparency across all individual 

requirements.  

Once human subjects testing becomes possible again, we aim to conduct user 

testing on the prototype ToC decision support system, developed in the current study 

against the baseline prototype (Stone 2019). We believe this will provide evidence to 
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support our assertion that trust, workload, and SA are key to successful integration of 

transparency measures in time-critical decision support. Establishing time-criticality in 

the future study is key to demonstrating this framework in the context for which it is 

designed. It will therefore be important, in so far as is possible, to represent the 

environment and pressures of the real-world task and conduct assessments with 

participants drawn from the medical professional community with experience in ToC.  

Conclusion 

We successfully developed and implemented a framework for the design of transparency 

measures in an AI-based DSS based on the design thinking framework. Only one iteration 

of the prototype and test was possible and will require further testing to determine how 

successful the framework is in the fast iteration phase. Overall, the transparency 

integration framework has shown the potential to ensure robust integration of 

transparency measures in time-critical AI-based decision support. 
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End of Paper: Development of a Novel Hybrid Cognitive Model Validation Framework for 

Implementation Under COVID-19 Restrictions 

 



 

129 
 

Chapter 3 – A Complete Design Framework for XAI in TCS 

The first two chapters, and the associated papers establish that XAI is a complex 

problem, and one that the research community is just beginning to address. While this 

means there are opportunities for original research, the vastness of the unknown is 

somewhat daunting. In the previous paper we established a design framework for XAI, 

and this chapter extends that framework by instantiating the framework in a real-world 

problem and validating the tools and protocols defined in the framework through a user 

study.  

To determine where to focus this stage of the research, I looked back at the XAI 

design framework in paper three, and noted three of the five design thinking stages that 

would most obviously benefit from additional development – Empathy, Prototype and 

Test, which, as of the end of chapter 2, did not have XAI specific design elements, see 

Figure 3.1. This is more an incremental focus than the evolution between the background 

development of chapter one, and the crystallization of the research concept in chapter 2, 

but still addresses a key development area of the XAI framework. 
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Figure 3.1 Overview of the Design Thinking Framework at the end of stage 2. 

I felt at this stage that the most important problem to consider was the 

development of a means to assess the performance of XAI in TCS, and decided to focus 

chapter 3 on the development of the prototype and test stage of the XAI design 

framework. 

In this chapter, therefore, I address the need for assessment methods compatible 

with the fast iteration requirement and TCS in general. Specifically, I focus on measures 

and metrics for the underlying constructs of XAI in TCS, specifically trust and workload. 

This updated version of the XAI design framework provides a structured approach to the 

design of XAI systems, with bespoke tools at each of the design phases tailored to the 

problem of integrating XAI in TCS. The additional elements of the XAI design framework 

covered in chapter 3 are shown in Figure 3.2.  
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Figure 3.2 Stage 3 XAI Design Framework concept 

The paper presented in this chapter details the development of these assessment 

methods. This covers the conceptualization of assessment methods, through to the 

development of an experimental program to provide evidence for their effectiveness and 

determine if they should be included in the XAI design framework.  

In the context of the AI copilot example, this chapter aims to provide the designer 

with a means to determine whether XAI measures included by the designer increase task 

performance, along with an assessment of the potential impacts on trust and workload, 

which might have positive or negative implications for the drone pilot task. Using 

physiological measures is particularly important for tasks such as drone pilotage, and TCS 

in general where subjective, questionnaire based methods are difficult to implement 

without affecting the nature of the task.  Including these elements in the framework is 

key to a fast iterative design framework, enabling designers to make informed, evidence-

based updates to prototypes.   
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ABSTRACT 

Artificial Intelligence (AI) has seen a surge in popularity as increased computing power 
has made it more viable and useful. As AI becomes more complex, the rationale behind 
decisions and the relationship between the data and model output can be harder to 
interpret. This can result in incorrect predictions, classifications, or interpretations, 
leading to over-reliance, under-reliance, or confusion. Additionally, AI models can 
contain algorithmic, data and design bias, which may exacerbate negative outcomes, 
particularly minority populations. 

Explainable AI (XAI) aims to mitigate these problems by providing information on the 
intent, performance, and reasoning process of the AI. Where time is limited, or cognitive 
resources are highly utilized, additional information can negatively impact performance. 
Ensuring XAI information is intuitive and relevant allows the user to quickly calibrate their 
trust in the AI, in turn improving trust and task performance, and reducing workload.  

This study details a human-subjects experiment do establish physiological assessment 
metrics for XAI in time-critical systems. More specifically, gaze entropy and gaze duration 
are considered as candidate metrics for workload and trust, respectively. These metrics 
are compared to the performance of baseline subjective measures of trust and workload 
to establish evidence for their use in an XAI design framework.  
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Introduction 

Artificial Intelligence (AI) has seen a surge in popularity in the last decade since increased 

computing power made it more viable and useful. In addition to this, the influence and 

impact of AI is growing day-by-day, and the importance of explainability in AI begun to 

gain traction in both regulatory (EU, 2018; Kratsios, 2018) and research organizations 

(Ezer et al., 2019; Gunning & Aha, 2019). Although there are benefits associated with AI, 

there are also potential drawbacks. As the power and complexity of AI develops, the 

rationale behind the decisions and the relationships between the underlying data and 

model output can be harder for human users to interpret, (Strobel, 2019). Complex AI 

models can contain unseen algorithmic bias and lead to over-reliance (Kim et al., 2020) 

and automation surprise (Parasuraman & Riley, 1997; Sarter, et al., 1997). Despite the 

power to analyze large data and form complex representations and predictions, there is 

often little clarity provided to users about how the output is determined (Topol, 2019). 

This can result in incorrect or harmful predictions, classifications, or interpretations by AI 

models (Danks and London, 2017; Garcia, 2016) and an inability for users to identify 

these failures (Kim et al., 2020; Parasuraman and Riley, 1997). Even where there are no 

specific failures, decision makers demand explainable systems (Hoffman et al., 2018), 

while users have a right to know why decisions that affect them are made (Goodman and 

Flaxman 2016; European Union 2018). 
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Explainable AI (XAI) is a developing field of research that focuses on ensuring that 

an AI interface provides transparency to the user through interpretable information on 

the rationale of the model along with its output (Doran et al., 2017). This information 

allows the user to determine whether to trust AI information (Xu et al., 2019). However, 

providing additional information requires additional cognitive resources and has the 

potential to cause unintended negative consequences due to increased workload (Ha et 

al., 2006; Helldin, 2014; Parasuraman & Riley, 1997). The potential for negative impacts 

of increased information is amplified in high workload or time-critical tasks, but the need 

for XAI and model transparency is not reduced (Wachter et al., 2017). The potential for 

XAI to provide improvement in human-AI teaming is highlighted by Mercado et al. (2016), 

who demonstrate a significant multivariate improvement in operator performance 

through the implementation of transparency in AI. Currently, there is debate as to the 

meaning of XAI and transparency, with some using the terms interchangeably and some 

highlighting significant differences between them. Mohseni, Zarei & Ragan (2021) define 

XAI as a potential solution to the need for accountability in AI, through the provision of 

interpretable information on AI decision-making processes and logic to system operators, 

noting the difficulty this may present given the diversity of tasks to which XAI might be 

applied. Adadi, & Berrada, (2018) more broadly define XAI research as a means to 

improve trust and transparency in AI-based systems and highlight the importance of 

explainability in the continued progress of AI. Throughout this research, transparency is 

considered as a means to achieve XAI, particularly at the interface level. To ensure clarity 

and consistency throughout the research, the following definitions were adopted: 
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“Explainable AI is a method for improving trust and transparency on AI systems, to 

improve accountability and decision-making performance of Human-Machine 

teams.” 

“Transparency is the quality of an interface pertaining to its abilities to afford an 

operator's comprehension about an intelligent agent’s intent, performance, future 

plans, and reasoning process” (Chen et al., 2014, p. 2).   

Transparency offers a means to ensure systems remain human-centric and 

empower operators and is a key aspect of building trust in both human-human and 

human-AI teams (de Fine Licht & de Fine Licht, 2020; Mercado et al., 2016). Achieving 

transparency in information systems is important in preventing negative outcomes and 

creating accountable systems (de Fine Licht & de Fine Licht, 2020).  

A design framework for the integration of XAI information into TCS (Stone et al., 

2022) was developed to provide a structured approach to XAI integration. The output 

framework consisted of a five-phase approach based on design thinking (Kembel, 2009) 

and focusing on transparency as key to achieving XAI. The initial iteration of the XAI 

design framework focused on the first three phases, providing a structured approach to 

the definition of the design problem and associated requirements through to a 

structured approach to solution conceptualization. The final two stages of the original 

design thinking approach (Kembel, 2009) on which the XAI framework was based, called 

for a fast-iterative approach to prototyping and test, no additional XAI specific additions 

were for these stages.  

The main contribution of the XAI design framework (Stone et al., 2022) was 

model of time-critical XAI systems (TEXAS). This model has three XAI levels based on the 
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two-level SA-based Agent Transparency (SAT) model (Chen et al., 2014), but augmented 

by a third XAI level combining the first two. The TEXAS model levels are:  

• Level 0 - no XAI information. 

• Level 1 - XAI information, or ‘Rationale’ information enables understanding of 

“what is going on and what the machine agent is trying to achieve?” and “Why 

does the agent do it?” (Chen et al., 2014. P.2).  

• Level 2 XAI information, or ‘Certainty’ gives certainty or likelihood of error, and 

answers the question “what should the operator expect to happen?” (Chen et al., 

2014. p. 2).  

• Level 3 is a combination of both Level 1 Rationale and Level 2 Certainty.  

The specific interpretation of these levels is task specific, but this model helps to 

conceptualize how XAI and transparency information can be scalable and appropriate to 

the demands of the specific task.  

Explainable AI goes beyond these simple level classifications and is itself a 

complex, multifaceted problem (Helldin, 2014) covering problems as diverse as data bias 

(Datta et al., 2015; Johnson, 2020), explainable algorithms in AI (Kim et al., 2020), ethics 

and regulation (EU, 2018; Kratsios, 2018; Larsson & Heintz, 2020) and the open sharing 

and reproducibility of results (Haibe-Kains, et al., 2020). Designing human-centric XAI 

requires an understanding of constructs such as trust, workload, situational awareness 

(SA) and task performance. Each of these problems is complex, interrelated and can vary 

from task-to-task, especially in TCS (Wachter et al., 2017). While there are numerous 

studies looking at the need for XAI and the development of technical solutions such as 

SHAP (Lundberg & Lee, 2017). and GRAD CAM (Selvaraju, et al., 2017), there is a notable 

gap in the understanding of the implementation and implications of technical solutions. 
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That is, which solutions are appropriate for a given task and how and when to implement 

them when designing user interfaces.  

Many approaches to XAI focus on the visualization of analytics such as data 

labelling (Bernard, Hutter, Sedlmair, Zeppelzauer, & Munzner, 2021), visualization of the 

classification process through saliency maps (Mundhenk, Chen & Friedland, 2019). In the 

case of image classification, the goal of explainability is to provide information relevant 

to both the image and the class of interest. (Doran, et al., 2017). The key requirement of 

XAI is to provide additional information to the user about how the goals of the system, 

such that they exist, were derived and why (Chen et al., 2014). This requires an 

understanding of exactly how the underlying model was built, but here there needs to be 

care taken to ensure that the information presented in the system is readily interpretable 

by the user (Zuk & Carpendale, 2007). 

The problem of XAI is never more important than when designing interfaces for 

Deep Learning models, which are often seen as “black-box” systems (Adadi  & Berrada, 

2018; Kim et al., 2020). It also follows that explaining the rationale behind the model and 

its decisions to the user becomes more difficult as the complexity of the underlying 

model increases (Zuk & Carpendale, 2007). In many AI systems, the performance of the 

system can be defined in terms of the model accuracy on test data. Providing uncertainty 

information to the user, to establish a level of transparency and XAI gives an idea of the 

performance but needs additional context related to the reasoning process (Bhatt et al., 

2020). It is also important to ensure that any transparency information is interpretable as 

end-user understanding of XAI and its underlying constructs might be highly variable.  
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This increases the demand on cognitive resources and hence workload (Bhatt et 

al. 2020). Time critical systems were chosen as the focus of this design framework as they 

represent the most demanding implementation of XAI and transparency, where users 

may not have time or resource to attend to additional information. Not only is there the 

impact of XAI information on trust and task performance, but there is also the impact of 

the introduction of additional information into a task context where the human agent is 

subject to high temporal demand.  

Time-critical tasks increase the need for human operators to rapidly process 

information and make decisions (Gusenleitner, et al., 2019), potentially resulting in errors 

and delays (Horvitz & Barry, 2013) and impacting the legitimacy of information (de Fine 

Licht, 2011; de Fine Licht & de Fine Licht 2020), which can in turn affect trust. In experts, 

time-critical decisions are often characterized by recognition-primed decision making 

(Klein, 1993) but is more generally classified by a high temporal demand and a 

requirement to complete a task in a finite time (Teh, et al., 2014). As temporal demand 

increases, the availability of cognitive resources diminishes (Rivero, 2014; Wachter 2017), 

potentially resulting in automation bias and over-reliance (Cummings 2017; Goddard et 

al., 2012). 

Trust, workload, and SA were highlighted in the development of the XAI design 

framework as key constructs in the assessment of XAI integration. Transparency is key to 

XAI and an antecedent to trust in both human-human and human-machine teams. Trust 

is a social construct that has been identified as important for not just the development of 

interpersonal relationships (Jones & George, 1998; Lewicki et al., 2006; Simpson, 2007), 
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but has also been identified as important for interactions with non-human entities such 

as machines (Muir, 1987), robots (Hancock et al., 2011), automation (Schaefer et al., 

2016), and AI (Glikson & Woolley, 2020). Trust is defined as a willingness to be vulnerable 

to another, without the capability to monitor their actions (Mayer et al., 1995). Trust is 

particularly necessary when there is an element of risk and the trustor (the one who is 

trusting) needs to interact with another party or entity (the trustee) to accomplish a task 

or foster a relationship for long-term interactions (Mayer et al., 1995). Existing measures 

of human trust in automation (Jian, Bisantz & Drury, 2000) rely on subjective 

questionnaires, delivered after the task. This is not ideal for the time-critical task as it 

requires the task to be interrupted and does not give real-time variations in trust, which 

is important when it comes to measuring the trust calibration of specific XAI information. 

As such, this research aims to demonstrate a physiological measure of trust in 

automation in TCS that can provide real-time variation in trust metrics. 

In considering trust, and in particular human trust in automation, it is necessary 

to consider the differences between human-human and human-agent trust. 

Lewandowsky et al. (2000) and Madhavan & Wiegmann (2007), found differences in 

human-machine trust regarding formation, violations, and repairs, noting that that 

humans instill more trust in machine agents during initial interactions than they do 

during human-human interactions. In otherwards, people have a higher baseline of trust 

in machine agents when compared to people. A second way trust differs between 

humans and agents is in when there is a trust violation. If trust is ever violated, people 

tend to lose trust quicker in a machine and it takes longer to re-establish, compared to a 
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trust violation from a human. People are generally more forgiving of other humans than 

they are of machine agents (Lewandowsky et al. 2000).  

As humans become more familiar with either a human or machine providing 

information, they dynamically calibrate their level of trust in the system, in both the 

provider, and the information itself (Wachter et al., 2017). Trust calibration specifically 

refers to “the correspondence between a person’s trust in the automation and the 

automation’s capabilities [or performance]” (Lee & See, 2004, p. 55). Over-trust, can lead 

to high compliance to potentially false information, also called misuse where under-trust, 

or disuse, can lead to failure to follow good advice or inefficiency in the HMT 

(Parasuraman & Riley, 1997). Properly calibrated trust allows for effective HMTs 

(Parasuraman et al., 2000; Sheridan & Verplank, 1978), maximizing the potential of the 

automation to  lower workload for operators  and improving the HMT performance 

(Balfe et al., 2015; Lewis et al., 2018). Explainable AI, and the provision of transparency 

information aims to enable faster trust calibration, even down to individual decisions or 

single information points. Measurement of trust and task performance are key to the 

assessment of trust calibration and therefore critical in determining successful 

implementation of XAI.  

Workload is also an important construct to consider, as it is key to determining 

the impact on the user of the additional XAI information in TCS. This is important as time-

critical tasks increase the need for human operators to rapidly process information and 

make decisions (Horvitz & Barry, 2013), which can in turn affect trust. Similar to trust, 
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there is a need for a physiological measure that is compatible with the assessment of 

workload in real-time, without reliance on post-experiment questionnaires.  

Situational Awareness is also an important construct identified by Stone et al. 

(2022), however no physiological measures for SA were identified in the literature. As 

such, this research focusses on the development of evidence-based physiological 

measures for trust and workload, compatible with the assessment of XAI in TCS.  

Significance of the research 

XAI offers a means to ensure automation remains human-centric. Through XAI, 

the benefits of automation can be maximized while enabling human operators to 

mitigate the potential unforeseen negative impacts that might arise, and more accurately 

and quickly calibrate their trust. (de Fine Licht & de Fine Licht, 2020; Lee & See, 2004; 

Mercado et al., 2016). Trust is a key antecedent of XAI and transparency, but the impact 

of workload is also important, particularly in TCS, where there is potential for XAI 

information to negatively impact task performance. As a result, the need for XAI needs to 

be balanced with the impact on a human operator’s cognitive resources and the resulting 

impact on trust and workload. Therefore, to ensure XAI is beneficial in the context of TCS, 

it is important that robust, evidence-based assessment measures and metrics are 

available to inform the development process. 

 Provision of evidence based XAI assessment metrics allows researchers to 

determine the impact of designs on trust and workload simultaneously and in real-time, 

using objective, physiological measures has potential benefit in all human-machine 

teaming assessments, not just XAI or TCS. More broadly, providing engineers and 
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designers with an enhanced understanding of the implications of integration, along with 

tools to guide the process can ensure effective human-machine teaming without 

compromising task performance.  

Integration of these assessment techniques into the XAI design framework (Stone 

et al., 2022) provides XAI specific tools at each of the 5 design thinking stages and 

ensures the framework can guide XAI design throughout the process. This solution feeds 

directly into the design XAI to counter the problems associated with the implementation 

of complex AI systems such as algorithmic bias (Garcia, 2016), over-reliance (Kim et al., 

2020) and automation Surprise (Parasuraman & Riley, 1997). The significance of this 

contribution is to ensure that XAI does not come at the cost of task performance and that 

unintended consequences can be better predicted and avoided. Providing an easy-to-use 

framework to guide designers in the implementation of XAI, allows those who are less 

familiar with the specific problems associated to quickly define the XAI elements of their 

particular problem and guide them through the concept ideation and prototype 

development and test phases. This may be particularly important for user experience 

designers or AI developers in bridging the gap to XAI and ensuring human-centric design. 

This understanding has implications for the integration of AI into almost any decision 

support or supervisory control application. The ability to know when to trust automation, 

and quickly and accurately calibrate trust in specific information, could be of benefit to 

all decision makers and supervisory control operators. 
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Aims 

The main aim of this study is to establish evidence-based physiological measures for trust 

and workload to be used in the assessment of XAI performance in TCS. Secondly, the 

study aims to test the performance of an instantiated XAI system developed by the 

design thinking framework (Stone et al., 2022) and understand the impact of XAI and 

transparency measures in TCS. System reliability is the key antecedent to trust 

considered in this study and it is expected that these are positively correlated, i.e. trust 

increases with increased system reliability. Similarly, workload is expected to be 

positively correlated to its antecedent temporal demand. The final aim of this study is 

therefore to establish these relationships between task performance, trust, and 

workload, by varying reliability and temporal demand, to provide better prediction of 

system behavior and guide prototype iteration. To meet these aims, the following 

specific objectives and research questions were identified: 

• Identify or develop candidate objective physiological measures for trust and 

workload. 

• Determine if the proposed physiological measures are predictors of trust in TCS. 

• Determine if the proposed physiological measures are predictors of workload in 

TCS. 

Understand the relationships between XAI, human trust in automation, workload, and 

task performance in TCS including the impact of XAI. 

• Map the response of workload, trust and task performance and create an 

indicative model of XAI task performance.  
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In addition to these core objectives, this study will examine the performance of an 

instantiation of XAI information developed using the XAI design framework (Stone et al., 

2022), specifically to determine the effect on task performance, trust, and workload in 

TCS, along with the usability of the XAI information presentation.  

Physiological Measures. 

Workload and trust were previously identified as key performance measures for XAI in 

TCS (Stone et al., 2022). Subjective, questionnaire-based methods such as the NASA TLX 

(Hart & Staveland, 1988), see Appendix A, and the Adapted trust in automation scale 

(Jian, Bisantz & Drury, 2000), see Appendix B are for measuring workload and trust 

respectively, and have been previously validated. These methods are used in this 

experiment to baseline workload and trust against the physiological methods required to 

assess operational performance in TCS. The subjective questionnaire methods are not 

suitable for performance assessment of TCS as they are intrusive, requiring participants 

to complete questionnaires, either during or after tasks.  

A less disruptive, and potentially more objective method of trust in automation 

assessment using eye-tracking was proposed by Lu and Sarter (2019). In this study, eye-

tracking and specifically gaze times were shown to predict trust in automation. Similarly, 

eye-tracker measurements in the form of gaze entropy and pupil diameter (Wu et al., 

2020) are the presumptive physiological measures of workload. The authors note that 

gaze entropy increased with workload, with a correlation factor of 0.51. 

Eye-tracking is not the only physiological measure that could be used to measure 

trust and workload in human-AI teams, but  it offers a solution that requires low 



 

146 
 

preparation times, and less intrusive set-up for participants. The assessment methods 

proposed for trust (Lu and Sarter, 2020) and workload (Wu, et al.,  2020), offers the 

potential for a combined XAI performance measurement in one system. Finally, a 

suitable eye-tracker was available in the human performance laboratory at Wright State 

University. No alternative physiological measurement systems, such as EEG, or heart rate 

were considered at this stage of the study.  

Assessment Platform Development 

To enable the assessment of XAI information in terms of trust, workload, and task 

performance a suitable assessment platform was needed. Existing approaches to similar 

problems were considered, however given the complexities of the XAI task and the 

requirement to conduct the study using non-expert participants recruited from the 

university population, a generic assessment platform, with a simple, time-critical system 

and AI-assisted decision support elements was developed. The platform's key 

requirements were for participants to be required to make a time-critical decision, with 

the provision of AI advice that they could choose to trust or ignore. Trusting, the AI 

should provide a time advantage if correct and trusted by the participant.  

This approach requires careful design of the temporal demand and task 

complexity of the game and the associated decisions, along with how the AI can assist 

the decisions both with and without XAI information. Finally, ensuring that non-expert 

participants are suitably familiar with the type of decision to ensure the trust calibration 

can be achieved reliably with minimal training is important. A literature review failed to 

identify any suitable existing trust or AI-decision support assessment games that meet 



 

147 
 

these requirements. This was due to the combination of trust modulation and time-

critical decision requirements. There are many examples of games that aim to assess 

trust between human agents or trust between humans and machines and/or automation 

and games that assess human decision making. These are classified as trust games and 

tactical decision games respectively and they both offer a means to assess elements of 

the impact of XAI integration, but neither is a complete solution. 

Trust Games 

Trust games have been widely used in behavioral economics and psychology. A well-

known example is the prisoner dilemma (Poundstone, 1993) , which is a thought 

experiment that proposes a situation where two participants adopt the role of the 

trustor and trustee in an experiment. If the parties collaborate, both can improve their 

outcomes, however if either or both break the trust, the total payout is lower, but one 

party can still increase their success. This has had many different variations, but the key 

is that there is a potential negative outcome, and the participants have a level of  

vulnerability in the game – that is that the user must have a risk-reward trade-off within 

the game. 

Tactical Decision Games  

One approach to the problem of development of a suitable assessment platform for 

Transparency in AI decision support in high workload environments is a Tactical Decision 

game tailored to the requirements of the problem and the associated transparency 

levels. Tactical Decision games are widely used in research to train and assess decision 

makers and the performance of decision support systems. There is inherently an element 
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of trust in decision making when a user acts on advice given either by a human or 

machine, however there was no specific instances of research that attempted to 

modulate or assess trust as a variable in tactical decision games. Crichton et al., (2000) 

demonstrated the use of tactical decision games to train staff working in high reliability 

industries in decision making, while Hinrichs, et al. (2021) considered the implementation 

of machine learning in tactical decision games, noting specific difficulties in the 

application due to the structure of the games. These types of games allow the decision 

choices of participants to be assessed in a controlled environment and the potential to 

modulate transparency information in such a game is applicable to this problem.  

Hybrid Tactical Trust Decision game  

To build a game suitable for the assessment of XAI in TCS, elements from both trust and 

tactical decision games were combined. In this case, the human agent and AI agent must 

collaborate in a supervisory control role, where the human is the trustor with the AI 

providing information being  the trustee. The game will require a user to make decisions 

based on advice from an AI but will contain the elements of risk-reward characteristic of 

trust games. The following requirements were developed to ensure the assessment 

platform enables the assessment of trust, workload, and task performance of XAI 

information, and hence a determination on the output of the XAI design framework: 
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• The game will contain several visual tasks, depending on the number of 

independent variables chosen, with medium to high temporal demand.  

• Participants are provided with AI decision support advice at a defined level of 

reliability. 

• To fulfil the task, participants must decide whether to accept advice given by the 

AI or conduct the task manually.  

• The game will require less than five minutes training 

• The game will be suitable for participants with no previous experience in AI or 

decision support.  

• The game must be able to be played on the Tobii T120 eye-tracker to collect the 

required gaze data.  

It was also important that the complexity and time allowed are designed to 

maximize the impact of the AI advice and produce a benefit to trust in the AI while also 

allowing the task to be completed manually. To meet these requirements, an assessment 

platform designed around image classification ‘Captcha’ tasks, and error identification 

‘spot-the-difference’ tasks was developed. These two tasks are widely understood, and 

representative of tasks associated with internet security and manufacturing applications. 

A prototype game containing both ‘Captcha’ and ‘Spot the difference’ tasks was 

developed and a pilot study on a small sample of 8 participants (5 male, 3 female) was 

conducted to ensure the requirements were met. The ‘Captcha’ image classification task, 

consisted of a 4x4 grid with an image in each grid square, some of which will contain 

targets of interest, some of which will contain objects similar to the targets of interest 

(decoys) and some will contain neither targets, nor decoys. Participants must decide how 

many squares contain targets within a limited time, and could consult an AI, both with 
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and without XAI information. The ‘Spot the difference task provided two images of 

barcodes with differences between the two.  

Detection and localization of differences between barcodes was selected as this is 

distinct from the image types in the Captcha task but still familiar to most potential 

users. Both tasks provided 20 seconds to complete before the images were blurred out, 

and an additional 10 seconds to enter their answer. The prototype hybrid tactical trust 

decision ‘Captcha’ and ‘Spot the difference’ are shown in Figures 3A.1 and 3A.2.  

 
Figure 3A.1 Baseline ‘Captcha’ task design  
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Figure 3A.2 Baseline ‘Spot the difference’ task design  

The prototype game consisted of 16 tasks (8 of each type) with AI advice 

provided, along with a timer to enable tracking of game progress. To ensure consistency 

and definable system reliability, the AI advice was simulated. Baseline High and low 

reliability levels of 50 and 95% were adopted based on trust in automation studies 

conducted by Lu and Sarter (2019). To ensure there are multiple chances for incorrect AI 

advice, the high reliability task had 2 tasks with incorrect  AI advice, where 8 out of 16 

tasks contained incorrect AI advice in the low reliability AI tasks. This resulted in actual 

reliability levels of 50 and 87.5%. While these are different from those used in the Lu and 

Sarter study, they provide suitable separation from the 70% reliability threshold for 

human trust in automation defined by Wickens and Dixon (2007). This upper reliability 

level is in also an achievable level, in line with state of the art image classifiers such as 
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Florence  (Yuan et al., 2021) or Meta Pseudo Model (Pham et al., 2021) which achieve 

ImageNet (Deng et al., 2009) classification accuracies of 90.5% (top 1), 99.02%(top 5) and 

90% (top 1) 98.7% (top 5) respectively. To achieve high and low workload tasks, the 

number of targets, or differences were varied. In the ‘Captcha’ tasks, low workload tasks 

contained 2 to 4 grid squares with targets, where high workload tasks contained 6 to 8 

targets; ‘Spot-the-difference’ tasks had 1 to 3 differences for low workload and 4 to 6 

differences for high workload. 

It was important that there was no ambiguity in correct answers, for instance, 

avoiding images that cannot reasonably be determined to contain a target, or where the 

target is too small to be reasonably identified given the screen resolution and viewing 

distance in the experimental setup. In the case of the ‘spot the difference’ task, 

differences should be unique differences in numbers, single additional elements, or 

single removed elements. Transposition of elements, or addition or subtraction of 

multiple adjacent elements, might be ambiguous to participants and result in impossible 

decisions or falsely trusting and mistrusting the AI. 

 In each of the 16 tasks, no two sets of images or barcodes were repeated to 

prevent learning effects. NASA TLX (Hart et al., 1988) and the adapted trust in 

automation scale (Jian, Bisantz, & Drury, 2000) were used to baseline participant 

workload level and intention to trust the AI, respectively. No XAI information was 

presented to participants in this phase.  

The pilot study was conducted on the Tobii T120 Eye-tracker, following standard 

operating procedures (To and participants with limited or no prior experience of AI 
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decision support systems, were able to complete the tasks at the viewing distance 

required for eye-tracking and with under 5 minutes of training. During the pilot study, 

participants could use the AI advice or conduct the tasks manually.  

The NASA TLX scores gave mean temporal demand of the medium/low workload 

group as 9.7, SD 1.1 and 13.8 SD 1.0 in the high workload group, as measured by the 

NASA TLX. This difference in temporal demand was statistically significant, p=0.03. 

Similarly, the 50% and 87.5% reliability levels resulted in statistically significant 

intentional trust levels, using the adapted trust in automation scale (Jian, Bisantz, & 

Drury, 2000), with a low reliability mean trust of 3.71, SD 0.21 and high reliability mean 

trust  4.65, SD 0.19, p=0.01. 

The pilot study established that the workload and reliability levels used in the 

pilot experiment would be suitable for the human-subjects evaluation. One area where 

there the pilot study was not successful was in developing behavioral trust in 

participants. There was no statistically significant difference between the high and low 

reliability AI, with participants trusting the AI advice less than 50% of the time in both 

models. This result did not align with the significant increase in intentional trust in the 

high-reliability AI tasks. A requirement was identified to produce an imperative for 

participants to match their behavioral trust to their intentional trust level. An additional 

requirement for the main phase of the trial was defined: 

• The game will establish a benefit for participants who trust the AI. 

The aim of this requirement was to establish a  risk-reward trade-off, providing an 

imperative to trust the AI, and make the decision context more meaningful. This 

requirement establishes another requirement on the experimental design: 
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• The experiment must ensure that all participants have an equal opportunity to 

benefit from trust in the AI. 

This concept and the associated requirements formed the basis of the assessment 

platform used in the human-subjects experiment.  

Method 

The experiment was conducted at the human performance laboratory, Dayton 

Campus, Wright State University. Where statistical significance tests are used, α=0.05. 

Where parametric statistical methods are not suitable, alternative non-parametric tests 

will be used.  

Research Design  

The experiment was a mixed design with the AI reliability level varied between subjects 

and all other independent variables varied within subjects, to maximize the information 

collected from each participant and without confounding results across automation 

reliability levels.  

There are four proposed independent variables – two XAI Model specific and two 

task specific. The two model-specific independent variables are XAI information (4 levels: 

0 - No XAI information, 1-reliability information, 2-confidence information, 3-reliability, 

and confidence information), and transparency timing (2 levels: before task, during task) 

in line with the TEXAS model (Stone et al. (2022). The task specific independent variables 

and their levels, as defined in the pilot experiment, are time criticality (2 levels: 1-TLX 

score 5 to 10, 2-TLX score 10 to 15) and system reliability (2 levels: high-87.5%, low-50%). 

This design results in design blocks, for XAI level, XAI timing, model reliability and design 
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workload, which can be utilized in the analysis if there is significant variance between the 

blocks for workload and trust assessment. This gives a 4x2x2x2 experimental design with 

a total of 32 conditions. An experimental matrix was developed to reflect the 

combination of these independent variables, see Table 3A.1.  

The high and low reliability AI models were achieved by introducing inaccurate AI 

advice to ‘break’ user’s trust. Both False Positive and False Negative instances of the 

tasks were included in the inaccurate task sets. To ensure each participant was only 

presented with the same tasks once and only once, 8 different versions of the ‘Captcha’ 

and ‘Spot the difference’ tasks were required (4 high reliability and 4 low reliability 

variants). Eight ‘Captcha’ tasks were developed with high and low variants for ‘Hawk’, 

‘Motorcycle’, ‘Cat’, and ‘Flag’; target classes. Similarly, eight ‘Spot the difference’ tasks 

were generated, with high and low variants of 4 different barcode images. In each case, 

different target images or different variations between images were used to remove the 

potential for learning effects.  

These task variants and the experimental matrix were combined, and a 

counterbalanced experimental design was developed. This counterbalanced design was 

modified to ensure that each participant was presented with inaccurate AI advice at the 

same point in the design. This ensured the experimental design did not inadvertently 

favor any participant, which was critical to ensuring fairness to all participants. The 

modified counterbalanced experimental design matrices for the high and low reliability 

experimental variants are shown in Tables 3A.2 and 3A.3. 
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Table 3A.1 Experimental Matrix for the XAI assessment study 

Task related independent variables TEXAS model independent variables 

Ta
s   

AI Reliability    
(between 
subjects) 

Workload                        
(within subjects) 

XAI Information         
(within subjects) 

XAI timing           
(within subjects) 

 

Low (50%) 

Medium (5<TLX<10) 

Level 0 (No XAI) n/a 1 
n/a 2 

Level 1 (Rationale) Before Task 3 
During Task 4 

Level 2 (Confidence) Before Task 5 
During Task 6 

Level 3 (L1 and L2) Before Task 7 
During Task 8 

High (10<TLX<15) 

Level 0 (No XAI) n/a 9 
n/a 10 

Level 1 (Rationale) Before Task 11 
During Task 12 

Level 2 (Confidence) Before Task 13 
During Task 14 

Level 3 (L1 and L2) Before Task 15 
During Task 16 

High (87.5%) 

Medium (5<TLX<10) 

Level 0 (No XAI) n/a 17 
n/a 18 

Level 1 (Rationale) Before Task 19 
During Task 20 

Level 2 (Confidence) 
Before Task 21 
During Task 22 

Level 3 (L1 and L2) Before Task 23 
During Task 24 

High (10<TLX<15) 

Level 0 (No XAI) 
n/a 25 
n/a 26 

Level 1 (Rationale) Before Task 27 
During Task 28 

Level 2 (Confidence) Before Task 29 
During Task 30 

Level 3 (L1 and L2) Before Task 31 
During Task 32 
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Table 3A.2 Low reliability (50%) Counterbalanced experimental Design 

Group Task ID:  
Task Accuracy: A (Accurate), FP (False Positive), FN (False Negative) 

Task type: Hawk(H), Motorcycle (M), Flag (F) Cat (C), Barcodes 1-4 (B1), (B2) (B3) B4) 

1 1 
H 
A 

9 
B1 
A 

3 
B2 
A 

11 
C 
A 

5 
M 
A 

13 
B3 
A 

7 
B4 
A 

15 
F 
A 

10 
B1 
FN 

4 
C 
A 

12 
B2 
A 

6 
B3 
A 

14 
M 
A 

8 
F 
A 

16 
B4 
A 

2 
H 
FP 

2 3 
H 
A 

11 
B1 
A 

5 
B2 
A 

13 
C 
A 

7 
M 
A 

15 
B3 
A 

1 
B4 
A 

9 
F 
A 

12 
B1 
FN 

6 
C 
A 

14 
B2 
A 

8 
B3 
A 

16 
M 
A 

2 
F 
A 

10 
B4 
A 

4 
H 
FP 

3 5 
H 
A 

13 
B1 
A 

7 
B2 
A 

15 
C 
A 

1 
M 
A 

9 
B3 
A 

3 
B4 
A 

11 
F 
A 

14 
B1 
FN 

8 
C 
A 

16 
B2 
A 

2 
B3 
A 

10 
M 
A 

4 
F 
A 

12 
B4 
A 

6 
H 
FP 

4 7 
H 
A 

15 
B1 
A 

1 
B2 
A 

9 
C 
A 

3 
M 
A 

11 
B3 
A 

5 
B4 
A 

13 
F 
A 

16 
B1 
FN 

2 
C 
A 

10 
B2 
A 

4 
B3 
A 

12 
M 
A 

6 
F 
A 

14 
B4 
A 

8 
H 
FP 

5 2 
B1 
A 

12 
C 
A 

4 
B2 
A 

14 
B3 
A 

6 
M 
A 

16 
F 
A 

8 
B4 
A 

10 
H 
A 

9 
H 

FN 

1 
B1 
A 

11 
B2 
A 

3 
C 
A 

13 
M 
A 

5 
B3 
A 

15 
B4 
A 

7 
F 

FP 

6 4 
B1 
A 

14 
C 
A 

6 
B2 
A 

16 
B3 
A 

8 
M 
A 

10 
F 
A 

2 
B4 
A 

12 
H 
A 

11 
H 

FN 

3 
B1 
A 

13 
B2 
A 

5 
C 
A 

15 
M 
A 

7 
B3 
A 

9 
B4 
A 

1 
F 

FP 

7 6 
B1 
A 

16 
C 
A 

8 
B2 
A 

10 
B3 
A 

2 
M 
A 

12 
F 
A 

4 
B4 
A 

14 
H 
A 

13 
H 

FN 

5 
B1 
A 

15 
B2 
A 

7 
C 
A 

9 
M 
A 

1 
B3 
A 

11 
B4 
A 

3 
F 

FP 

8 8 
B1 
A 

10 
C 
A 

2 
B2 
A 

12 
B3 
A 

4 
M 
A 

14 
F 
A 

6 
B4 
A 

16 
H 
A 

15 
H 

FN 

7 
B1 
A 

9 
B2 
A 

1 
C 
A 

11 
M 
A 

3 
B3 
A 

13 
B4 
A 

5 
F 

FP 
  



 

158 
 

Table 3A.3 High reliability (87.5%) Counterbalanced experimental Design 

Group Task ID:  
Task Accuracy: A (Accurate), FP (False Positive), FN (False Negative) 

Task type: Hawk(H), Motorcycle (M), Flag (F) Cat (C), Barcodes 1-4 (B1), (B2) (B3) B4) 

1 17 
H 
A 

25 
B1 
A 

19 
B2 
A 

27 
C 
A 

21 
M 
A 

29 
B3 
A 

23 
B4 
A 

31 
F 
A 

26 
B1 
FN 

20 
C 
A 

28 
B2 
A 

22 
B3 
A 

30 
M 
A 

24 
F 
A 

32 
B4 
A 

18 
H 
FP 

2 19 
H 
A 

27 
B1 
A 

21 
B2 
A 

29 
C 
A 

23 
M 
A 

31 
B3 
A 

17 
B4 
A 

25 
F 
A 

28 
B1 
FN 

22 
C 
A 

30 
B2 
A 

24 
B3 
A 

32 
M 
A 

18 
F 
A 

26 
B4 
A 

20 
H 
FP 

3 21 
H 
A 

29 
B1 
A 

23 
B2 
A 

31 
C 
A 

17 
M 
A 

25 
B3 
A 

19 
B4 
A 

27 
F 
A 

30 
B1 
FN 

24 
C 
A 

32 
B2 
A 

18 
B3 
A 

26 
M 
A 

20 
F 
A 

28 
B4 
A 

22 
H 
FP 

4 23 
H 
A 

31 
B1 
A 

17 
B2 
A 

25 
C 
A 

19 
M 
A 

27 
B3 
A 

21 
B4 
A 

29 
F 
A 

32 
B1 
FN 

18 
C 
A 

26 
B2 
A 

20 
B3 
A 

28 
M 
A 

22 
F 
A 

30 
B4 
A 

24 
H 
FP 

5 18 
B1 
A 

28 
C 
A 

20 
B2 
A 

30 
B3 
A 

22 
M 
A 

32 
F 
A 

24 
B4 
A 

26 
H 
A 

25 
H 

FN 

17 
B1 
A 

27 
B2 
A 

19 
C 
A 

29 
M 
A 

21 
B3 
A 

31 
B4 
A 

23 
F 

FP 

6 20 
B1 
A 

30 
C 
A 

22 
B2 
A 

32 
B3 
A 

24 
M 
A 

26 
F 
A 

18 
B4 
A 

28 
H 
A 

27 
H 

FN 

19 
B1 
A 

29 
B2 
A 

21 
C 
A 

31 
M 
A 

23 
B3 
A 

25 
B4 
A 

17 
F 

FP 

7 22 
B1 
A 

32 
C 
A 

24 
B2 
A 

26 
B3 
A 

18 
M 
A 

26 
F 
A 

20 
B4 
A 

30 
H 
A 

29 
H 

FN 

21 
B1 
A 

31 
B2 
A 

23 
C 
A 

25 
M 
A 

17 
B3 
A 

27 
B4 
A 

19 
F 

FP 

8 24 
B1 
A 

26 
C 
A 

18 
B2 
A 

28 
B3 
A 

20 
M 
A 

30 
F 
A 

22 
B4 
A 

32 
H 
A 

31 
H 

FN 

23 
B1 
A 

25 
B2 
A 

17 
C 
A 

27 
M 
A 

19 
B3 
A 

29 
B4 
A 

21 
F 

FP 

The dependent variables are trust, workload, and task performance. Trust will 

be measured using gaze duration and mean pupil diameter, baselined by the adapted 

trust in automation scale. The measure for gaze duration is the amount of time 

participants are looking at either the AI advice or XAI features during a task. Gaze 

entropy and mean pupil diameter will be used as the dependent variables for 

workload, baselined with the NASA TLX scale. Gaze entropy is calculated using the 

information entropy equation given in Equation 3A.1.  

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =  𝐻𝐻(𝑋𝑋) =  −�𝑝𝑝(𝑥𝑥𝑖𝑖) ∗ log𝑏𝑏 𝑝𝑝(𝑥𝑥𝑖𝑖)
𝑛𝑛

𝑖𝑖=1

 

Equation 3A.1 Information entropy equation. 
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The number (n) and size in milliseconds) of the gaze duration bins for Equation 1 

are derived from experimental data to ensure all gaze durations are captured in equal 

sized bins. The probability of a gaze duration length p(xi) within a gaze duration bin is 

the number of gaze events that fall within that bin, divided by the total number of gaze 

events in a task. To scale gaze entropy between 0 and 1, b is set to the number of gaze 

duration bins. Task performance will be measured using the accuracy of the participant 

response and total task time.  

Participants  

 Thirty-three participants (18M, 15F) were recruited from Wright State University. All 

participants were aged between 18 and 59 years old and able to read Arial, size 16 font 

on the Tobii eye-tracker screen, either unaided or with the use of corrective eyewear. 

No other exclusions were made in the recruitment process. To mitigate variations in 

the participants’ inherent trust level, the experiment included baselining the 

participant’s propensity to trust using the propensity to trust scale (Appendix C).  

Equipment  

The experiment was conducted on the Tobii eye tracker in the human performance lab. 

This is a binocular desktop eye tracker with a resolution of 1280x1024 screen, 

presented on a 16:13, 17” TFT display. It has a stated accuracy of 0.5 degrees, drift of 

less than 0.3 degrees, and a data rate of 60 Hz 120 Hz. Participants must maintain a 

distance of approximately 2 ft from the screen with freedom of head movement 

30x22x30 cm.  
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Procedure   

Participants completed the informed consent documentation and propensity to trust 

baselining (See Appendix C) on arrival in the human performance laboratory. 

Participants were then briefed on the use of an eye-tracker and in each case a 

calibration was performed. The participants then completed two familiarization tasks 

to ensure they were sufficiently familiar with the experiment and the tasks they were 

to perform. Each participant then completed the assessed tasks in line with 

experimental design. Participants completed the Adapted Trust in Automation Scale 

(Appendix B) and NASA TLX (Appendix A), after tasks 2, 6, 9, 11, 15 and 16. This 

provided baseline subjective assessment of user trust and workload for each XAI level 

and each of the inaccurate AI tasks.  

Limitations 

As this experiment was conducted using the university population, there was an age 

and knowledge bias in the population, where all but 2 of the participants were aged 

between 18 and 30.  Valid eye detections for at least 50% of gaze durations, as 

classified by the Tobii eye tracker, were required for task data to be used in the eye 

tracker assessment. If a task had no valid gaze events, the entire task will be invalid 

from an eye-tracker analysis perspective and will be excluded from the analysis. 

Experimental Assessment platform.  

The information provided to the user is from a simulated AI, meaning the results are 

generated manually to ensure consistency. To provide realism, the simulated AI is 

based on a transfer learning implementation (Rosebrock, 2019) of an existing DL, CNN, 
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VGG-16 (Simonyan and Zisserman, 2013). VGG-16 is an established and popular image 

classification model trained on 14 million images in the ImageNET dataset (Deng et al., 

2009), with the ability to classify twenty thousand image types.  The transfer learning 

approach allows the model to be tuned to perform better on specific user defined 

image sets through retraining of the model. As only the last layers of the model are 

retrained, the new model retains much of the existing image classification performance 

(Simonyan and Zisserman, 2013). The transfer learning approach has shown 

improvement in classification accuracy with a retrained, transfer learning model 

achieving 97% achieved on sample classifications of 90 Magnetic Resonance Imaging 

(MRI) images compared to baseline top 5 accuracy of the VGG-16 model of 92.9% 

(Keskar et al., 2016). This VGG-16 model is a Deep Learning image classifier, trained on 

14 million images, with the ability to classify 20 000 image types.  

The task design for the experimental platform for the analysis of the proposed 

XAI assessment measures was developed based on the initial concept hybrid tactical-

trust decision game developed in the pilot study with the XAI versions of developed 

using the design framework (Stone et al., 2022). Explainable AI information versions of 

the hybrid tactical-trust gamer were developed for each of the TEXAS model 

independent variables as defined in the experimental matrix, requiring six new XAI 

variants. The initial concept was used as the no XAI variant. For each of these XAI task 

versions, several prototype XAI schemes were developed, and down selected prior to 

the human-subjects testing. For conciseness, the detail of these concepts, and the XAI 

design framework process is not included in this paper.  
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Where XAI information provided before the task, it is provided before the AI has 

been run or provided any advice to the users. The primary function is to provide the 

user with an understanding of the type of model used, the underlying data and the 

potential for bias or error within one or either of these elements. XAI information 

provided during the task gives feedback on how the AI has made a specific decision and 

the probability that this is correct, based on the statistical model within the AI. Each of 

the concepts is explained in more detail in the following  sections.  

XAI Level 1 – Rationale (Before Task)  

The chosen concept was based on providing an overview of the basis for AI decision-

making while minimizing Jargon. The aim of this rationale is to give information on the 

complexity of the model but also to clarify that it is task optimized to look specifically 

for the targets of interest. 

“This AI image classifier is a pattern recognition model, trained on 14 million 

images, with the ability to classify 20 000 image types. The classifier was 

retrained and optimized to search for the images of interest in this task.” 

XAI Level 2 - Certainty (Before Task) 

This concept is a presentation of the accuracy of the simulated retrained image 

classifier. Again, there is a focus on using interpretable language, without the need for 

specialized machine-learning knowledge.  

“This classifier has an overall test accuracy of 98% for classes in the target set. 

The false positive rate is 5%, while the false negative rate is 1%. This results in 

an overall mean advice accuracy of 88% when combined over 16 images” 

XAI Level 3 - Rationale and Certainty (Before Task)  
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Here both the individual rationale and confidence information are combined. The 

accuracy of the underlying model is compared human classification accuracy on similar 

datasets for additional context to the decision-maker.  

“This AI image classifier is a pattern recognition model, trained on 14 million 

images, with the ability to classify 20 000 image types. This is regarded as a 

state-of-the-art image classifier with an accuracy of 97%, compared with a 

human classification accuracy of 98% on the same image set. The classifier was 

retrained and optimized to search for the images of interest in this task. This 

classifier has an overall test accuracy of 98% for classes in the target set. The 

false positive rate is 5%, while the false negative rate is 1%. This results in an 

overall mean advice accuracy of 88% when combined over all 16 images” 

XAI Level 1 - Rationale (During Task)  

This concept provides the user with a classification status, by means of a yellow 

highlight for each box in the grid that the model predicts a target of interest is 

contained. Additional rationale information using a localization approach to highlight 

the specific targets of interest, the AI has identified within the image. Target 

localization is an increasingly popular solution in XAI, particularly for image 

classification where the model activations are used to highlight the locations within an 

image that are directly associated with the result, or ‘decision’ of the AI (Selvaraju, et 

al., 2017). Localization has been used to provide XAI information in a range of tasks 

from medical diagnosis (Zhao et al., 2021), autonomous vehicles (Grigorescu, et al., 

2020; Johari & Swami, 2020) and airport security scanners (Zhang, 2019), and is well 

suited to both the ‘Captcha’ and ‘Spot the difference’ tasks in the hybrid tactical trust 

game. Localization provides a ‘quick-look’ for confirmation of true classifications by 
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with highlighting the specific targets detected, but potentially could lead to over-trust 

in the system and a failure to interrogate the image for false negatives (López-Tapia et 

al., 2018). Other solutions such as target segmentation (Tseng et al., 2021; Vitulano, et 

al.,1995). and activation heatmaps Selvaraju et al., 2017) were considered, but 

localization provides less obscuration of the target than the heatmap solution and does 

not obscure the non-target areas as image segmentation algorithms might. An example 

of the level 1, rationale XAI information task is shown in Figure 3A.3. All images used in 

the generation of these tasks were stock images with no attribution required.  

Figure 3A.3 Example of the Rationale XAI information task  

XAI Level 2 – Certainty (During task)  

A concept with a simple confidence description, based on a simulated result of an 

application of the AI model was chosen. This provides a quick-look confidence in the AI 



 

165 
 

advice and allows the user time to conduct a manual review of the task grid if the 

probability is deemed low by the user. The word ‘confidence’ is used, rather than 

probability or certainty, as this was the intended interpretation of the intention of the 

AI advice, see Figure 3A.4 

 

Figure 3A.4 Example of Certainty XAI information task   

XAI Level 3 - Rationale and Certainty (During Task)  

This concept combines both the rationale and the confidence task XAI information but 

introduces color-coding of the classification and localization lines. High confidence 

classifications are shown in green and medium confidence in yellow. Indications in red 

are low-probability and not classified as targets by the AI but considered borderline in 

probability terms. However, the inclusion aims to provide additional information in the 
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detection of potential false negatives. The exact thresholds in an implementation will 

depend on the model accuracy but are not presented to the participants in this study. 

The box classification highlights, which refer to the categorization of the box as 

containing a target are also color-coded. In this case, the color is defined by either the 

highest probability of a target classification within a box, or where the cumulative 

classification confidence reaches the predefined high or medium threshold, see Figure 

3A.5.  

 
Figure 3A.5 Example of Rationale and certainty XAI information task 

Each of these designs was selected based on a design review and heuristic 

evaluation, however the intention is not that these are necessarily the best solutions, 

but more to achieve a breadth of designs to test the six new XAI information task sets. 
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The output of an implementation of this test method could be to distinguish between 

any two of the initial concepts using the evidence-based assessment method 

developed in this paper.  

Intention to Trust Requirement  

To develop the trust imperative, there is a need to include a risk and reward in what 

participants choose to do with the information from the AI. Including rewards for 

correct action and penalties for following incorrect advice or failing to follow correct 

advice, introduces a trust paradigm similar to the prisoner dilemma game (Poundstone, 

1993). 

Ferrer and Farolfi (2019) note that Trust is revealed when an agent performs an 

initial sacrifice, that is, an action which, depending on the reaction of another agent, 

might be detrimental to the first agent's own interests. You put yourself in somebody 

else's hands, trust is repaid, and the second agent is revealed to be trustworthy, if his 

or her reaction offsets and compensates for the first agent's sacrifice. This is an 

important feature to include in the trust-based tactical decision. As such, there is a 

need for a small reward or prize, which the user has a greater chance of winning if 

correct advice is followed and a greater chance of losing if either incorrect advice is 

followed or correct advice is not followed. In this experiment, a $25 prize was 

determined for the best performing participant. In this case, the performance was 

judged on the minimum time to complete the tasks. To provide a risk element, a 20s 

time penalty is introduced for each incorrect answer. As a result, there is a benefit to 

trusting the AI, but only when the AI is correct. In this experiment, the simulated AI 
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provides advice within 2 seconds, considerably faster than would be possible for the 

participant to complete the task without AI advice. There is, therefore, a benefit to 

trusting the AI, but to be absolutely correct the participant would need to be able to 

quickly calibrate their trust in the AI and determine if they believe the advice or not, 

before choosing whether to manually conduct the task.  

Research Questions  

The following research questions were defined to be answered in order to meet the 

research objectives: 

1. Are there reliable physiological predictors of workload? 

a. Is gaze entropy a predictor of workload? 

b. Is pupil diameter a predictor of workload? 

2. Are there reliable physiological predictors of trust in automation? 

a. Is gaze duration a predictor of  human trust in automation? 

b. Is pupil diameter a predictor of human trust in automation? 

3. What are the relationships, and effect interactions, if any, between XAI, task 

performance and these measures of trust and workload.  

There is an implicit question arising from research questions 1 and 2 that is of 

fundamental importance to this study: 

4. Are the proposed measures for workload and trust confounded in time-critical tasks? 

The research question arising from the secondary objective is: 

5. Does the XAI design developed using the XAI design framework (Stone et al., 2022) 
improve performance and trust while reducing workload, and does it result in a usable 
design.  

Hypotheses  

The following hypotheses were derived from the research questions to provide the 

basis for the statistical analysis to be completed in this study. The alternative 
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hypotheses in all cases, except hypothesis three are directional in line with predictions 

made by the original authors.  

Hypothesis 1a: 

• H10 Gaze Entropy is not affected by workload. 

• H1a Gaze entropy increases with increased workload. 

Hypothesis 1b: 

• H10 Mean pupil diameter is not affected by workload. 

• H1a Mean pupil diameter decreases with increased workload. 

Hypothesis 2a: 

• H10 Gaze duration is not affected by trust. 

• H1a Gaze duration decreases with increased trust. 

Hypothesis 2b: 

• H10 Mean pupil diameter is not affected by trust. 

• H1a Mean pupil diameter decreases with trust. 

Hypothesis 3: 

• H30 There are no interactions or relationship between the main effects. 

• H3a1 Mean pupil diameter decreases with workload. 

There are no formal hypotheses for research question 4, the answer will be derived 

from Hypotheses 1a, 1b, 2a and 2b. Research question 5 will be answered by means of 

a systematic usability study (SUS) (See Appendix D), Brooke (1986), delivered to each 

participant upon conclusion of the study, specifically on the usability of the XAI 

information. There is no statistical test associated with the SUS evaluation. 

Analysis  

The effect of independent variables will be assessed in line using null hypothesis 

significance tests, specifically, t-tests and Chi-squared tests as appropriate. For 
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Hypotheses 1 and 2, interaction effects will also be considered, as these are also 

potentially significant (Deng et al., 2009). If required, non-parametric testing will be 

conducted. Where parametric statistical methods are not suitable, alternative non-

parametric tests will be used. 

Required Participants 

The minimum number of participants required for an experimental power of 0.9, using 

α=0.05 was determined by the higher of the participant number calculations for eye-

tracker trust and workload calculations from the pilot study. In this case, µ1=9.8, 

µ2=13.1, and the common standard deviation was σ=32.5. This resulted in a minimum 

number of participants of 13. As there are two separate experimental groups, this 

resulted in a requirement for 26 participants. To have 2 complete repetitions of the 

counter-balanced experimental design, a minimum of 32 participants were required.  

Results 

Data Validity and exclusions 

33 participants each conducted 16 visual tasks, giving 528 tasks completed. The high 

and low reliability tasks were conducted between subjects, the remaining independent 

variables were tested within subjects with all participants exposed to each level. There 

was one additional participant in the high-reliability set, giving 272 tasks, versus 256 

tasks in the low-reliability set.  

• Of these tasks, 513  gave good validity eye-tracker results, as per the validity 

criteria defined in the procedure. Leaving 15 (2.8%) with poor quality data, 

classed as invalid and not to be used in the analysis of eye tracker data. These 
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were split across the experimental conditions as follows: Of the 528 tasks, 15 

were invalid. There were 10 (3.9%) invalid low reliability tasks, meaning 5 high 

reliability tests were invalid (1.8 %).  

• The low workload tasks included 7 classified as invalid (2.7%), where the high 

reliability tasks had 8 invalids (3.0%)  

• There were 3 invalid tasks with no explainable AI information (2.3%); the tasks 

with level 1 XAI information (XAI rationale only) had 6 invalid task (4.5%); level 2 

tasks (XAI confidence only) had 5 invalid tasks (3.8%); and the level 3 XAI 

information tasks only had one invalid result (0.75%).  

The tasks where accurate AI advice was given had 8 invalid tasks (2.2%) and false 

positive and false negative tasks had 4 (3.6%) and 3 (6.1%) invalid tasks respectively. No 

experimental condition had more than 6.1% of the associated tasks classed as invalid. 

This does not diminish the validity of the overall experiment with respect to statistical 

power and the required participant numbers as more than the minimum 26 were 

recruited. Where eye-tracker data is used in the following analysis, invalid tasks were 

excluded.  

Eye Tracker Workload Assessment 

To calculate gaze entropy, it was necessary to count the number of gaze durations in 

specific bins. The maximum gaze duration was 2000ms and gaze counts were assigned 

to 40 x 50ms bins, covering 0 to 2000ms. This ensured all fixations were assigned to 

equal bins.  

XAII Gaze entropy significantly increased creased with increasing workload 

p=0.04. However, this simple model only had an R2 of 0.05. The independent variables 

were used as blocking variables, to account for more variation in the data. A reverse 
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optimization model was constructed, however none of the blocking variables were 

significant and no improvement to the R2 was achieved. The relationship between 

mean pupil diameter was also considered but no significant effect or interaction effect 

between pupil diameter and gaze entropy was observed.  

Eye Tracker Trust Assessment 

The intention to trust as measured by the adapted  trust in automation scale (Jian, 

Bisantz, & Drury, 2000), was normalized according to the participants propensity to 

trust baselining for this analysis. Gaze Duration was significantly longer on low AI 

reliability tasks p < 0.001, R2 = 0.11.  Gaze duration significantly decreased with 

increasing trust p=0.03, however, this simple model only had an R2 of 0.01. The 

independent variables were used as blocking variables, to account for more variation in 

the data. A reverse optimization model was constructed and the significant blocking 

effect that remained was design accuracy (accurate, FP, FN) p=0.011. The resulting 

model increased the significance of the relationship between gaze duration and 

intention to trust to p=0.01 and an R2 of 0.1. 

The relationship between mean pupil diameter and trust was also considered 

and found to decrease significantly with increasing trust p=0.03, but again had a low R2 

of 0.02, A model combining the XAI gaze duration, mean pupil diameter, and design 

accuracy was built, resulting in a model where all three effects were significant - Gaze 

duration (p=0.001), design accuracy (p=0.01) and mean pupil diameter (p=0.02). This 

model had an increased R2 of 0.12 and R2 adjusted of 0.1.  



 

173 
 

Behavioral Trust 

Behavioral trust is where the participants’ actions are to implement the given by 

automation. The trust element is implied by the action, as we cannot be sure there was 

trust or if the participants came to the same conclusion without trusting the AI. 

Participants exhibited  behavioral trust in the AI occurred in 286 of the 528 valid tasks, 

or at a rate 50.9%. The high-reliability tasks showed higher behavioral  trust with 156 

trusted tasks out of 272, giving a trust rate of 57.3%, whereas, in the low-reliability 

tasks, only 130 of the 256 tasks, or 50.8% indicate behavioral trust. When XAI was 

considered,  

Relationship between trust, workload, and task performance 

Logistic regression analysis was conducted to determine if there were significant 

relationships between the task outcome and both trust and workload. In both cases, 

chi-square tests showed significance in the relationships, with increased workload 

reducing task performance, p<0.001, R2 =0.05 and increased trust improving task 

performance, p = 0.0175, R2 =0.02.  

• There was a significant negative relationship between improved task accuracy 

and increased workload, p<0.001, R2 =0.05. 

• The logistic model of workload v task accuracy had an accuracy of 60%. 

• There was a significant positive relationship between improved task accuracy 

and increased trust, p = 0.0175, R2 =0.02.  

• The logistic model of the trust v task accuracy had an accuracy of 58%. 

XAI design performance 

Across all tasks, there was a slight increase in correct outcomes associated with the 

level 3 XAI information, but this was not statistically significant, see Figure 3A.6.  
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Figure 3A.6 Trust Calibration outcome by XAI level 

When the results were broken down by the design accuracy variable, there was a 

similar improvement in correct outcomes in the accurate AI information tasks, see 

Figure 3A.7. 

 

Figure 3A.7 Trust Calibration outcome by XAI level (Accurate AI) 

However, in the false negative tasks, the XAI tasks showed worse outcomes than the no 

XAI tasks, see Figure 3A.8.  
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Figure 3A.8 Trust Calibration outcome by XAI level (False Negative AI) 

When the results of the false positive tasks are examined, this trend is reversed, and 

the Level 3 XAI system showed slightly improved performance, see Figure 3A.9.  

 

Figure 3A.9 Trust Calibration outcome by XAI level (False Positive AI) 

None of these effects were statistically significant, however design accuracy had a 

significant effect on the task performance at all four XAI levels. The result for the level 3 
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XAI highlights that this XAI design is performs much better on false positive, than false 

negative tasks, See Figure 3A.10. 

 

Figure 3A.10 Trust Calibration outcome by designed AI accuracy (XAI level 3) 

SUS Score  

The mean SUS score for the XAI was 53.8, which rates below the 50th percentile score 

of 68 and is classed as marginally usable according to Lewis (2018), or equivalent to the 

15-34th percentile.  

Discussion and Conclusions  

The following conclusions relate directly to the research questions. The following 

conclusions relate to research questions 1 and 2: 

• The eye-tracker results showed gaze entropy to have a significant relationship 

with workload, p=0.04. however, the low R2 of 0.05, means that this does not 

account for much of the variation in the model. There is some evidence to 

support gaze entropy as a predictor of workload in TCS, but further studies are 

required.  
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• There was no statistically significant relationship between pupil diameter and 

workload.  

• The eye tracker results showed gaze duration to have a significant correlation to 

trust, p=0.03, R2 =0.01 and this effect was more pronounced when accounting 

for the design accuracy of the task, p=0.001, R2 =0.1. There also is evidence to 

support gaze duration as a valid predictor of trust in TCS.  

• The eye tracker results showed pupil diameter to have a statistically significant 

relationship with intention to trust, p=0.03, R2 =0.1, There is evidence to 

support pupil diameter as a predictor of trust in TCS.  

• When pupil diameter and gaze duration were combined in a predictive model, 

they both had a statistically significant relationship with intention to trust, 

p=0.02 and p=0.001, respectively, and this model had an increased R2 of 0.12 

and R2 adjusted of 0.1. There is evidence that this combined model is a valid 

predictor of trust in TCS.  

• Although both gaze entropy and gaze duration were found to be statistically 

significant predictors of workload and trust respectively, statistical analyses 

show very low R2 values, indicating this only accounts for 10% of the variation. 

While some of this variability can be explained by the number of variables in the 

test and innate human variability, there is a need to understand this further and 

develop models that account for more of the variation in the result to ensure 

that these metrics can be used with confidence.  

The following conclusions relate to research question 3, regarding the interactions 

between trust, workload and task performance 

• It is concluded that in TCS, improved trust can improve task performance, while 

increased workload can negatively impact task performance.  

• The XAI information did not result in statistically significant differences in task 

performance between each other, or the no XAI tasks.  
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The following conclusions relate to research question 4, regarding the ability to 

concurrently measure trust and workload using the eye-tracker. 

• Both trust and workload could be measured concurrently in the time-critical 

system, indicating that these measurements do not confound each other, even 

in the case of high temporal demand.  

The following conclusions relate to research question 5, regarding the performance of 

the XAI instantiation delivered by the design framework.  

• There was no statistically significant difference in behavioral trust between the 

XAI and no XAI tasks. This indicates that the XAI did not encourage trust 

calibration as intended. More generally, the behavioral trust of the participants 

matched the low reliability AI tasks well but did not increase to match the 

reliability of the high reliability tasks.  

The XAI framework delivered an instantiation, which was usable on first 

iteration but did not provide improvements in task performance, workload or trust.  

Where the XAI framework showed promise was in the ability to quickly assess designs 

and feed information back into the iterative design process. Looking at the results more 

closely, analysis of the results by AI accuracy showed that the level 3 XAI significantly 

improved task performance in the case of false positive AI advice, but significantly 

reduced task performance in the case of false negative advice. This indicates a 

tendency to over-trust the XAI information, and that the system is exacerbating over-

reliance in the systems. The SUS score for the XAI usability suggests that participants 

found the design usable had some difficulty in interpreting the XAI. This might indicate 

the initial instantiation of the XAI framework has room for improvement but also 

indicates the inclusion of the SUS score in assessment of XAI designs can provide useful 
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information to designers, where other forms of usability assessment such as root cause 

analysis are not possible due to the time-critical nature of the task.  

The aim of this study was to develop evidence for objective, physiological 

metrics for trust and workload for XAI in TCS. This was demonstrated in the results, 

although there is a great deal of variation in the data that remains unaccounted for. 

This variation was also noted in the baseline measurements and may be characteristic 

of the variability of human-subjects in this specific context. Human variability is 

complex and context dependent (Smith et al., 2014), so it is hard to conclusively 

determine this variability as down to the human participants without further 

exploration of the problem at hand. It is also important that these metrics align with 

the XAI measurement requirements and provide consistency of approach throughout 

the XAI design framework. 

 The variability of the results may also be a result of the experiment being 

underpowered. The calculations for the minimum number of participants were based 

mean values for trust  and workload obtained in a pilot study. The sample size of this 

study was only 8 participants so the values used in the power analysis might not have 

been representative, causing the power analysis to be erroneous or for the real mean 

trust and workload values to have been closer than desired.  

Although not an absolutely conclusive result, the findings were  in line with 

expectations, and provide some of the evidence for the validity of eye-tracker 

measurements the assessment of trust and workload, and that these can be measured 

simultaneously.  
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The provision of objective, physiological metrics allows the researcher to 

include more tasks in an equivalent study period by removing the requirement for the 

participants to complete subjective assessment questionnaires. Objective results, while 

still subject to variability, are less dependent on the participant correctly interpreting 

the meaning of the test and potentially less subject to individual and systematic 

experimental bias. (Pronin, Lin, & Ross, 2002). 

The confirmation of the expected mapping between trust, workload, and task 

performance provides a feedback loop for designers and enables better prediction of 

the potential impact of design changes on task performance. Again, there are potential 

issues with the lack of variability accounted in the models.  

The results of the XAI information instantiation were less positive, with little or 

no impact on trust calibration and only marginal usability ratings. This does however 

demonstrate that the measures developed, and the hybrid tactical-trust game 

assessment platform, can be used in the assessment of XAI. In this case, alternative 

forms of XAI could be tried such as presenting a dynamic trust calibration level to the 

participant or introducing more feedback on correct and incorrect behavioral  trust.  

There is also evidence in this case that the XAI instantiation, while marginally 

improving overall performance, induces over-reliance in false negative tasks. While this 

may appear to be a negative result, it is confirmation that the assessment method 

defined in this study allows the designer to determine how well the XAI information 

performs in each of these cases and make adjustments in the next iteration of the 

design. In this case, the XAI information could be modified, or the AI itself could be 



 

181 
 

adjusted to produce fewer false negative results. While this might produce more false 

positives, the predicted overall accuracy of the new model could be compared to the 

results across the 3 levels of design accuracy.  

One finding of this study, that presses a need for further investigation, is the 

lack of behavioral trust in experimental participants in the AI. Instead they often 

choose to rely on manual completion of the tasks, despite being both less accurate and 

considerably slower than the AI. This effect was present in both XAI and AI results, and 

potentially influenced the results of the XAI instantiation assessment.  This difficulty in 

getting explainability or transparency to shift behavioral trust was also noted by 

Schmidt et al., (2020), who also highlight the potential improve human performance is 

not always enough for humans to trust an AI.  

The study included provision for additional incentive to trust the AI, from 

highlighting the benefits of trust to providing financial incentive to the participant in 

the form of a prize for the best performer this did not significantly impact the 

intentional trust in participants. This finding suggests that either the incentive provided 

was not enough to induce behavioral trust between the participants and the AI, or that 

the participants were not willing to trust the AI at all in this task. While the drivers of 

this are not clear, this result demonstrates the difficulty in achieving behavioral trust in 

users, particularly in short assessment studies, where there is limited time to build 

trust. This may be an impediment to XAI design studies and highlights that this is an 

element of the framework, and assessment platform development that requires careful 

consideration.  
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Please see the Reference section at the end of the document 

End of Paper: Development of a Novel Hybrid Cognitive Model Validation Framework 

for Implementation Under COVID-19 Restrictions
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Chapter 4 – Contributions and future work 

In this research, I establish a design framework for XAI in TCS. This framework was 

developed from an understanding of human-AI teaming, through the development and 

validation of a cognitive model for a complex human-machine task, along with a Deep 

learning model aligned to the same problem. The final two studies detailed in this 

research establish the design thinking framework for human-centric explainable artificial 

intelligence in time-critical systems, which is the key contribution of this research, see 

figure 4.1.  

 

Figure 4.1. A Design Thinking Framework for Human-Centric Explainable Artificial Intelligence in 
Time-Critical Systems 

This framework incorporates XAI specific elements at each stage but preserves 

empathy as the foundation of the design problem, along with the open sharing of ideas 

and fast iteration of solutions that characterize design thinking. In the define stage, I
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 establish the importance of trust, workload, and task performance as drivers of 

the XAI design, along with specific information requirements for XAI. This framework 

allows AI developers or user experience and user interface designers, who may not be 

familiar with the concepts and drivers of XAI to quickly understand the problem and 

provides specific tools in the form of the TEXAS model, XAI response mapping and 

objective, physiological performance assessment measures for both trust and workload. 

These metrics are aligned to XAI measurement requirements and form a consistent 

focus through the XAI design framework. The use of physiological measures eliminates 

the reliance on subjective questionnaires and reduces the total task time in XAI studies. 

This in turn increases the total number of tasks that can be conducted in the assessment 

of XAI in TCS. The results of the human-subjects experiment show eye-tracking 

measures have validity as metrics for workload and trust, but given the low R2 values, 

there is a need for further research.  

The use of eye-tracking to measure trust and workload simultaneously has broad 

application beyond XAI, in any system where human trust in automation, or workload 

are desirable assessment metrics, and particularly in time-critical tasks, where I have 

demonstrated the effectiveness of eye-tracking measures for concurrent assessment of 

trust and workload. The use of eye-trackers to measure trust and workload is less 

intrusive than questionnaire-based assessment and provides real-time measurement, 

which could benefit any research where trust and/or workload are desirable 

measurements.  
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The study provided evidence for the relationship between task performance, 

workload and trust in TCS. Demonstration of this relationship feeds directly into the 

iterative prototype-test phase of the XAI design framework, allowing designers to 

predict the impact of design decisions more confidently in the iterative phase of design 

thinking.  More broadly, this can be used in any system where task performance is 

contingent on workload and trust to guide iterative prototype development. This broad 

directional relationship between workload and trust is dependent on reliability and 

temporal demand of the system, establishing a model to determine measures of 

individual differences in these responses would be a useful addition to the XAI design 

framework assessment toolbox and allow more confident prediction of the potential 

impact of design changes at the prototype stage.  

The assessment platform developed in this research is a hybrid tactical-trust 

decision game. This game was developed as no assessment platform combining task-

based tactical decision making with a trust requirement was found.  This study 

establishes the core requirements of a hybrid tactical-trust decision game, for the 

assessment of XAI in visual decision tasks, and the use of ‘Captcha’ and ‘Spot the 

difference’ tasks as options for generic tasks for the assessment of XAI designs.  The 

significance of this contribution, and the design framework for XAI in TCS specifically, is 

to ensure that XAI does not come at the cost of task performance and that unintended 

consequences can be better predicted and avoided. 

While these are significant contributions, they are all still relatively new 

approaches and there are some important knowledge gaps that remain. Although the 
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results show good correlation between baseline workload and trust metrics and the 

experimental physiological measures, there was still a lot of variation unaccounted for in 

the results. This means the output metrics are best used for comparative human-

subjects analysis, as there is too much variation for individual results to be predictive of 

high or low workload or trust. Further investigation of the drivers of this variation is 

required to determine if it can be accounted for either in the available data from the 

eye-tracker or through greater experimental control. There is a possibility, as with any 

human-subjects research that this variation is related to innate human response 

variability and will exist in any model or metric for trust and workload.  

The tactical-trust decision game showed promise, but further investigation is needed to 

establish a means to account for the lack of trust in the AI. Developing an assessment 

platform that can develop behavioral trust in participants is important in the assessment 

of XAI design. This was potentially one of the reasons it was difficult to determine any 

change in behavioral trust, or indeed in the performance of the XAI information in the 

final study. While the XAI design framework can function without an improvement in 

the behavioral trust of the assessment platform, providing this could result in faster, 

more accurate assessment of the impact of XAI.  

Situational Awareness is an important construct to consider in the development 

and evaluation of XAI in TCS. In this research, SA was initially considered as a measure to 

be included in the design framework, however the preliminary investigations 

highlighted the difficulties with collecting subjective SA data in TCS and no alternative 

physiological measure was identified. As a result, SA was not considered in the final 
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stage of this research, but remains an important consideration in the evaluation of XAI 

integration. Development of appropriate means to measure SA in TCS should be 

considered in future studies to provide a design framework with comprehensive 

performance assessment capabilities.  

In addition to these design thinking elements, the concept of trust calibration 

was an important part of XAI, that was potentially under-represented in the design 

framework. The ability to present the user with their trust calibration state may also be 

a means to improve behavioral trust in the users, as it provides direct feedback on how 

much they are trusting the AI. Identification of potential metrics to assess trust 

calibration is a key requirement if the trust calibration status of users is to be provided 

as part of the XAI information.  Further research into this is required, especially if the 

application of the XAI is for operational purposes, where a baseline for correct decisions, 

and hence behavioral trust is not available to the designer. In this case, the only option 

would be to provide the user with their trust rate, without any confirmation as to 

whether the AI, and the decision to trust it was correct.  

The high variability in the results was potentially associated with the experiment 

being underpowered. The experiment could be repeated with either more participants 

or adjusted levels of the independent variables of temporal demand and AI reliability to 

increase experimental power and determine if this is a contributor to the low 

confidence in the results of the final experiment.  

The final area that I want to discuss for consideration for future research is 

developing metrics for equity to determine the performance of the empathy phase. This 
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is an element of research I considered during this research but did not take forward.  

The principal areas of development to focus on are the user and the internal Biases of 

the designer. AI for social good, and equitable AI (Gilbert, 2021) are important concepts 

that should be considered in the design of all AI systems. In establishing their vision of 

Equitable AI, Gilbert (2021) aims to develop AI to create holistic diversity. The need for 

equity in AI is part of AI for social good (Tomašev, Cornebise, and Hutter 2020), along 

with explainability of AI. While equity is not a requirement in the design of explainable 

systems, failing to consider it could be seen as a failure of the core aims of XAI. Providing 

specific elements regarding equity in the empathy stage can cue the designer to 

consider both users and those who might be affected by the systems.   

Foulds, et al., (2020). Propose an intersectional definition of fairness, based on their 

differential fairness measure, derived from the 80% rule, established in the Code of 

Federal Regulation (CFR, 1978). More specifically, if the ratio of probabilities of a 

beneficial outcome, between a disadvantaged and an advantaged group, is less than 0.8, 

there is said to be legal evidence of an adverse impact (Foulds, et al., 2020). This is 

formalized in equation 4.1. 

P(M(x)=1|group A)/P(M(x)=1|group B)<0.8. 

Equation 4.1. Formalization of the 80% discrimination rule (Foulds, et al., 2020).  

Where the deep understanding of the user and underlying data available for the AI 

indicate the possibility of reduction in beneficial effects that approach 80% of the 

baseline population, at a minimum, the XAI implementation should highlight this. 
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Furthermore, ensuring this is achieved across the full spectrum of diversity is equally 

important. Artificial Intelligence is trained using data generated by society, and 

therefore reflects the biases inherent in society (Bauer & Lizotte (2021), and Ciston 

(2019) highlights the need for intersectionality in AI from data to design through to the 

final implementation and considering all levels of user. Intersectional theory was first 

established by Crenshaw (1989) and identifies the relationships between issues of 

sexism and racism and establishes the need to consider all oppressive structures, and 

the relationship between the negative impacts of them all. The key demographics 

identified in intersectional theory are gender, race, ethnicity, sexual orientation, gender 

identity, disability, class, but covers all of discrimination, and how they “intersect” to in 

the creation and sustaining of systems of oppression (C.I.J, 2022). I believe, establishing 

a greater emphasis on equity, intersectionality and social good in the empathy phase of 

the XAI design framework, along with meaningful metrics to determine success in the 

test stage are important areas of research that would be highly beneficial to designers, 

organizations, and society as a whole
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APPENDIX A -NASA TASK LOAD INDEX 

Hart and Staveland’s NASA Task Load Index (TLX) method assesses workload on five 7-

point scales. Increments of high, medium, and low estimates for each point result in 21 

gradations on  
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APPENDIX B – TRUST IN AUTOMATION 

The Adapted Trust in Automated Systems (Jian, Bisantz, & Drury, 2000), is a scale for 

measuring intention to trust in users.  

Instructions: Below is a list of statements for evaluating trust. There are several items 

for you to rate intensity of your feeling of trust, or your impression of the automation 

while engaging in a task. Please select the option which describes your feeling or your 

impression using the 7-point scale ranging from 1 (not at all) to 7 (extremely).  

1. The automation is deceptive. (R)  

2. The automation behaves in an underhanded manner. (R)  

3. I am wary of the automation. (R) 

 4. The automation’s actions will have a harmful or injurious outcome. (R)  

5. I am confident in the automation. 

 6. The automation provides security.  

7. The automation has integrity.  

8. The automation is dependable.  

9. The automation is reliable.  

10. I can trust the automation. 

11. I am familiar with the automation  
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APPENDIX C – PROPENSITY TO TRUST 

The Adapted Propensity to Trust in Technology (Schneider et al., 2017), measures a 

user’s baseline level of propensity to trust or risk aversion.  

Instructions: For the below listed items, please read each statement carefully. Using the 

5-point scale ranging from 1 (strongly disagree) to 5 (strongly agree), select the answer 

that most accurately describes your feelings.  

1. Generally, I trust automated agents.  

2. Automated agents help me solve many problems.  

3. I think it’s a good idea to rely on automated agents for help.  

4. I don’t trust the information I get from automated agents. (R)  

5. Automated agents are reliable.  

6. I rely on automated agents. 
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APPENDIX D - SYSTEM USABILITY SCALE 

The System Usability Scale (SUS), Brooke (1986) is used to determine the usability of a 

system. Participants are asked to score the following 10 items with one of five responses 

that range from Strongly Agree to Strongly disagree: 

1. I think that I would like to use this system frequently. 

2. I found the system unnecessarily complex. 

3. I thought the system was easy to use. 

4. I think that I would need the support of a technical person to be able to use this 

system. 

5. I found the various functions in this system were well integrated. 

6. I thought there was too much inconsistency in this system. 

7. I would imagine that most people would learn to use this system very quickly. 

8. I found the system very cumbersome to use. 

9. I felt very confident using the system. 

10. I needed to learn a lot of things before I could get going with this system. 
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