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In this work, we propose ReStoCNet, a residual stochastic multilayer convolutional

Spiking Neural Network (SNN) composed of binary kernels, to reduce the synaptic

memory footprint and enhance the computational efficiency of SNNs for complex

pattern recognition tasks. ReStoCNet consists of an input layer followed by

stacked convolutional layers for hierarchical input feature extraction, pooling layers

for dimensionality reduction, and fully-connected layer for inference. In addition,

we introduce residual connections between the stacked convolutional layers to

improve the hierarchical feature learning capability of deep SNNs. We propose Spike

Timing Dependent Plasticity (STDP) based probabilistic learning algorithm, referred

to as Hybrid-STDP (HB-STDP), incorporating Hebbian and anti-Hebbian learning

mechanisms, to train the binary kernels forming ReStoCNet in a layer-wise unsupervised

manner. We demonstrate the efficacy of ReStoCNet and the presented HB-STDP based

unsupervised training methodology on the MNIST and CIFAR-10 datasets. We show that

residual connections enable the deeper convolutional layers to self-learn useful high-level

input features and mitigate the accuracy loss observed in deep SNNs devoid of residual

connections. The proposed ReStoCNet offers >20× kernel memory compression

compared to full-precision (32-bit) SNNwhile yielding high enough classification accuracy

on the chosen pattern recognition tasks.

Keywords: convolutional SNN, spiking ResNet, binary kernels, probabilistic STDP, unsupervised feature learning

1. INTRODUCTION

The proliferation in real-time content generated by the ubiquitous battery-powered edge devices
necessitates a paradigm shift in neural architectures to enable energy-efficient neuromorphic
computing. Spiking Neural Networks (SNNs) offer a promising alternative toward realizing
intelligent neuromorphic systems that require lower computational effort than the artificial neural
networks. SNNs encode and communicate information in the form of sparse spiking events.
The intrinsic sparse event-driven processing capability, which entails neuronal computations and
synaptic weight updates only in the event of a spike fired by the constituting neurons, leads to
improved energy efficiency in neuromorphic hardware implementations (Sengupta et al., 2019).
Spike Timing Dependent Plasticity (STDP) (Bi and Poo, 1998) is a localized hardware-friendly
plasticity mechanism used for unsupervised learning in SNNs. STDP-based learning rules (Song
et al., 2000) modify the weight of a synapse interconnecting a pair of input (pre) and output
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(post) neurons depending on the degree of correlation between
the respective spike times. The spike timing information is
encoded in the bit-precision of the synaptic weight. In an effort
to reduce the synaptic memory footprint, Suri et al. (2013),
Querlioz et al. (2015), and Srinivasan et al. (2016) proposed two-
layer fully-connected SNN composed of binary synaptic weights.
The fully-connected SNN learns complete input representations
rather than distinctive features making up the input patterns.
As a result, it requires large number of trainable parameters to
attain competitive classification accuracy (Diehl and Cook, 2015),
which negatively impacts the scalability of such shallow SNNs for
complex pattern recognition tasks.

We propose deep Residual Stochastic Binary Convolutional
Spiking Neural Network, referred to as ReStoCNet, as a scalable
architecture to achieve improved classification accuracy with
compressed synaptic memory. ReStoCNet consists of an input
layer followed by stacked convolutional layers with Leaky-
Integrate-and-Fire (LIF) spiking non-linearity (Dayan and
Abbott, 2001) for hierarchical input feature extraction, spatial
pooling layers for dimensionality reduction, and one or more
fully-connected layers for inference. We introduce residual or
shortcut connections between the stacked convolutional layers,
inspired by the organization of deep residual networks (He et al.,
2016), in order to improve the representations learnt by the
later convolutional layers. In addition, we enforce binary synaptic
weights for the convolutional kernels during both training
and inference. We propose STDP-based probabilistic learning
rule, referred to as Hybrid-STDP (HB-STDP), incorporating
Hebbian and anti-Hebbian learning mechanisms to train the
binary kernels. Based on HB-STDP, a binary synaptic weight
is probabilistically potentiated for small positive time difference
between excitatory pre- and post-spikes, which is in agreement
with the Hebbian learning theory (Hebb, 1949). On the other
hand, it is probabilistically depressed for large positive time
difference (anti-Hebbian in nature) or small negative time
difference (Hebbian in nature) between the respective spikes.
The spike timing information is essentially encoded in the
synaptic switching probability, which is held constant within
the Hebbian potentiation, Hebbian depression, and anti-Hebbian
depression windows, and is zero elsewhere. We note that Suri
et al. (2013) proposed an STDP-based learning rule employing
constant switching probabilities, where the potentiation and
depression windows extend over the entire STDP timing window.
On the contrary, HB-STDP contains dead zone in the STDP
timing window, where the switching probability is zero. We
visually demonstrate the significance of dead zone for efficient
feature learning using binary fully-connected SNN.

We present HB-STDP based layer-wise unsupervised training
methodology for ReStoCNet, where we train the binary kernels
interconnecting successive convolutional layers using HB-STDP.
Once a given layer is trained, we forward propagate the
spikes from the input through the trained layers and update
the binary kernels of the following convolutional layer. After
all the convolutional layers are trained, we feed the input
dataset, estimate the spiking activations of the spatially pooled
convolutional spike maps by accumulating the spikes at every
time instant and decaying the resultant sum between successive

spike timing instants, and pass them on to the fully-connected
layer, trained using error backpropagation (Rumelhart et al.,
1986), for inference. We validate the efficacy of ReStoCNet and
the HB-STDP based unsupervised training methodology on the
MNIST (LeCun et al., 1998) and CIFAR-10 datasets (Krizhevsky,
2009). We show that residual connections enable the deeper
convolutional layers to extract useful high-level input features
and effectively mitigate the accuracy degradation observed in
deep SNNs devoid of residual connections (Lee et al., 2018b).
We note that Masquelier and Thorpe (2007), Panda and Roy
(2016), Lee et al. (2016), Stromatias et al. (2017), Srinivasan
et al. (2018), Tavanaei et al. (2018), Kheradpisheh et al. (2018),
Ferré et al. (2018), Thiele et al. (2018), Lee et al. (2018a,b), and
Mozafari et al. (2018) have demonstrated convolutional SNNs
composed of full-precision kernels. Recently, Sengupta et al.
(2019) and Hu et al. (2018) presented residual SNNs, trained
using error backpropagation with real-valued inputs and artificial
ReLU neurons (Nair and Hinton, 2010), which are mapped to
spiking neurons post training for energy-efficient inference. To
the best of our knowledge, ReStoCNet is the first demonstration
of STDP-trained deep residual convolutional SNN composed
of binary kernels for complex pattern recognition tasks. We
believe that ReStoCNet, with event-driven computing capability
and memory-efficient learning with binary kernels trained
using hardware-friendly probabilistic-STDP learning rule, offers
a promising alternative for energy-efficient neuromorphic
computing in battery-powered edge devices. Overall, the key
contributions of our work are:

1. We propose ReStoCNet, a deep residual convolutional
SNN composed of binary kernels, for memory-efficient
neuromorphic computing.

2. We present HB-STDP, an STDP-based probabilistic learning
rule incorporating Hebbian and anti-Hebbian learning
mechanisms, for training the binary kernels constituting
ReStoCNet in a layer-wise unsupervised manner for
hierarchical input feature extraction.

3. We validate the efficacy of ReStoCNet on the MNIST and
CIFAR-10 datasets, and show that residual connections enable
the deeper convolutional layers to learn useful high-level input
features and mitigate the accuracy loss incurred by STDP-
trained deep SNNs without residual connections.

2. MATERIALS AND METHODS

2.1. ReStoCNet: Residual Stochastic Binary
Convolutional Spiking Neural Network
ReStoCNet consists of an input layer followed by stacked
convolutional layers for hierarchical input feature extraction,
spatial pooling layers for dimensionality reduction, and one
or more fully-connected layers for inference as illustrated in
Figure 1. The pixels in the input image maps are converted
to Poisson spike trains firing at a rate proportional to the
corresponding pixel intensities. At any given time, the input
spike maps are convolved with the binary kernels, which
are constrained to logic states −1 (wlow) and +1 (whigh), to
produce the convolutional output maps. The convolutional
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FIGURE 1 | Illustration of ReStoCNet consisting of an input layer followed by stacked convolutional layers with Leaky-Integrate-and-Fire (LIF) spiking non-linearity,

which are interconnected via binary kernels. The deeper convolutional layers receive residual inputs that are summed up with direct inputs from the preceding

convolutional layer as depicted in the inset. The binary kernels forming the convolutional layers are trained using probabilistic Hybrid-STDP (HB-STDP) based

layer-wise unsupervised training methodology. After all the convolutional layers are trained, the respective spike maps are spatially pooled using average pooling with

2×2 unit-weight kernels followed by Integrate-and-Fire (IF) spiking non-linearity to produce the pooled spike maps. The spike trains of the pooling layers are low-pass

filtered to obtain their spiking activations over the time period for which the input is presented, which are fed to the fully-connected layer, trained using error

backpropagation, for inference.

outputs, referred to as post-synaptic currents, are fed to non-
linear layer of Leaky-Integrate-and-Fire (LIF) spiking neurons
(Dayan and Abbott, 2001). An LIF neuron integrates the post-
synaptic current into its membrane potential, whose dynamics
are described by

τmem
dVmem

dt
= −Vmem + Ipost (1)

where Vmem is the neuronal membrane potential, τmem is
the membrane potential leak time constant, and Ipost is the
post-synaptic current. The LIF neuron emits a spike when
its membrane potential exceeds a definite firing threshold
after which the membrane potential is reset to zero. Every
convolutional output map yields a corresponding spike map
based on the LIF spiking neuronal dynamics, which is directly fed
to the following convolutional layer. In addition, we introduce
residual connections feeding into the deeper convolutional
layers, which is inspired by the architecture of deep residual
networks (He et al., 2016). The second convolutional layer
receives residual connections from the input layer while the
third convolutional layer receives residual connections from the
input and first convolutional layer as shown in Figure 1. The
residual connections feeding into a target convolutional layer

perform identity mapping, i.e., the residual path spike maps are
simply added to the direct path spike maps from the preceding
convolutional layer and fed to the target convolutional layer.
In the event of a mismatch in the number of spike maps (or
channels) between the residual and direct paths, the spike maps
in the residual path are replicated to be consistent with the
number of channels in the direct path. Consider, for instance,
the second convolutional layer that receives spike maps from
the input layer via the residual path and the first convolutional
layer via the direct path. Let us suppose that the input image
pattern is stored in RGB colorspace. Consequently, each image
pattern yields 3 input spike maps that needs to be summed
up with the spike maps of the first convolutional layer, which
typically contains more than 3 spike maps. Hence, the 3 input
spike maps are replicated to match the number of spike maps in
the first convolutional layer, summed up with the spike maps of
the first convolutional layer, and fed to the second convolutional
layer. Note that the summed spike maps from the residual
and direct paths are constrained to unit magnitude to produce
resultant spike maps feeding into the target convolutional
layer. The binary kernels constituting the convolutional layers
are trained using probabilistic Hybrid-STDP (HB-STDP) based
layer-wise unsupervised training methodology. We find that the
residual connections ensure rich and diverse inputs for deeper
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convolutional layers and enable them to self-learn useful high-
level input features as shown in subsection 3.3. The improved
feature learning capability mitigates the accuracy loss incurred
by stacked convolutional layers without residual connections
as experimentally validated in subsection 3.3 and enhances the
scalability of deep SNNs.

After all the convolutional layers are trained, we feed the input
dataset and spatially pool the spike maps of the convolutional
layers. Spatial pooling is the mechanism used to suitably combine
the neighboring pixels of a convolutional feature map to reduce
the map size (height and width) while retaining the salient
features. Spatial pooling also renders the network invariant to
slight translations in the input features (Jaderberg et al., 2015).
We perform a class of spatial pooling operation known as
average pooling with 2×2 kernels composed of unit weights and
stride length of 2 as detailed below. The spikes in every 2×2
non-overlapping region of the convolutional maps are summed
up and normalized by the kernel size (4 for a 2×2 kernel)
to produce the pooled output maps, which are then fed to
a layer of Integrate-and-Fire (IF) spiking neurons to generate
the pooled spike maps. An IF neuron integrates the input into
its membrane potential and spikes if the membrane potential
exceeds pre-specified threshold (θpool) after which the membrane
potential is reset. The IF neurons, in effect, fire based on the
average spiking activity of the spatially pooled convolutional
spike maps. We low-pass filter the spike trains of the pooled
maps by integrating the spikes at every time instant and decaying
the resultant sum between successive spike timing instants to
estimate their spiking activations over the time period for which
the input is presented. The spiking activations of the pooledmaps
pertaining to all the convolutional layers are fed to the fully-
connected layer composed of ReLU neurons (Nair and Hinton,
2010) for inference. This ensures that the input features learnt
independently by the convolutional layers in an unsupervised
manner are combined optimally by the fully-connected layer to
yield the best accuracy. We note that LIF neurons can instead
be used in the fully-connected layer, which can be trained
using spike-based backpropagation algorithms (Lee et al., 2016,
2018a; Panda and Roy, 2016; Jin et al., 2018; Wu et al., 2018).
In this work, we use fully-connected layer of ReLU neurons
trained with backpropagation algorithm commonly used for
deep learning networks since we are primarily interested in
evaluating the efficacy of the proposed probabilistic HB-STDP
based unsupervised training methodology for the convolutional
layers that is detailed in the following subsection.

2.2. Hybrid-STDP (HB-STDP) for Binary
Synaptic Weights
We propose STDP-based probabilistic learning rule, referred
to as Hybrid-STDP (HB-STDP), integrating Hebbian and anti-
Hebbian learning mechanisms to train the binary synaptic
weights constituting an SNN. We present two versions of the
HB-STDP learning rule, namely, excitatory HB-STDP (eHB-
STDP) and inhibitory HB-STDP (iHB-STDP) to train the
binary synaptic weights connecting excitatory and inhibitory pre-
neurons, respectively, to excitatory post-neurons. An excitatory

neuron is modeled as a neuron firing unit positive spikes while
an inhibitory neuron fires unit negative spikes. Input image pixels
with intensities ranging from 0 to 255 are mapped to excitatory
pre-neurons firing unit positive spikes at a rate proportional to
the respective pixel intensities. On the contrary, input images
when pre-processed by normalizing the raw pixel intensities
to zero mean and unit variance result in normalized images
with positive and negative pixel intensities. The normalized
pixels with negative intensities are mapped to inhibitory pre-
neurons firing unit negative spikes. The normalized input maps
containing excitatory and inhibitory pre-neurons offer richer
spike-encoding of the image patterns, resulting in efficient STDP-
based feature learning. We find that input normalization is
critical for natural images like those from the CIFAR-10 dataset
(Krizhevsky, 2009) that do not have clear separation between the
region of interest and the background unlike digit patterns from
the MNIST dataset (LeCun et al., 1998).

Binary synapses require a probabilistic learning rule to prevent
rapid switching of the weights between the allowed levels,
which could otherwise render the synapses memoryless. Both
the proposed eHB-STDP and iHB-STDP learning rules map
the time difference between a pair of pre- and post-spikes to
the switching probability of the interconnecting binary synapse.
We first detail the eHB-STDP learning rule for excitatory pre-
neurons and subsequently discuss how the learning dynamics are
adapted for inhibitory pre-neurons. According to eHB-STDP, if
an excitatory pre-spike (at time instant, tpre) triggers the post-
neuron to fire (at time instant, tpost) and the difference between
the respective spike times (1t = tpost − tpre) is smaller than a
pre-specified time period (tHebb_pot), we switch the synapse from
low to high (‘L’→‘H’) state with a constant probability, pHebb_pot ,
as illustrated in Figure 2A and described by

PL→H =

{

pHebb_pot , if 0 < 1t ≤ tHebb_pot

0, for all other 1t
(2)

where PL→H is the probability of synaptic potentiation.
Probabilistic synaptic potentiation is carried out for small time
difference between causally related pre- and post-spikes following
the Hebbian learning principle that can be summarized as
“neurons that fire together, must wire together” (Lowel and
Singer, 1992). Hence, the corresponding timing window is
designated as the Hebbian potentiation window. On the other
hand, probabilistic synaptic depression is carried out for large
positive or small negative time difference between the pre- and
post-spikes as specified by

PH→L =











pantiHebb_dep, if 1t > 0 ∩ 1t ≥ tantiHebb_dep

pHebb_dep, if tHebb_dep ≤ 1t ≤ 0

0, for all other 1t

(3)

where PH→L is the probability of synaptic depression. We
depress the synapse from high to low state with a constant
probability, pantiHebb_dep, if the time difference between causally
related pre- and post-spikes is larger than tantiHebb_dep, which
is anti-Hebbian in nature. Hence, the corresponding STDP
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FIGURE 2 | (A) Illustration of eHB-STDP, an STDP-based probabilistic learning rule, incorporating Hebbian and anti-Hebbian learning mechanisms, for training the

binary synaptic weights interconnecting excitatory pre- and post-neurons firing positive spikes. The synaptic weight is probabilistically potentiated for small positive

time difference (Hebbian in nature) while it is probabilistically depressed for large positive (anti-Hebbian in nature) or small negative time difference (Hebbian in nature)

between the pre- and post-spikes. The switching probability is held constant within the Hebbian potentiation, Hebbian depression, and anti-Hebbian depression

windows, and is zero in the dead zone. (B) Illustration of iHB-STDP for binary synaptic weights connecting inhibitory pre-neurons firing negative spikes to excitatory

post-neurons. The iHB-STDP dynamics are obtained by mirroring the eHB-STDP dynamics about the 1t (tpost − tpre ) axis.

timing window is referred to as the anti-Hebbian depression
window. Anti-Hebbian depression enables the synapses to
unlearn features lying outside the neuronal receptive field
like noisy background in image patterns. Synaptic depression,
in addition, is carried out with a probability, pHebb_dep, if
a pre-spike follows a post-spike and the difference between
the respective spike times lies within the negative Hebbian
depression ([tHebb_dep, 0]) window. It is important to note
that eHB-STDP contains a dead zone in the STDP timing
window, where the switching probability is zero, between the
Hebbian potentiation and anti-Hebbian depression windows as
depicted in Figure 2A. We find that expanding the anti-Hebbian
depression window toward the Hebbian potentiation window
leads to depression of moderately correlated features in addition
to the weakly correlated ones. On the other hand, expanding the
Hebbian potentiation window causes the synapses connecting
a post-neuron to encode multiple overlapping input features,
which negatively impacts the selectivity of the post-neuron and
degrades the inference capability of the SNN. The dead zone,
in effect, ensures that binary synapses learn and retain strongly
correlated input features and unlearn only the weakly correlated
ones by facilitating optimal balance between the potentiation
and depression updates.We visually demonstrate the significance
of dead zone for efficient feature learning using binary fully-
connected SNN in subsection 3.1.

Next, we discuss how the eHB-STDP dynamics are adapted
for binary synapses connecting inhibitory pre-neurons firing
negative spikes. The iHB-STDP dynamics (shown in Figure 2B)
are obtained by symmetrically inverting the eHB-STDP dynamics
(shown in Figure 2A) about the 1t (tpost − tpre) axis. As a
result, the erstwhile potentiation windows are converted to
depression windows, and vice versa. According to iHB-STDP,
if an inhibitory pre-spike causes the post-neuron to fire and
the spike timing difference is smaller than a pre-specified time
period, we probabilistically depress the binary synaptic weight.
This ensures that the strongly correlated inhibitory (negative)
pre-spike modulated by the depressed synaptic weight causes
an effective increase in the post-neuronal membrane potential,
thereby improving the chances of a post-spike at subsequent

time instants. Probabilistic synaptic depression enables a post-
neuron to integrate the small positive time difference between
an inhibitory pre-spike and the ensuing post-spike, which
conforms to the Hebbian learning theory. Probabilistic synaptic
potentiation, on the other hand, causes an inhibitory pre-spike
modulated by the synaptic weight to lower the post-neuronal
membrane potential, thus reducing the chances of a post-spike at
subsequent time instants. Hence, it is carried out for large positive
time difference (anti-Hebbian in nature) or small negative time
difference (Hebbian in nature) between the pre- and post-
spikes. The iHB-STDP learning rule for inhibitory pre-neurons
effectively incorporates the learning dynamics of eHB-STDP
for excitatory pre-neurons by mirroring the potentiation and
depression windows about the 1t axis.

In this work, we use trace-based technique to estimate
spike timing differences as it is commonly adopted for efficient
implementation of STDP learning rules (Diehl and Cook, 2015).
For instance, the positive time difference between a pair of
pre- and post-spikes is estimated by generating an exponentially
decaying pre-trace (with time constant τpre) that is reset to unity
at the time instant of a pre-spike, and sampling it in the event of a
post-spike. Smaller the time difference between the pre- and post-
spikes, larger is the sampled pre-trace, and vice versa. Every pre-
neuron has a pre-trace that is sampled upon a post-spike to obtain
the positive spike timing difference. Likewise, every post-neuron
has a post-trace (with time constant τpost) that is sampled upon
a pre-spike to obtain the negative spike timing difference. As
a result, the eHB-STDP (iHB-STDP) hyperparameters, namely,
tHebb_pot (tHebb_dep), tantiHebb_dep (tantiHebb_pot), and tHebb_dep
(tHebb_pot) are mapped to preHebb_pot (preHebb_dep), preantiHebb_dep
(preantiHebb_pot), and postHebb_dep (postHebb_pot), respectively.

2.3. Unsupervised Training Methodology
for the Convolutional Layers
We train the binary kernels forming ReStoCNet in a layer-wise
unsupervised manner using the proposed probabilistic e/iHB-
STDP learning rule. Consider a k × k binary kernel (kernellij)

connecting the ith input spike map in layer “l − 1” (mapl−1
i )
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FIGURE 3 | (A) Illustration of HB-STDP based unsupervised training methodology for kernell
ij
connecting the ith input spike map in layer “l − 1” (mapl−1

i
) to the jth

output spike map in layer “l” (mapl
j
). The kernell

ij
is updated using HB-STDP based on the spike timing difference between the spiking post-neuron in output mapl

j
and the corresponding pre-neurons in input mapl−1

i
. The HB-STDP based weight updates are carried out on all the kernels in layer “l” based on the respective input

and output maps. (B) Illustration of HB-STDP based mini-batch training methodology for mini-batch size of 2. The kernell
ij
is now updated based on the average spike

timing difference between the spiking post-neurons in the output mini-batch (mapl
j1 and mapl

j2) and the respective pre-neurons in the input mini-batch (mapl−1
i1 and

mapl−1
i2 ).

to the jth output spike map in layer “l” (maplj) as shown in

Figure 3A. Let us suppose that a post-neuron in the output
maplj spikes at a particular time instant: the kernel weights

are then probabilistically updated based on the time difference
between the post-spike and the corresponding k × k pre-

spikes in the input mapl−1
i . We use the eHB-STDP learning

rule for excitatory pre-neurons and iHB-STDP learning rule for
inhibitory pre-neurons as described in subsection 2.2. If multiple
post-neurons in the output maplj spike, we update kernel

l
ij based

on the average spike timing difference between the spiking
post-neurons and the respective pre-neurons, which leads to
generalized feature learning. However, in order to achieve
optimal generalization performance, we average the spike timing
differences computed with fixed stride, known as STDPstride,
over the output maplj. As an example, for STDPstride of 2, we

average the spike timing differences computed between every
alternate spiking post-neuron in output maplj and the respective

pre-neurons. Larger the STDPstride, fewer is the number of post-
neurons whose spike timing difference estimates are averaged
to update the kernel. Consequently, there is loss of generality
and added specificity in the features learnt by the kernel for
larger STDPstride. We experimentally determine the STDPstride for
optimal generalization performance that yields the highest test
accuracy for a given pattern recognition task.

STDP-based learning is typically performed in an online
manner by feeding the input patterns sequentially. STDP-based
online learning has been shown to work well particularly for
two-layer fully-connected SNNs, where each output or excitatory
neuron learns to spike exclusively for a unique class of input
patterns by encoding a general input representation in the
input to excitatory synaptic weights (Diehl and Cook, 2015).
Convolutional SNNs, on the other hand, require each kernel to
extract features shared across different input classes. In order
to enable the kernel to extract general features characterizing
different input classes, we performmini-batch learning following
recent works by Lee et al. (2018b) and Ferré et al. (2018). The
proposed HB-STDP based mini-batch training methodology is

illustrated in Figure 3B, where the kernellij is now shared by a

mini-batch of ith inputmap in layer “l−1” (inputmini-batch) and
jth output map in layer “l” (output mini-batch). We first average
the spike timing differences between the spiking post-neurons
and the respective pre-neurons, estimated using fixed STDPstride,
over each output map in the mini-batch to obtain the resultant
spike timing difference per output map in the mini-batch. We
subsequently average the resultant spike timing differences of the
output maps across the mini-batch and probabilistically update
kernellij using HB-STDP as shown in Figure 3B for a specific

post-neuron in the output mini-batch. At every time instant, the
HB-STDP driven mini-batch weight updates are carried out on
all the kernels in a given layer. This process is repeated over
the entire time duration, TSTDP, for which the training patterns
are presented.

Finally, in order to ensure that different kernels in a layer
learn diverse input features, we incorporate the uniform firing
threshold adaptation scheme proposed by Lee et al. (2018b) and
dropout (Srivastava et al., 2014) for the output maps. In the
beginning of training, the firing threshold of all the post-neurons
in every output mini-batch is reset to zero. When a mini-batch of
training patterns is presented, multiple post-neurons in an output
mini-batch spike and encode definite input features in the kernel
weights. We then increase the firing threshold of all the post-
neurons in the output mini-batch by an amount 1thresh, which
is specified by

1thresh = βthresh ×
output spike count

output map size
(4)

where βthresh is the rate of threshold increase, output spike count
is the number of spikes per output map summed over the mini-
batch, and output map size is the product of the height and width
of the output maps. The amount of threshold increase depends
on the output spike count normalized by the output map size
to account for the drop in spiking activity of the output maps
across successive convolutional layers due to gradual reduction
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in the respective sizes. Higher the normalized spiking activity of
the output mini-batch, greater is the corresponding increase in
its firing threshold, and vice versa. Firing threshold adaptation
effectively regulates the spiking activity of the output mini-
batch and provides an opportunity for the hitherto dormant
output mini-batches to spike and learn, thereby ensuring that
no single output mini-batch completely dominates the learning
process during a mini-batch training iteration. In addition, we
introduce dropout (Srivastava et al., 2014) for the output maps to
achieve diversity in feature learning across successive mini-batch
training iterations. At the beginning of every training iteration,
we randomly drop a fraction of output mini-batches based on the
dropout probability, pdrop, by forcing the respective spike outputs
to zero. Dropout ensures that the same output mini-batch
does not spike repeatedly for every training iteration, thereby
promoting diversity in feature learning among the kernels in
a layer. Once a layer is trained, we propagate the spikes from
the input through the trained layers, and update the kernels
and firing thresholds of the output maps in the following layer
using the presented training methodology. The training process
is repeated for all the convolutional layers in ReStoCNet.

2.4. Supervised Training Methodology for
the Fully-Connected Layer
After all the convolutional layers are trained, we pool the
respective spike maps using average pooling as detailed in
subsection 2.1. We then low-pass filter the spike trains of the
pooled maps, by integrating the spike outputs at every time
instant and decaying the resultant sum between successive time
instants, to obtain their spiking activations as described in Lee
et al. (2016, 2018a) and specified by

pooll
lpf
(t) = e

−
1tsim
τlpf × pooll

lpf
(t − 1tsim)+ pooll(t)

poollout =
pooll

lpf
(Tsim)

Tsim

(5)

where pooll
lpf
(t) is the low-pass filtered output of the pooled spike

map pooll(t) in layer “l” at any given time t, τlpf is the low-pass
filter time constant, 1tsim is the simulation time-step, Tsim is the
simulation period for which the input patterns are presented, and
poollout is the spiking activation of the pooled map in layer “l”
over the simulation period. The spiking activation thus obtained
accounts for the highly non-linear leaky-integrate-and-fire and
membrane potential reset dynamics of the spiking neurons in
the convolutional layers. The spiking activations of the pooled
maps of all the convolutional layers are concatenated and fed to
the fully-connected layer, trained using error backpropagation
(Rumelhart et al., 1986), for inference. We use full-precision
synaptic weights in the fully-connected layer to comprehensively
validate the efficacy of the proposed probabilistic HB-STDP
learning rule for training the binary kernels in the convolutional
layers. The full-precision synaptic weights can be binarized using
algorithms proposed for training binary deep learning networks
(Courbariaux et al., 2015; Rastegari et al., 2016; Hubara et al.,
2017). It is important to note that the presented HB-STDP based
learning methodology effectuates plasticity by probabilistically

switching the binary weights, thereby precluding the need to
store the full-precision weights during training. Binarization
algorithms for deep learning networks, on the other hand,
update the full-precision weights during training, which are
subsequently binarized for forward propagation and computing
the error gradients.

3. RESULTS

We first validate the efficacy of HB-STDP, by visually
demonstrating the significance of having distinct potentiation
and depression windows separated by a dead zone for efficient
feature learning, using two-layer binary fully-connected SNN
trained on the MNIST dataset. We then comprehensively
evaluate ReStoCNet and the presented HB-STDP based
unsupervised mini-batch training methodology on the MNIST
and CIFAR-10 datasets. We show that the residual connections
are critical to achieving efficient unsupervised learning in
deeper convolutional layers and minimizing the accuracy
degradation incurred by STDP-trained deep SNNs without
residual connections. We use the classification accuracy on the
test set and the synaptic memory compression obtained by using
binary kernels as the evaluationmetrics for ReStoCNet compared
to full-precision (32-bit) SNN under iso-accuracy conditions.

3.1. Two-Layer Binary Fully-Connected
SNN for MNIST Digit Recognition
The binary fully-connected SNN (Diehl and Cook, 2015) consists
of an input layer fully-connected via binary synapses to neurons
in the excitatory layer, which are connected in a one-to-one
manner to neurons in the subsequent inhibitory layer. Each
inhibitory neuron laterally inhibits all the excitatory neurons
except the one from which it receives a forward connection.
Lateral inhibition facilitates competitive learning and enables
each excitatory neuron to spike exclusively and recognize a
unique class of input patterns. The input to excitatory synaptic
weights are trained using three different configurations of the
eHB-STDP learning rule that are enumerated below:

1. eHB-STDP – This is the proposed eHB-STDP learning rule
containing distinct Hebbian potentiation and anti-Hebbian
depression windows separated by a dead zone as shown
in Figure 4A.

2. eHB-STDP2 – This is a variant of the eHB-STDP learning
rule where the dead zone is replaced with a wider Hebbian
potentiation window as depicted in Figure 4B.

3. eHB-STDP3 – This is an alternative variant of the eHB-
STDP rule where the dead zone is replaced with a wider
anti-Hebbian depression window as illustrated in Figure 4C.

Note that the excitatory↔inhibitory synaptic weights are fixed
a priori and are not subjected to STDP-based learning.
We simulated the fully-connected SNN using BRIAN
(Goodman and Brette, 2008), which is an open-source SNN
simulation framework, on the MNIST dataset. The input
image pixels are converted to Poisson spike trains firing at
a rate constrained between 0 and 63.75 Hz depending on
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FIGURE 4 | MNIST digit representations (re-arranged in 28×28 format) learnt by the synapses connecting the input to each excitatory neuron in a binary

fully-connected SNN of 400 neurons (arranged in 20×20 grid). The binary fully-connected SNN is trained using (A) the proposed eHB-STDP containing distinct

Hebbian potentiation and anti-Hebbian depression windows separated by a dead zone, (B) eHB-STDP2 where the dead zone is replaced with a wider Hebbian

potentiation window, and (C) eHB-STDP3 where the dead zone is replaced with a wider anti-Hebbian depression window.

the respective pixel intensities for a simulation period of
350 ms. Note that the simulation time-step is 0.5 ms. We
use the spiking neuronal model detailed in Diehl and Cook
(2015) whose parameters are adopted from Jug (2012). The
eHB-STDP hyperparameters used in our simulations are listed
in Table 1.

We first train a binary fully-connected SNN of 400 excitatory
neurons using the three different eHB-STDP configurations on
3500 MNIST digit patterns. Figure 4A illustrates that eHB-
STDP causes each excitatory neuron to self-learn general
representation of a unique digit in the input to excitatory
synaptic weights. On the other hand, eHB-STDP2, with a
wider Hebbian potentiation window instead of the dead zone,
causes certain excitatory neurons to self-learn overlapping
input representations as highlighted in Figure 4B. Overlapping
input representations negatively impact the selective spiking
behavior of the excitatory neurons for specific input classes
and degrade the recognition capability of the SNN. The final
eHB-STDP configuration, eHB-STDP3, leads to insufficient
representation learning as depicted in Figure 4C due to the
dominance of synaptic depression over synaptic potentiation
weight updates. Thus, the proposed eHB-STDP learning rule
offers superior representation learning capability compared to
the explored variants by maintaining optimal balance between
the potentiation and depression weight updates. This is further
corroborated by the accuracy results shown in Figure 5A, which
is evaluated as explained below. At the end of eHB-STDP based
training, each excitatory neuron is tagged as having learnt the

class of input patterns for which it spiked the most during the
training phase. A test pattern is predicted to belong to the class
(or tag) represented by the group of neurons with the highest
average spike count over the simulation period. The binary fully-
connected SNN of 400 neurons trained using eHB-STDP yielded
79.94% accuracy on the MNIST test set, which is higher by
>8% compared to that achieved using the remaining eHB-STDP
variants. The accuracy can be further improved by increasing
the number of excitatory neurons as shown in Figure 5B. We
now estimate the synaptic memory compression offered by the
binary SNN compared to full-precision (32-bit) SNN, which is
specified by

synaptic memory compression

=
#input neurons× #excitatory neuronsfull−precisionSNN × 32

#input neurons× #excitatory neuronsbinarySNN × 1

(6)

where #input neurons is 784 for the MNIST dataset. Figure 5B
indicates that binary SNN of 6400 neurons offers comparable
accuracy (∼92%) to that provided by full-precision (32-bit)
SNN of 1600 neurons (Diehl and Cook, 2015), leading to 8×
synaptic memory compression under iso-accuracy conditions.
Note that the accuracy of ∼92% is higher than that reported
in related works for binary fully-connected SNN, trained using
probabilistic STDP-based learning rules, as shown in Table 2.
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However, the fully-connected SNN introduces scalability issues
as the network depth is increased due to explosion in the
number of trainable parameters. We demonstrate ReStoCNet,
which is a scalable multilayer convolutional SNN composed of
binary kernels, trained using the optimal e/iHB-STDP based
unsupervised mini-batch training methodology.

3.2. ReStoCNet for MNIST Digit
Recognition
The MNIST dataset contains 60,000 training patterns and
10,000 test patterns of handwritten digits that are stored
as 28×28 Grayscale images. In this work, we developed a
custom simulation framework using Pytorch (Paszke et al.,
2017) to evaluate ReStoCNet and the presented HB-STDP
based unsupervised training methodology. The simulation
parameters for the Leaky-Integrate-and-Fire (LIF) neuron in
the convolutional layers and the Integrate-and-Fire (IF) neuron
in the spatial pooling layers are shown in Table 3. The
binary kernels in every convolutional layer are initialized

TABLE 1 | Simulation parameters for training the binary fully-connected SNN on

the MNIST dataset.

Parameters Values

Simulation time-step, 1tsim 0.5ms

Simulation period, Tsim 350ms

Maximum input spike rate 63.75Hz

Pre-trace time constant, τpre 20ms

Post-trace time constant, τpost 20ms

preHebb_pot (eHB-STDP) 0.85

preantiHebb_dep (eHB-STDP) 0.10

postHebb_dep (eHB-STDP) 0.80

pHebb_pot (eHB-STDP) 0.08

pantiHebb_dep (eHB-STDP) 0.06

pHebb_dep (eHB-STDP) 0.005

Maximum synaptic weight (whigh) 1.0

Minimum synaptic weight (wlow ) 0.0

to logic high state (whigh) with a probability, phigh, which
is specified by

phigh =

√

αweight_init

fan_in+ fan_out
(7)

where αweight_init is the proportionality constant controlling phigh,
and fan_in and fan_out are the total number of input and
output synaptic weights, respectively, for a given convolutional
layer. The remaining kernel weights in the convolutional layer
are initialized to logic low state (wlow). The firing threshold
of the LIF neurons in every convolutional layer are initialized
to zero.

We first simulated a 16C3-2P-10FC ReStoCNet, composed
of single convolutional layer with 16 maps and 3×3 binary
kernels followed by pooling layer whose spiking activations are
directly fed to the final softmax layer. The input image pixels
are mapped to excitatory pre-neurons firing at a rate constrained
between 0 and 200 Hz depending on the corresponding pixel
intensities. The eHB-STDP model parameters are provided in
Table 3. We trained the convolutional layer in ReStoCNet using
2,000 MNIST digit patterns with a mini-batch size of 200.
We thereafter fed the entire training dataset to ReStoCNet,
spatially pooled the spike maps of the convolutional layer,
and low-pass filtered the pooled spike trains over a simulation
period of 100 ms to estimate their spiking activations. The
pooling layer spiking activations are passed on to the fully-
connected softmax layer, which is trained using the Adam
optimizer (Kingma and Ba, 2014) and cross-entropy loss
function for 100 epochs. The training parameters used for the
fully-connected layer are mentioned in Table 4. The shallow
ReStoCNet yielded an accuracy of 95.21% on the MNIST test
set, which increased to 98.22% for a wider 36C3-2P-10FC
ReStoCNet in which the convolutional layer is trained using
10,000 MNIST digit patterns. Further improvement in accuracy
is obtained by augmenting the classifier in ReStoCNet with an
additional fully-connected layer of 128 neurons prior to the
softmax output layer as shown in Figure 6, which indicates that
36C3-2P-128FC-10FC ReStoCNet offers an improved accuracy

FIGURE 5 | (A) Classification accuracy of binary fully-connected SNN of 400 excitatory neurons trained using the three different eHB-STDP configurations illustrated

in Figure 4. (B) Classification accuracy of binary fully-connected SNN, trained using the proposed eHB-STDP learning rule, compared to full-precision (32-bit) SNN

(Diehl and Cook, 2015) for different network sizes.
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TABLE 2 | Classification accuracy of binary fully-connected SNNs on the MNIST test set.

Model #Excitatory neurons Training methodology Accuracy (%)

Binary SNN (Querlioz et al., 2015) 50 Probabilistic Rectangular STDP 60

Binary SNN (Srinivasan et al., 2016) 400 Probabilistic Exponential STDP 70.15

Binary SNN (our work) 400 Probabilistic eHB-STDP 79.94

Binary SNN (our work) 6400 Probabilistic eHB-STDP 92.14

TABLE 3 | Simulation parameters for training the convolutional layers in

ReStoCNet.

Parameters Values

C1 C1 C2/C3

Input dataset MNIST CIFAR-10 CIFAR-10

Maximum synaptic weight (whigh) +1.0 +1.0 +1.0

Minimum synaptic weight (wlow ) −1.0 −1.0 −1.0

Weight initialization constant

(αweight_init )

75 30 30

Simulation time-step, 1tsim 1 ms 1 ms 1 ms

Simulation period for STDP, TSTDP 25 ms 25 ms 25 ms

Maximum input spike rate for STDP 200 Hz 200 Hz 500 Hz

Dropout probability for STDP, pdrop 0.5 0.5 0.5

STDPstride 5 5 5

Pre-trace decay time constant, τpre 1.45 ms 1.45 ms 1.45 ms

preHebb_pot (eHB-STDP) 0.50e-1 0.20e-1 0.20e-1

preantiHebb_dep (eHB-STDP) 0.50e-2 0.50e-2 0.50e-2

pHebb_pot (eHB-STDP) 0.01 0.05 0.05/25

pantiHebb_dep (eHB-STDP) 0.01 0.01 0.01/25

pHebb_dep (eHB-STDP) 0 0 0

preHebb_dep (iHB-STDP) – 0.20e-1 0.20e-1

preantiHebb_pot (iHB-STDP) – 0.50e-2 0.50e-2

pHebb_dep (iHB-STDP) – 0.05 0.05/25

pantiHebb_pot (iHB-STDP) – 0.01 0.01/25

pHebb_pot (iHB-STDP) – 0 0

Leaky-Integrate-and-Fire (LIF) neuron

leak time constant, τmem

9.5 ms 9.5 ms 9.5 ms

Rate of increase of LIF neuronal firing

threshold, βthresh

6e-4 6e-4 6e-4 (C2)

8e-4 (C3)

Integrate-and-Fire (IF) neuron pooling

threshold, θpool

0.80 0.80 0.80

Simulation period to estimate spiking

activation, Tsim

100 ms 100 ms 100 ms

Maximum input spike rate to estimate

spiking activation

500Hz 500Hz 500Hz

Low-pass filter time constant to

estimate spiking activation, τlpf

99.5 ms 99.5 ms 99.5 ms

of 98.54% on the MNIST test set. Note that we did not
simulate deep ReStoCNets for MNIST digit recognition since
the shallow networks yield >98% accuracy, and that any
further increase in the depth of STDP-trained convolutional
layers would not provide commensurate improvements in the
classification accuracy.

TABLE 4 | Simulation parameters for training the fully-connected layer in

ReStoCNet.

Parameters Values

MNIST CIFAR-10

Batch size 256 256

Number of epochs 100 100

Learning rate (Adam) 1.5e-3 1.0e-4

betas (Adam) (0.9, 0.999) (0.9, 0.999)

eps (Adam) 1e-8 1e-8

Weight decay (Adam) 0 0

Dropout probability 0.5 0.5

FIGURE 6 | Classification accuracy of ReStoCNet, composed of single

convolutional layer followed by a pooling layer and one or more fully-connected

layers, vs. the number of output (C1) maps, on the MNIST test set.

3.3. ReStoCNet for CIFAR-10 Image
Recognition
The CIFAR-10 dataset contains 50,000 training images and
10,000 test images, 32×32×3 in dimension, spanning 10 output
classes. We pre-processed the CIFAR-10 images using global
contrast normalization followed by ZCA whitening (Krizhevsky,
2009). Global contrast normalization is performed by subtracting
and scaling the pixel intensities of each input channel by the
corresponding mean and standard deviation computed over
the training set. The normalized image is then transformed by
multiplying with whitening filters as explained in Krizhevsky
(2009), which enables a network to learn higher-order pixel
correlations. Figure 7 illustrates a few original and pre-processed
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images from the CIFAR-10 dataset. The simulation parameters
used for training the convolutional layers are provided in
Table 3 while those used for training the fully-connected
layer are listed in Table 4. The binary kernels and firing
thresholds of the convolutional layers are initialized as described
in subsection 3.2.

In our first experiment, we simulated a 36C3-2P-1024FC-
10FC ReStoCNet, designated as ReStoCNet-1, consisting of
a single convolutional layer with 36 maps and 3×3 binary
kernels followed by fully-connected layer containing 1024 ReLU
neurons and a final softmax layer with 10 output neurons.
The pre-processed CIFAR-10 images are composed of pixels
with positive and negative intensities, which are, respectively,
mapped to excitatory and inhibitory pre-neurons firing at a
rate constrained between 0 and 200 Hz depending on the
absolute value of the corresponding pixel intensities. The e/iHB-
STDP model parameters are listed in Table 3. Note that the
e/iHB-STDP switching probability is set to zero in the negative
STDP timing window to facilitate optimal balance between
the potentiation and depression updates for a smaller 3×3
kernel shared by 32×32 pre-neurons in the input map and
30×30 post-neurons in the convolutional map. The binary
kernels in ReStoCNet-1 are trained using 5,000 images, with
mini-batch size of 200, for simulation period of 25 ms per
mini-batch training iteration. Note that we used a simulation
time-step of 1 ms. Figure 8A illustrates the low-level input
features self-learnt by the binary kernels, enabled by the e/iHB-
STDP based unsupervised training methodology. The shallow
ReStoCNet-1, wherein the fully-connected layer is trained on
the entire dataset, yielded 64.31% test accuracy that is higher
than an accuracy of 59.42% obtained using randomly initialized
binary kernels and zero firing thresholds in the convolutional
layer. In order to determine if accuracy loss is incurred
as a result of using binary kernels, we trained ReStoCNet-
1 composed of full-precision (32-bit) kernels using standard
exponential STDP rule (Song et al., 2000) with learning rate
of 0.01 for the positive STDP timing window and 0 for the
negative STDP timing window. ReStoCNet-1 with full-precision
kernels provided 64.30% test accuracy, which is comparable
to that obtained using binary kernels. Figure 8B shows that
the test accuracy improves with the number of maps in
the convolutional layer. As explained in subsection 2.3, the
classification accuracy of ReStoCNet has a strong dependence
on the chosen STDPstride used for computing the average
spike timing difference of the spiking post-neurons in the
convolutional maps. Figure 8C indicates that the accuracy of
ReStoCNet-1 degrades for STDPstride smaller than 4 or greater
than 5. If the STDPstride is small, the binary kernels are updated
based on the spike timing difference averaged over large number
of spiking post-neurons in the convolutional maps, leading
to degradation in the learnt features. On the contrary, if the
STDPstride is large, the binary kernels are updated based on the
spike timing difference estimates of few post-neurons, leading
to loss of generality in the learnt features. We use the optimal
STDPstride of 5 for all the ReStoCNet experiments presented
in this work.

Next, we simulated a 36C3-36C3-2P-1024FC-10FC
ReStoCNet, designated as ReStoCNet-2, composed of two
convolutional layers, each with 36 maps and 3×3 binary
kernels. The first convolutional layer is trained as described
in the previous paragraph. The binary kernels and firing
thresholds of the second convolutional layer are trained using
a different subset of 5,000 CIFAR-10 images with a mini-batch
size of 200. Note that the e/iHB-STDP hyperparameters are
similar for both the convolutional layers except the synaptic
switching probabilities, which are scaled down for the second
convolutional layer as shown in Table 3. The lower switching
probabilities for the second convolutional layer accounts for
the fact that every constituting post-neuron receives weighted
input from 36 maps each in the residual and direct paths
while a post-neuron in the first convolutional layer receives
weighted input from just the 3 maps in the input layer. We
simulated two versions of ReStoCNet-2: one without residual
connections and the other with residual connections from
the input to second convolutional layer. Figure 9 shows that
ReStoCNet-2 with residual connections learns diverse high-
level input features compared to the one without residual
connections. As a result, ReStoCNet-2 with residual connections
yielded 65.79% accuracy, which is roughly 1.5% higher than
that provided by ReStoCNet-2 without residual connections
as well as ReStoCNet-1. This begs the following question:
is ReStoCNet-2 yielding higher accuracy that ReStoCNet-
1 just due to increased number of synaptic weights in the
fully-connected layer as a consequence of concatenating the
pooled spiking activations of both the convolutional layers? To
answer this question, we compare ReStoCNet-2, in which
the spiking activations of the 72 pooled maps are fed to a
fully-connected layer of 1024 neurons, with ReStoCNet-1 in
which the spiking activations of the 36 pooled maps are fed
to a larger fully-connected layer of 2048 neurons. Figure 9C
indicates that ReStoCNet-2 offers higher accuracy than that
provided by ReStoCNet-1 with 2048 neurons in the fully-
connected layer, which is a testament to the improved feature
learning capability of the second convolutional layer in the
presence of residual inputs. Figure 9D shows that ReStoCNet-2
provides only modest improvement in accuracy as the number
of output maps is increased in the second convolutional
layer. The accuracy limitation is caused by the inability of the
unsupervised training methodology to effectively optimize an
over-parameterized network.

Finally, we evaluated a deeper 36C3-36C3-36C3-2P-1024FC-
10FC ReStoCNet, referred to as ReStoCNet-3, composed
of three convolutional layers as depicted in Figure 1. We
inverted the residual inputs to the third convolutional layer
to ensure diversity in the residual maps received by the
second and third layers from the input layer. We trained
the third convolutional layer with the same hyperparameters
(shown in Table 3) as those used for training the second
convolutional layer, albeit on a different subset of 5,000
images from the CIFAR-10 dataset. In addition to ReStoCNet-
3 (with residual connections), wherein the pooled spiking
activations of all the convolutional layers are used for
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FIGURE 7 | (A) Original 32×32×3 CIFAR-10 images. (B) CIFAR-10 images pre-processed using global contrast normalization followed by ZCA whitening (Krizhevsky,

2009).

FIGURE 8 | (A) Binary kernels (3×3 in size) of ReStoCNet-1 (36C3-2P-1024FC-10FC ReStoCNet), trained using e/iHB-STDP based unsupervised training

methodology, on 5,000 images from the CIFAR-10 dataset. (B) Classification accuracy of ReStoCNet vs. the number of convolutional maps. (C) Classification

accuracy of ReStoCNet-1 vs. the STDPstride used to compute the average spike timing difference of the spiking post-neurons in the convolutional maps.

inference, we simulated the following variants to demonstrate
the significance of residual connections for the scalability of
deep SNNs:

1. ReStoCNet-3a – This is a variant of ReStoCNet-3 without
residual inputs to the third convolutional layer. In addition,
the pooled spiking activations of only the third convolutional
layer are fed to the fully-connected layer for inference.

2. ReStoCNet-3b – This is a variant of ReStoCNet-3 with residual
inputs to the third convolutional layer, wherein the pooled
spiking activations of only the third convolutional layer are
used for inference.

ReStoCNet-3a, devoid of residual connections, yielded
44.75% accuracy on the CIFAR-10 test set, which is 17.5%
lower compared to an accuracy of 62.26% provided by
ReStoCNet-3b with residual connections as shown in
Figure 10A. The higher accuracy of ReStoCNet-3b can be
directly attributed to its improved feature learning capability,
rendered possible by the residual inputs feeding into the third
convolutional layer. The optimal ReStoCNet-3 configuration
(with residual connections), wherein the pooled spiking

activations of all the convolutional layers are used for inference,
offered 65.25% accuracy, which is only comparable to an
accuracy of 65.79% provided by ReStoCNet-2 as shown
in Figure 10B.

Our analysis on ReStoCNet, trained using the e/iHB-STDP
based unsupervised training methodology, offers the following
key insights. First, it shows that the residual connections are
critical for the scalability of deep SNNs. Second, it reveals that
the maximum achievable accuracy is limited by the STDP-based
unsupervised training methodology as further corroborated
by Figure 11, which illustrates the unsupervised clustering
capability of ReStoCNet-3 for different training images from
the CIFAR-10 dataset. In order to visualize the efficiency of
unsupervised clustering offered by ReStoCNet-3, we reduce the
dimension of the pooled spiking activations of the convolutional
layers using Principal Component Analysis (PCA) followed by
t-Distributed Stochastic Neighbor Embedding (t-SNE) (Maaten
and Hinton, 2008), and plot the first two t-SNE components
for the training images. The t-SNE dimensionality reduction
technique computes pair-wise similarities between the data
points (images) in the high-dimensional space and projects
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FIGURE 9 | Binary kernels (in second convolutional layer) of ReStoCNet-2 (36C3-36C3-2P-1024FC-10FC ReStoCNet) (A) without residual connections, and (B) with

residual connections from the input to second convolutional layer. (C) Classification accuracy of ReStoCNet-2 with and without residual connections compared to that

provided by ReStoCNet-1. (D) Classification accuracy of ReStoCNet-2 (with residual connections) vs. the number of output maps in the second convolutional layer.

FIGURE 10 | (A) Classification accuracy of three different ReStoCNet-3 (36C3-36C3-36C3-2P-1024FC-10FC) configurations on the CIFAR-10 test set.

(B) Comparison between the classification accuracy of different ReStoCNet configurations presented in this work.

them to a low-dimensional space that preserves the measured
similarities. We refer the readers to Maaten and Hinton (2008)
for a review of the t-SNE algorithm for visualizing high-
dimensional input data. Figure 11A shows the t-SNE scatter
plot for 15,000 training images spanning three different classes
from the CIFAR-10 dataset, namely, airplane, bird, and frog.
The primary objective of any machine learning model is to
cluster the images per class together while ensuring sufficient
separation among different classes. The t-SNE scatter plot
of the pooled spiking activations of ReStoCNet-3 (shown in

Figure 11B) indicates that, although distinct clusters are formed
for the images in each class, there exists considerable overlap
among different image clusters.

4. DISCUSSION

4.1. Comparison With Related Works
We compare ReStoCNet with convolutional SNNs, which employ
unsupervised training methodology for the convolutional layers
and supervised training algorithms like error backpropagation
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FIGURE 11 | (A) Scatter plot of the first two t-SNE components for 15,000 training images from the CIFAR-10 dataset from the classes: airplane, bird, and frog.

(B) t-SNE scatter plot of the pooled spiking activations of the convolutional layers in ReStoCNet-3 for the corresponding training images.

for the fully-connected layer, using classification accuracy (on
the test set) and kernel memory compression as the evaluation
metrics. The memory compression offered by ReStoCNet as a
result of using binary kernels in the convolutional layers, referred
to as kernel memory compression, is computed as specified by

kernel memory compression

=
Nbaseline × ksizebaseline × ksizebaseline × nbitsfull_precision

NReStoCNet × ksizeReStoCNet × ksizeReStoCNet × nbitsbinary

(8)

where NReStoCNet (Nbaseline) and ksizeReStoCNet (ksizebaseline)
are the number of kernels and kernel size, respectively, in
ReStoCNet (baseline convolutional SNN used for comparison),
and nbitsbinary and nbitsfull_precision are the hardware bit-precision
required for storing the binary and full-precision kernels,
which are set to 2-bits and 32-bits, respectively. Note that
the binary kernels in ReStoCNet require storage capacity
of 2-bits per synaptic weight since they are constrained to
binary states −1 and +1. Table 5 shows that the classification
accuracy offered by ReStoCNet for MNIST digit recognition is
comparable to that reported for convolutional SNNs composed
of full-precision kernels trained using unsupervised learning
methodologies. Specifically, a 36C3-2P-128FC-10FC ReStoCNet
offers 98.54% accuracy on the MNIST test set, which compares
favorably with that (98.36%) provided by the convolutional
SNN presented in Tavanaei and Maida (2017), composed
of single convolutional layer with 32 maps and 5×5 full-
precision kernels trained using STDP. The proposed ReStoCNet
offers 39.5× kernel memory compression by virtue of using
smaller 3×3 binary kernels under iso-accuracy conditions for
MNIST digit recognition. On the contrary, very few works have
benchmarked convolutional SNNs, trained using unsupervised
learning algorithms, on the CIFAR-10 dataset. Panda and
Roy (2016) proposed spike-based convolutional Auto-Encoders,
where the kernels in every convolutional layer are trained
in an unsupervised manner using error backpropagation to
regenerate the input spike patterns. Ferré et al. (2018) presented
convolutional SNN (without residual connections), where the
kernels are trained using a simple Hebbian STDP learning
rule. Table 6 shows that ReStoCNet provides 4–5% lower
accuracy than that reported in both the related works. In

particular, a 256C3-2P-1024FC-10FC ReStoCNet yields 4.97%
lower accuracy than that provided by the 64C7-8P-512FC-
512FC-10FC convolutional SNN (Ferré et al., 2018) while
offering 21.7× kernel memory compression. Note that the
convolutional SNN presented in Ferré et al. (2018) is simulated
by single-step forward propagation using input rates while
ReStoCNet is simulated using input spike trains over multiple
time-steps.

Finally, we note that deep learning Binary Neural Networks
(BNNs) (Courbariaux et al., 2015; Rastegari et al., 2016; Hubara
et al., 2017), which use binary activations for the neurons in every
layer except the input and output layers and binary weights, have
been demonstrated to yield superior classification accuracy than
that provided by ReStoCNet. Nevertheless, ReStoCNet offers the
following advantages over BNNs. First, ReStoCNet is inherently
suited for processing spatiotemporal spike trains from event-
based audio and vision sensors as shown by Stromatias et al.
(2017) for convolutional SNNs with full-precision weights since
it computes with static image pixels mapped to spike trains.
BNNs, on the contrary, use real-valued pixel intensities for
the input layer. Second, ReStoCNet is amenable for efficient
implementation in event-driven asynchronous neuromorphic
hardware platforms like IBM TrueNorth (Merolla et al., 2014)
and Intel Loihi (Davies et al., 2018) since it uses {0, 1} for the
outputs of the spiking neurons in every convolutional layer. The
weighted sum of the input spikes with the synaptic weights in
the convolutional layers needs to be computed only in the event
of a spike fired by the corresponding input neurons. In addition,
only the sparse spiking events need to be transmitted between
the layers. The event-driven computing capability offered by
ReStoCNet can be exploited to achieve higher energy efficiency
in neuromorphic hardware implementations by minimizing
the computation and communication energy in the absence
of spiking events. BNNs, on the other hand, use {1, −1}
for the neuronal activations and either {1, −1} (Courbariaux
et al., 2015) or {α, −α} (Rastegari et al., 2016) where α is
a layer-wise scaling factor for the weights to achieve good
accuracy and stable training convergence (Pfeiffer and Pfeil,
2018). Hence, the computation of the weighted input sum
and communication of the binarized neuronal activations need
to be carried out for all the neurons in every layer in a
synchronous manner, which is in contrast to the event-based
asynchronous computing capability provided by ReStoCNet.
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TABLE 5 | Classification accuracy of SNN models, which use unsupervised training methodology for the hidden/convolutional layers and supervised training algorithm for

the output (classification) layer, on the MNIST test set.

Model Size Training methodology Accuracy (%)

FC_SNN (Yousefzadeh et al., 2018) 6400FC-10FC Probabilistic STDP + 95.70

ANN backpropagation

ConvSNN (Panda and Roy, 2016) 12C5-2P-64C5-2P-10FC SNN backpropagation 99.08

ConvSNN (Stromatias et al., 2017) 18C7-2P-10FC Fixed Gabor kernels + 98.20

ANN backpropagation

ConvSNN (Lee et al., 2018b) 16C3-16C3-2P-10FC STDP 91.10

ConvSNN (Ferré et al., 2018) 8C5-2P-16C5-2P- STDP + 98.49

120FC-60FC-10FC ANN backpropagation

ConvSNN (Kheradpisheh et al., 2018) 30C5-2P-100C5-2P-10FC STDP + 98.40

Support Vector Machine

ConvSNN (Tavanaei et al., 2018) 64C5-2P-1500FC-10FC STDP 98.61

ConvSNN (Mozafari et al., 2018) 30C5-2P-250C3-3P-200C5-5P Reward-modulated STDP 97.20

ConvSNN (Tavanaei and Maida, 2017) 32C5-2P-128FC-10FC STDP + 98.36

Support Vector Machine

ReStoCNet (our work) 36C3-2P-128FC-10FC Probabilistic eHB-STDP + 98.54

ANN backpropagation

TABLE 6 | Classification accuracy of SNN models, which use unsupervised training methodology for the hidden/convolutional layers and supervised training algorithm for

the output (classification) layer, on the CIFAR-10 test set.

Model Size Training methodology Accuracy (%)

ConvSNN (Panda and Roy, 2016) 32C5-2P-32C5-2P-64C4-10FC SNN backpropagation 70.16

ConvSNN (Ferré et al., 2018) 64C7-8P-512FC-512FC-10FC STDP + 71.20

ANN backpropagation

ReStoCNet (our work) 256C3-2P-1024FC-10FC Probabilistic e/iHB-STDP + 66.23

ANN backpropagation

Last, ReStoCNet offers a memory-efficient solution for enabling
on-chip intelligence in resource-constrained battery-powered
Internet of Things (IoT) edge devices since the binary kernels are
trained using probabilistic-STDP based local learning rule that
can be efficiently implemented on-chip. Learning is achieved by
probabilistically switching the binary kernel weights between the
allowed states based on spike timing, which precludes the need
for storing the full-precision weights and enhances the memory
efficiency during training. BNNs, on the other hand, are trained
using error backpropagation algorithms that update the full-
precision weights based on the backpropagated error gradients
and binarize the modified weights for forward propagation
and computing the error gradients. Thus, ReStoCNet provides
a promising alternative for energy- and memory-efficient
computing during both training and inference in IoT edge
devices, for instance, surveillance cameras, which produce large
volumes of real-time data. It is inefficient for these devices
to continuously offload raw/compressed data to the cloud for
training. This is because the sheer volume of generated data could
exceed the bandwidth available for transmitting them to the
cloud. Alternatively, there could be connectivity issues restricting
communication between the edge and the cloud. In addition,
there are also security and data privacy issues that need to be

addressed while sending (receiving) data to (from) the cloud.
Hence, it is highly desirable to equip the edge devices with on-
chip intelligence so that they can learn from real-time input
data and invoke the cloud occasionally to update the on-chip
trained weights using more complex algorithms. The proposed
approach is also suited for building intelligent autonomous
systems like robots and self-flying drones. For example, it is
beneficial to embed on-chip learning in autonomous robots
used for disaster relief operations that enables them to navigate
obstacles and scour the disaster site for survivors. In the
instance of self-flying drones used for reconnaissance operations,
on-chip intelligence can enable them to effectively navigate
the enemy territory and improve the chances of a successful
mission.

The classification accuracy of ReStoCNet for complex
applications could be improved by augmenting the layer-wise
unsupervised training methodology with a global supervised
training mechanism. Recent works have proposed error
backpropagation algorithms for the supervised training
of SNNs (Lee et al., 2016, 2018a; Panda and Roy, 2016;
Jin et al., 2018; Mostafa, 2018; Wu et al., 2018). However,
the backpropagation algorithms for SNNs, some of which
backpropagate errors at multiple time-steps, are computationally
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prohibitive and prone to unstable convergence behaviors (Lee
et al., 2018a). In this regard, Neftci et al. (2017) proposed
event-driven random backpropagation that prevents the need
for calculating and backpropagating precise error gradients.
Future works could explore a hybrid unsupervised (local)
and supervised (global) training methodology for ReStoCNet
to obtain favorable trade-offs between classification accuracy
and training effort as was shown by Lee et al. (2018a) for
full-precision convolutional SNNs without residual connections.
Such a hybrid approach would also preclude the need for
using the pooled spiking activations of all the convolutional
layers for inference, thereby enhancing the scalability of deep
ReStoCNets.

4.2. Applicability of ReStoCNet for
Neuromorphic Hardware Implementations
Together with research efforts that are geared toward the
exploration of bio-plausible SNN algorithms (architectures
and learning methodologies), parallel efforts are underway to
develop neuromorphic hardware implementations with on-chip
intelligence, which can exploit the inherent computational
efficiency offered by the SNN algorithms. IBM TrueNorth
(Merolla et al., 2014) and Intel Loihi (Davies et al., 2018) are
recent demonstrations of event-driven neuromorphic hardware
that were realized using the conventional CMOS technology.
CMOS-based neuromorphic hardware implementations
are area- and power-intensive because of the mismatch
between the spiking neuronal/synaptic circuits and the
neuroscience processes governing their dynamics. In this
regard, nanoelectronic devices such as Ag-Si memristor (Jo
et al., 2010), Phase-Change Memory (PCM) (Suri et al., 2011),
Resistive Random Access Memory (Rajendran et al., 2013) and
domain-wall Magnetic Tunnel Junctions (MTJs) (Sengupta
et al., 2016a) that are capable of naturally mimicking multilevel
synaptic dynamics have been proposed as potential candidates
for achieving improved energy efficiency compared to CMOS-
only realizations. However, as the technology is scaled, the
multilevel memristive and spintronic devices suffer from limited
bit-precision and exhibit stochastic behavior in the presence of
thermal noise. The proposed ReStoCNet, which is composed
of binary kernels trained using probabilistic HB-STDP, is
naturally suited for neuromorphic hardware implementations
based on stochastic device technologies as elaborated in the
following paragraph.

Stochastic device technologies such as Conductive-Bridge
Random Access Memory (CBRAM) (Suri et al., 2013), RRAM
(Kavehei and Skafidas, 2014), MTJ (Vincent et al., 2015; Sengupta
et al., 2016b; Srinivasan et al., 2016), and PCM (Tuma et al., 2016)
have been shown to efficiently implement stochastic neuronal
and synaptic models. The intrinsic stochastic switching behavior
of these devices can be exploited to realize the probabilistic
switching of a binary synapse during training without the
need for costly random number generators to implement the
stochastic operations as illustrated with MTJ-based synapse.
An MTJ is composed of two ferromagnetic layers, namely, a
pinned layer whose magnetization is fixed and a free layer
whose magnetization can be switched, separated by a tunneling
oxide barrier. It exhibits two stable conductance states based

on the relative orientation of the pinned layer and free layer
magnetizations, which can be switched probabilistically by
passing charge current through a Heavy Metal (HM) located
underneath the MTJ structure. Srinivasan et al. (2016) showed
that the MTJ-HM heterostructure, with independent spike-
transmission and programming current paths, can efficiently
realize a stochastic binary synapse. During training, the MTJ is
switched probabilistically based on the time difference between
pre- and post-spikes by passing the appropriate current through
the HM. During inference, an input pre-spike gets modulated
with the trained MTJ conductance to produce resultant current
into the post-neuron. Srinivasan et al. (2016) also presented
peripheral circuits required to implement an exponential
probabilistic-STDP rule, which needs to be modified for realizing
the proposed HB-STDP rule. We note that CBRAM, RRAM,
and PCM devices can similarly be used to realize a stochastic
binary synapse during training by modulating the input voltage
based on spike timing (Suri et al., 2013; Kavehei and Skafidas,
2014). Crossbar-based hardware implementations based on these
stochastic device technologies with on-chip learning capability
have been demonstrated for efficiently realizing binary fully-
connected SNNs (Suri et al., 2013; Srinivasan et al., 2016),
which consists of a unique synaptic weight connecting every
pair of pre- and post-neurons. Recently Wijesinghe et al.
(2018) showed that weight-shared convolutional SNNs such
as ReStoCNet can be mapped to crossbar-based hardware
implementations. However, large-scale networks with increased
number of neurons and synapses cannot be mapped to a single
large crossbar due to non-idealities that could result in erroneous
computations. Hardware architectures composed of multiple
smaller crossbars can be used to efficiently realize large-scale
networks (Shafiee et al., 2016; Ankit et al., 2017; Song et al., 2017).
Finally, we note that the fully-connected classification layer
in ReStoCNet, which is composed of artificial ReLU neurons,
cannot be directly implemented in event-driven asynchronous
neuromorphic hardware platforms. The fully-connected layer of
ReLU neurons could be mapped to Integrate-and-Fire neurons
post training for inference within the neuromorphic fabric as
shown by Diehl et al. (2015). Alternatively, fully-connected layer
of Leaky-Integrate-and-Fire neurons can be trained using spike-
based backpropagation algorithms for training and/or inference
within the neuromorphic fabric.

5. CONCLUSION

In this work, we proposed ReStoCNet, a residual stochastic
multilayer convolutional SNN composed of binary kernels,
for memory-efficient neuromorphic computing. We presented
probabilistic Hybrid-STDP (HB-STDP) learning rule, integrating
Hebbian and anti-Hebbian learning mechanisms, for training
the binary kernels constituting ReStoCNet in a layer-wise
unsupervised manner. We demonstrated up to 3-layer deep
ReStoCNet and showed that residual connections are critical to
enabling the deeper convolutional layers to self-learn useful high-
level input features and improving the scalability of deep SNNs.
ReStoCNet offered 98.54% accuracy and 39.5× kernel memory
compression compared to full-precision (32-bit) convolutional
SNN under iso-accuracy conditions forMNIST digit recognition.
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On the CIFAR-10 dataset, ReStoCNet provided 66.23% accuracy
and 21.7× kernel memory compression, albeit with 5% accuracy
degradation compared to full-precision convolutional SNN. We
believe that ReStoCNet, with event-driven computing capability
and memory-efficient probabilistic learning with binary kernels,
is ideally suited for neuromorphic hardware implementations
based on CMOS and stochastic emerging device technologies
like Resistive Random Access Memory, Phase-Change Memory,
and Magnetic Tunnel Junctions that can potentially lead
to much improved energy efficiency in battery-powered IoT
edge devices.
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