124 research outputs found

    Electrotactile feedback applications for hand and arm interactions: A systematic review, meta-analysis, and future directions

    Get PDF
    Haptic feedback is critical in a broad range of human-machine/computer-interaction applications. However, the high cost and low portability/wearability of haptic devices remain unresolved issues, severely limiting the adoption of this otherwise promising technology. Electrotactile interfaces have the advantage of being more portable and wearable due to their reduced actuators' size, as well as their lower power consumption and manufacturing cost. The applications of electrotactile feedback have been explored in human-computer interaction and human-machine-interaction for facilitating hand-based interactions in applications such as prosthetics, virtual reality, robotic teleoperation, surface haptics, portable devices, and rehabilitation. This paper presents a technological overview of electrotactile feedback, as well a systematic review and meta-analysis of its applications for hand-based interactions. We discuss the different electrotactile systems according to the type of application. We also discuss over a quantitative congregation of the findings, to offer a high-level overview into the state-of-art and suggest future directions. Electrotactile feedback systems showed increased portability/wearability, and they were successful in rendering and/or augmenting most tactile sensations, eliciting perceptual processes, and improving performance in many scenarios. However, knowledge gaps (e.g., embodiment), technical (e.g., recurrent calibration, electrodes' durability) and methodological (e.g., sample size) drawbacks were detected, which should be addressed in future studies.Comment: 18 pages, 1 table, 8 figures, under review in Transactions on Haptics. This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible.Upon acceptance of the article by IEEE, the preprint article will be replaced with the accepted versio

    Development of augmented reality serious games with a vibrotactile feedback jacket

    Get PDF
    Background: In the past few years, augmented reality (AR) has rapidly advanced and has been applied in different fields. One of the successful AR applications is the immersive and interactive serious games, which can be used for education and learning purposes. Methods: In this project, a prototype of an AR serious game is developed and demonstrated. Gamers utilize a head-mounted device and a vibrotactile feedback jacket to explore and interact with the AR serious game. Fourteen vibration actuators are embedded in the vibrotactile feedback jacket to generate immersive AR experience. These vibration actuators are triggered in accordance with the designed game scripts. Various vibration patterns and intensity levels are synthesized in different game scenes. This article presents the details of the entire software development of the AR serious game, including game scripts, game scenes with AR effects design, signal processing flow, behavior design, and communication configuration. Graphics computations are processed using the graphics processing unit in the system. Results /Conclusions: The performance of the AR serious game prototype is evaluated and analyzed. The computation loads and resource utilization of normal game scenes and heavy computation scenes are compared. With 14 vibration actuators placed at different body positions, various vibration patterns and intensity levels can be generated by the vibrotactile feedback jacket, providing different real-world feedback. The prototype of this AR serious game can be valuable in building large-scale AR or virtual reality educational and entertainment games. Possible future improvements of the proposed prototype are also discussed in this article

    Expanding social mobile games beyond the device screen

    Get PDF
    Emerging pervasive games use sensors, graphics and networking technologies to provide immersive game experiences integrated with the real world. Existing pervasive games commonly rely on a device screen for providing game-related information, while overlooking opportunities to include new types of contextual interactions like jumping, a punching gesture, or even voice to be used as game inputs. We present the design of Spellbound, a physical mobile team-based game, to help contribute to our understanding of how we can design pervasive games that aim to nurture a spirit of togetherness. We also briefly touch upon how togetherness and playfulness can transform physical movement into a desirable activity in the user evaluation section. Spellbound is an outdoor pervasive team-based physical game. It takes advantage of the above-mentioned opportunities and integrates real-world actions like jumping and spinning with a virtual world. It also replaces touch-based input with voice interaction and provides glanceable and haptic feedback using custom hardware in the true spirit of social play characteristic of traditional children’s games. We believe Spellbound is a form of digital outdoor gaming that anchors enjoyment on physical action, social interaction, and tangible feedback. Spellbound was well received in user evaluation playtests which confirmed that the main design objective of enhancing a sense of togetherness was largely met

    Haptic feedback to gaze events

    Get PDF
    Eyes are the window to the world, and most of the input from the surrounding environment is captured through the eyes. In Human-Computer Interaction too, gaze based interactions are gaining prominence, where the user’s gaze acts as an input to the system. Of late portable and inexpensive eye-tracking devices have made inroads in the market, opening up wider possibilities for interacting with a gaze. However, research on feedback to the gaze-based events is limited. This thesis proposes to study vibrotactile feedback to gaze-based interactions. This thesis presents a study conducted to evaluate different types of vibrotactile feedback and their role in response to a gaze-based event. For this study, an experimental setup was designed wherein when the user fixated the gaze on a functional object, vibrotactile feedback was provided either on the wrist or on the glasses. The study seeks to answer questions such as the helpfulness of vibrotactile feedback in identifying functional objects, user preference for the type of vibrotactile feedback, and user preference of the location of the feedback. The results of this study indicate that vibrotactile feedback was an important factor in identifying the functional object. The preference for the type of vibrotactile feedback was somewhat inconclusive as there were wide variations among the users over the type of vibrotactile feedback. The personal preference largely influenced the choice of location for receiving the feedback

    Active-Proprioceptive-Vibrotactile and Passive-Vibrotactile Haptics for Navigation

    Get PDF
    Navigation is a complex activity and an enabling skill that humans take for granted. It is vital for humans as it fosters spatial awareness, enables exploration, facilitates efficient travel, ensures safety, supports daily activities, promotes cognitive development, and provides a sense of independence. Humans have created tools for diverse activities, including navigation. Usually, these tools for navigation are vision-based, but for situations where visual channels are obstructed, unavailable, or are to be complemented for immersion or multi-tasking, touch-based tools exist. These touch-based tools or devices are called haptic displays. Many different types of haptic displays are employed by a range of fields from telesurgery to education and navigation. In the context of navigation, certain classes of haptic displays are more popular than others, for example, passive multi-element vibrotactile haptic displays, such as haptic belts. However, certain other classes of haptic displays, such as active proprioceptive vibrotactile and passive single-element vibrotactile, may be better suited for certain practical situations and may prove to be more effective and intuitive for navigational tasks than a popular option, such as a haptic belt. However, these other classes have not been evaluated and cross-compared in the context of navigation. This research project aims to contribute towards the understanding and, consequently, the improvement of designs and user experience of navigational haptic displays by thoroughly evaluating and cross-comparing the effectiveness and intuitiveness of three classes of haptic display (passive single-element vibrotactile; passive multi-element vibrotactile; and various active proprioceptive vibrotactile) for navigation. Evaluation and cross-comparisons take into account quantitative measures, for example, accuracy, response time, number of repeats taken, experienced mental workload, and perceived usability, as well as qualitative feedback collected through informal interviews during the testing of the prototypes. Results show that the passive single-element vibrotactile and active proprioceptive vibrotactile classes can be used as effective and intuitive navigational displays. Furthermore, results shed light on the multifaceted nature of haptic displays and their impact on user performance, preferences, and experiences. Quantitative findings related to performance combined with qualitative findings emphasise that one size does not fit all, and a tailored approach is necessary to address the varying needs and preferences of users

    Feeling the Temperature of the Room: Unobtrusive Thermal Display of Engagement during Group Communication

    Full text link
    Thermal signals have been explored in HCI for emotion-elicitation and enhancing two-person communication, showing that temperature invokes social and emotional signals in individuals. Yet, extending these findings to group communication is missing. We investigated how thermal signals can be used to communicate group affective states in a hybrid meeting scenario to help people feel connected over a distance. We conducted a lab study (N=20 participants) and explored wrist-worn thermal feedback to communicate audience emotions. Our results show that thermal feedback is an effective method of conveying audience engagement without increasing workload and can help a presenter feel more in tune with the audience. We outline design implications for real-world wearable social thermal feedback systems for both virtual and in-person communication that support group affect communication and social connectedness. Thermal feedback has the potential to connect people across distances and facilitate more effective and dynamic communication in multiple contexts.Comment: In IMWUT 202

    A comprehensive review of haptic feedback in minimally invasive robotic liver surgery: Advancements and challenges

    Get PDF
    Background: Liver medical procedures are considered one of the most challenging because of the liver's complex geometry, heterogeneity, mechanical properties, and movement due to respiration. Haptic features integrated into needle insertion systems and other medical devices could support physicians but are uncommon. Additional training time and safety concerns make it difficult to implement in robot-assisted surgery. The main challenges of any haptic device in a teleoperated system are the stability and transparency levels required to develop a safe and efficient system that suits the physician's needs. Purpose: The objective of the review article is to investigate whether haptic-based teleoperation potentially improves the efficiency and safety of liver needle insertion procedures compared with insertion without haptic feedback. In addition, it looks into haptic technology that can be integrated into simulators to train novice physicians in liver procedures. Methods: This review presents the physician's needs during liver interventions and the consequent requirements of haptic features to help the physician. This paper provides an overview of the different aspects of a teleoperation system in various applications, especially in the medical field. It finally presents the state-of-the-art haptic technology in robot-assisted procedures for the liver. This includes 3D virtual models of the liver and force measurement techniques used in haptic rendering to estimate the real-time position of the surgical instrument relative to the liver. Results: Haptic feedback technology can be used to navigate the surgical tool through the desired trajectory to reach the target accurately and avoid critical regions. It also helps distinguish between various textures of liver tissue. Conclusion: Haptic feedback can complement the physician's experience to compensate for the lack of real-time imaging during Computed Tomography guided (CT-guided) liver procedures. Consequently, it helps the physician mitigate the destruction of healthy tissues and takes less time to reach the target.</p
    corecore