82 research outputs found

    Feature Extraction using Spiking Convolutional Neural Networks

    Get PDF
    Spiking neural networks are biologically plausible counterparts of the artificial neural networks, artificial neural networks are usually trained with stochastic gradient descent and spiking neural networks are trained with spike timing dependant plasticity. Training deep convolutional neural networks is a memory and power intensive job. Spiking networks could potentially help in reducing the power usage. There is a large pool of tools for one to chose to train artificial neural networks of any size, on the other hand all the available tools to simulate spiking neural networks are geared towards computational neuroscience applications and they are not suitable for real life applications. In this work we focus on implementing a spiking CNN using Tensorflow to examine behaviour of the network and study catastrophic forgetting in the spiking CNN and weight initialization problem in R-STDP using MNIST data set. We also report classification accuracies that are achieved using N-MNIST and MNIST data sets

    Neuromorphic Engineering Editors' Pick 2021

    Get PDF
    This collection showcases well-received spontaneous articles from the past couple of years, which have been specially handpicked by our Chief Editors, Profs. André van Schaik and Bernabé Linares-Barranco. The work presented here highlights the broad diversity of research performed across the section and aims to put a spotlight on the main areas of interest. All research presented here displays strong advances in theory, experiment, and methodology with applications to compelling problems. This collection aims to further support Frontiers’ strong community by recognizing highly deserving authors

    ReStoCNet: Residual Stochastic Binary Convolutional Spiking Neural Network for Memory-Efficient Neuromorphic Computing

    Get PDF
    In this work, we propose ReStoCNet, a residual stochastic multilayer convolutional Spiking Neural Network (SNN) composed of binary kernels, to reduce the synaptic memory footprint and enhance the computational efficiency of SNNs for complex pattern recognition tasks. ReStoCNet consists of an input layer followed by stacked convolutional layers for hierarchical input feature extraction, pooling layers for dimensionality reduction, and fully-connected layer for inference. In addition, we introduce residual connections between the stacked convolutional layers to improve the hierarchical feature learning capability of deep SNNs. We propose Spike Timing Dependent Plasticity (STDP) based probabilistic learning algorithm, referred to as Hybrid-STDP (HB-STDP), incorporating Hebbian and anti-Hebbian learning mechanisms, to train the binary kernels forming ReStoCNet in a layer-wise unsupervised manner. We demonstrate the efficacy of ReStoCNet and the presented HB-STDP based unsupervised training methodology on the MNIST and CIFAR-10 datasets. We show that residual connections enable the deeper convolutional layers to self-learn useful high-level input features and mitigate the accuracy loss observed in deep SNNs devoid of residual connections. The proposed ReStoCNet offers >20 × kernel memory compression compared to full-precision (32-bit) SNN while yielding high enough classification accuracy on the chosen pattern recognition tasks

    Demonstrating Advantages of Neuromorphic Computation: A Pilot Study

    Get PDF
    Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency. We employ a single-chip prototype of the BrainScaleS 2 neuromorphic system to implement a proof-of-concept demonstration of reward-modulated spike-timing-dependent plasticity in a spiking network that learns to play the Pong video game by smooth pursuit. This system combines an electronic mixed-signal substrate for emulating neuron and synapse dynamics with an embedded digital processor for on-chip learning, which in this work also serves to simulate the virtual environment and learning agent. The analog emulation of neuronal membrane dynamics enables a 1000-fold acceleration with respect to biological real-time, with the entire chip operating on a power budget of 57mW. Compared to an equivalent simulation using state-of-the-art software, the on-chip emulation is at least one order of magnitude faster and three orders of magnitude more energy-efficient. We demonstrate how on-chip learning can mitigate the effects of fixed-pattern noise, which is unavoidable in analog substrates, while making use of temporal variability for action exploration. Learning compensates imperfections of the physical substrate, as manifested in neuronal parameter variability, by adapting synaptic weights to match respective excitability of individual neurons.Comment: Added measurements with noise in NEST simulation, add notice about journal publication. Frontiers in Neuromorphic Engineering (2019

    Unsupervised Visual Feature Learning with Spike-timing-dependent Plasticity: How Far are we from Traditional Feature Learning Approaches?

    Full text link
    Spiking neural networks (SNNs) equipped with latency coding and spike-timing dependent plasticity rules offer an alternative to solve the data and energy bottlenecks of standard computer vision approaches: they can learn visual features without supervision and can be implemented by ultra-low power hardware architectures. However, their performance in image classification has never been evaluated on recent image datasets. In this paper, we compare SNNs to auto-encoders on three visual recognition datasets, and extend the use of SNNs to color images. The analysis of the results helps us identify some bottlenecks of SNNs: the limits of on-center/off-center coding, especially for color images, and the ineffectiveness of current inhibition mechanisms. These issues should be addressed to build effective SNNs for image recognition

    Enhancing Neuromorphic Computing with Advanced Spiking Neural Network Architectures

    Get PDF
    This dissertation proposes ways to address current limitations of neuromorphic computing to create energy-efficient and adaptable systems for AI applications. It does so by designing novel spiking neural networks architectures that improve their performance. Specifically, the two proposed architectures address the issues of training complexity, hyperparameter selection, computational flexibility, and scarcity of neuromorphic training data. The first architecture uses auxiliary learning to improve training performance and data usage, while the second architecture leverages neuromodulation capability of spiking neurons to improve multitasking classification performance. The proposed architectures are tested on Intel\u27s Loihi2 neuromorphic chip using several neuromorphic datasets, such as NMIST, DVSCIFAR10, and DVS128-Gesture. The presented results demonstrate potential of the proposed architectures but also reveal some of their limitations which are proposed as future research

    Mejora de computación neuromórfica con arquitecturas avanzadas de redes neuronales por impulsos

    Get PDF
    La computación neuromórfica (NC, del inglés neuromorphic computing) pretende revolucionar el campo de la inteligencia artificial. Implica diseñar e implementar sistemas electrónicos que simulen el comportamiento de las neuronas biológicas utilizando hardware especializado, como matrices de puertas programables en campo (FPGA, del ingl´es field-programmable gate array) o chips neuromórficos dedicados [1, 2]. NC está diseñado para ser altamente eficiente, optimizado para bajo consumo de energía y alto paralelismo [3]. Estos sistemas son adaptables a entornos cambiantes y pueden aprender durante la operación, lo que los hace muy adecuados para resolver problemas dinámicos e impredecibles [4]. Sin embargo, el uso de NC para resolver problemas de la vida real actualmente está limitado porque el rendimiento de las redes neuronales por impulsos (SNN), las redes neuronales empleadas en NC, no es tan alta como el de los sistemas de computación tradicionales, como los alcanzados en dispositivos de aprendizaje profundo especializado, en términos de precisión y velocidad de aprendizaje [5, 6]. Varias razones contribuyen a la brecha de rendimiento: los SNN son más difíciles de entrenar debido a que necesitan algoritmos de entrenamiento especializados [7, 8]; son más sensibles a hiperparámetros, ya que son sistemas dinámicos con interacciones complejas [9], requieren conjuntos de datos especializados (datos neuromórficos) que actualmente son escasos y de tamaño limitado [10], y el rango de funciones que los SNN pueden aproximar es más limitado en comparación con las redes neuronales artificiales (ANN) tradicionales [11]. Antes de que NC pueda tener un impacto más significativo en la IA y la tecnología informática, es necesario abordar estos desafíos relacionados con los SNN.This dissertation addresses current limitations of neuromorphic computing to create energy-efficient and adaptable artificial intelligence systems. It focuses on increasing utilization of neuromorphic computing by designing novel architectures that improve the performance of the spiking neural networks. Specifically, the architectures address the issues of training complexity, hyperparameter selection, computational flexibility, and scarcity of training data. The first proposed architecture utilizes auxiliary learning to improve training performance and data usage, while the second architecture leverages neuromodulation capability of spiking neurons to improve multitasking classification performance. The proposed architectures are tested on the Intel’s Loihi2 neuromorphic computer using several neuromorphic data sets, such as NMIST, DVSCIFAR10, and DVS128-Gesture. Results presented in this dissertation demonstrate the potential of the proposed architectures, but also reveal some limitations that are proposed as future work
    • …
    corecore