
i

ENHANCING NEUROMORPHIC COMPUTING WITH ADVANCED SPIKING

NEURAL NETWORK ARCHITECTURES

MEJORA DE COMPUTACION NEUROMORFICA CON ARQUITECTURAS

AVANZADAS DE REDES NEURONALES POR IMPULSOS

This dissertation proposal is submitted in partial fulfillment of the requirements for

the degree of Doctor of Philosophy at Virginia Commonwealth University.

by

PAOLO G. CACHI

Bachelor of Science, University Nacional San Antonio Abad del Cusco, Peru, 2012

Master of Science, Pontif́ıcia Universidade Católica do Rio de Janeiro, Brazil, 2015

Director: Krzysztof J. Cios, Professor,

Department of Computer Science, Virginia Commonwealth University

Co-Director: Sebastian Ventura, Professor,

Departmento Computación avanzada, enerǵıa y plasmas, Universidad de Cordoba

Virginia Commonwealth University

Richmond, Virginia

June, 2023

TITULO: ENHANCING NEUROMORPHIC COMPUTING WITH ADVANCED
SPIKING NEURAL NETWORK ARCHITECTURES

AUTOR: Paolo Gabriel Alejandro Cachi Delgado

© Edita: UCOPress. 2023
Campus de Rabanales
Ctra. Nacional IV, Km. 396 A
14071 Córdoba

https://www.uco.es/ucopress/index.php/es/
ucopress@uco.es

ii

Acknowledgements

I would like to express my deepest gratitude to my advisor and chair of my

committee, Dr. Krzysztof J. Cios, for his invaluable patience and feedback. I am also

very grateful to my dissertation committee, Dr. Ventura, co-advisor, Dr. Arodz, Dr.

Damevski, Dr. Luna, Dr. Zafra and Dr. Garćıa, for their time and provided knowl-

edge and expertise. I also appreciate financial support by the Virginia Commonwealth

University. I am grateful to my family and friends for their immense support during

my academic journey.

iii

TABLE OF CONTENTS

Chapter Page

Acknowledgements . iii

Table of Contents . iv

List of Tables . vi

List of Figures . viii

Resumen . xi

Abstract . xvi

1 Introduction . 1

1.1 Overview . 1

1.2 Objectives . 4

1.3 Organization . 5

2 Literature Review . 6

2.1 Artificial Neural Networks . 6

2.2 Spiking Neural Networks . 8

2.2.1 Spiking neuron models . 8

2.2.1.1 Hodgkin-Huxley Neuron Model 10

2.2.1.2 Integrate and Fire Neuron Model 12

2.2.1.3 Izhikevich Neuron Model 13

2.2.2 Learning Methods . 15

2.2.2.1 Spike-based Backpropagation 15

2.2.3 Supporting Hardware . 18

2.2.3.1 Loihi Neurmorphic Computer 20

2.2.3.2 Loihi2 Neurmorphic Computer 21

2.2.3.3 Loihi2 and Loihi 1 Comparison 23

2.2.4 Supporting Software . 27

2.2.4.1 SpikingJelly . 28

2.2.4.2 Lava . 28

iv

3 Performance Improvement Using Auxiliary Learning 30

3.1 Introduction . 31

3.2 Background and Related Work . 32

3.2.1 Auxiliary learning . 32

3.2.2 Input data augmentation . 33

3.3 Methods . 34

3.3.1 Problem Definition . 34

3.3.2 Architecture . 34

3.3.3 Training and Testing . 35

3.4 Experiments and results . 36

3.4.1 Training with one auxiliary task 37

3.4.2 Training with more than one auxiliary task 40

3.4.3 Using implicit differentiation 41

3.4.4 Comparison with State-of-the-Art SNNs 42

3.5 Discussion and Future Work . 44

4 Multi-task Learning with Firing Threshold Modulation 46

4.1 Introduction . 47

4.2 Methods . 49

4.2.1 Problem Definition . 49

4.2.2 Architecture . 49

4.2.3 Training and testing . 50

4.3 Simulation Performance of TM-SNN 51

4.3.1 Varying threshold . 52

4.3.2 Using the task classifier block in training 54

4.3.3 Use of a firing threshold vs using an external input current . 54

4.3.4 Learning several classification tasks at the same time 56

4.3.5 Comparison of TM-SNN with ANN 58

4.4 Profiling on Loihi2 . 60

4.4.1 Network Selection . 60

4.4.2 Execution time . 61

4.4.3 Power consumption . 64

4.4.4 Spiking Activity . 65

4.4.5 Memory usage . 67

4.5 Discussion and Future Work . 68

5 Conclusions and Future Work . 70

v

Appendix A Abbreviations . 71

Appendix B List of publications by the author 72

B.1 Journal Publications . 72

B.2 Journal Publications . 72

References . 74

Vita . 95

vi

LIST OF TABLES

Table Page

1 Loihi and Loihi 2 comparison (reprinted from [114]). 24

2 Network architecture used for analyzing DVS-CIFAR10 and DVS128-

Gesture neuromorphic data. 37

3 The main task (M) and auxiliary tasks (A1, A2, A3) configurations. . . . 38

4 Accuracy for DVS-CIFAR10 dataset using auxiliary learning for 250

training epochs. 39

5 Testing accuracy for DVS128-Gesture dataset using auxiliary learning

(250 training epochs). 39

6 Accuracy for DVS-CIFAR10 and DVS128-Gesture datasets using mul-

tiple auxiliary tasks - 250 training epochs. 41

7 Accuracy for DVS128-Gesture dataset using implicit differentiation on

validation set - 250 training epochs. 42

8 Accuracy, precision, recall and F1 score for best performing SNN with

AL for CIFAR10-DVS and DVSGesture128 datasets. 44

9 Comparison with staet-of-the-art SNNs for CIFAR10-DVS and DVSGesture-

128 datasets. 45

10 Testing results of TM-SNN using different firing threshold values. 53

11 Testing accuracy of TM-SNN when using task classifier block 56

12 Testing accuracy of TM-SNN when an external current Iext is used to

control the network operation. 57

13 Testing accuracy of TM-SNN trained on four tasks. 58

14 Events and SynOps comparison of TM-SNN vs ANN. 59

vii

15 Testing accuracy for the top-three, on task 1, TM-SNN 61

16 Precision, recall and F1 score for the top-three, on task 1, TM-SNN. . . . 62

17 Testing accuracy of MT-SNN trained for four tasks. 66

viii

LIST OF FIGURES

Figure Page

1 Comparison of spiking neuron models (reprinted from [86]) 9

2 Channel opening and closing probability functions for (A) m, (B) h,

and (C) n gating variables in HH model. 11

3 Gating variables dynamics. (A) Voltage-dependent target values, and

(B) voltage-dependent time-constant functions for m, h, and n gating

variables in HH model. 12

4 Izhikevich neuron’s hyperparameter values and functionalities (reprinted

from [86]). 14

5 Computational graph for a SNNs with LIF neurons and direct input

contribution (reprinted from [63]). 17

6 Heaviside and sigmoid function comparison for implementing surrogate

gradient descent (reprinted from [63]). 18

7 multi-task and auxiliary learning. Left: In multi-task learning, the

goal is to perform more than one learning task at the same time, with

all tasks being equally importance. Right: In auxiliary learning, the

goal is to learn one main task while using one or more auxiliary tasks. . . 32

8 Auxiliary learning architecture. The network uses a multitask archi-

tecture in which only one task, ”the main task”, is of importance. The

other tasks, ”the auxiliary tasks”, are used as additional regularization

losses for helping the main task performance. The auxiliary tasks are

only used during training. 35

9 Confusion matrix for best performing SNN with AL for CIFAR10-DVS

(a) and DVSGesture128 (b) datasets. 43

ix

10 TM-SNN architecture. It consists of three processing blocks connected

in a feed-forward fashion: a feature extraction block and two classifier

blocks. The label classifier outputs the labels for task 1 or task 2 (or

more). The task classifier is used as a regularization mechanism to aid

the feature extraction block learn a set of independent features for each task. 50

11 Training accuracy of ST-SNN (base case) and of TM-SNN using dif-

ferent threshold values: φ1 is set to 1.25 while φ2 changes from 1.5 to

10. 52

12 Example spiking output when TM-SNN is presented with input rep-

resenting digit 4 (a) with φ1 = 1.25 threshold (b) and with φ2 = 5

(c). 55

13 Confusion matrix of TM-SNN number 3 for three task classification

on NMNIST data. 63

14 TM-SNN’s execution time in seconds for one sample presentation using

φ = 1.25, φ = 5, and φ = 10. 64

15 TM-SNN’s power consumption in watts for TM-SNN using φ = 1.25. . . . 65

16 Spiking activity in terms of SynOps when running TM-SNN on Loihi2

for three tasks configuration with φ = 1.25, φ = 5, and φ = 10. 67

17 Relative per core memory usage of TM-SNN on the Loihi2 neuromo-

prhic chip. 68

x

Resumen

MEJORA DE COMPUTACION NEUROMORFICA CON ARQUITECTURAS

AVANZADAS DE REDES NEURONALES POR IMPULSOS

Introducción

La computación neuromórfica (NC, del inglés neuromorphic computing) pretende

revolucionar el campo de la inteligencia artificial. Implica diseñar e implementar

sistemas electrónicos que simulen el comportamiento de las neuronas biológicas uti-

lizando hardware especializado, como matrices de puertas programables en campo

(FPGA, del inglés field-programmable gate array) o chips neuromórficos dedicados

[1, 2]. NC está diseñado para ser altamente eficiente, optimizado para bajo consumo

de enerǵıa y alto paralelismo [3]. Estos sistemas son adaptables a entornos cambiantes

y pueden aprender durante la operación, lo que los hace muy adecuados para resolver

problemas dinámicos e impredecibles [4].

Sin embargo, el uso de NC para resolver problemas de la vida real actualmente

está limitado porque el rendimiento de las redes neuronales por impulsos (SNN), las

redes neuronales empleadas en NC, no es tan alta como el de los sistemas de com-

putación tradicionales, como los alcanzados en dispositivos de aprendizaje profundo

especializado, en términos de precisión y velocidad de aprendizaje [5, 6]. Varias

razones contribuyen a la brecha de rendimiento: los SNN son más dif́ıciles de en-

trenar debido a que necesitan algoritmos de entrenamiento especializados [7, 8]; son

más sensibles a hiperparámetros, ya que son sistemas dinámicos con interacciones

complejas [9], requieren conjuntos de datos especializados (datos neuromórficos) que

xi

actualmente son escasos y de tamaño limitado [10], y el rango de funciones que los

SNN pueden aproximar es más limitado en comparación con las redes neuronales ar-

tificiales (ANN) tradicionales [11]. Antes de que NC pueda tener un impacto más

significativo en la IA y la tecnoloǵıa informática, es necesario abordar estos desaf́ıos

relacionados con los SNN.

Contenido

Esta tesis tiene como objetivo reducir la brecha de rendimiento entre los sistemas

informáticos neuromórficos y los sistemas informáticos tradicionales, especialmente en

la resolución de tareas de reconocimiento de patrones. Para ello, nos centramos en

abordar las cuestiones descritas anteriormente con dos enfoques.

En primer lugar, mejoramos el rendimiento de los SNN mediante el aprendizaje

auxiliar (AL) [12]. AL es una técnica utilizada en ANN en la que la red se entrena

en una tarea principal y en una o más tareas auxiliares adicionales. Mediante el uso

de tareas adicionales, la red se ve obligada a encontrar parámetros más generales

y robustos. Sin embargo, el uso de AL requiere una cuidadosa selección de tareas

auxiliares, aśı como el método de combinar múltiples tareas durante el entrenamiento

[13]. Espećıficamente, la red consta de un bloque de extracción de caracteŕısticas que

alimenta a los bloques de prediccion de tarea principal y tarea(s) auxiliar(es). La señal

de entrada de impulsos es procesada por el primer bloque, el bloque de extracción de

caracteŕısticas, que luego se alimenta a los bloques clasificador de tareas principal y

auxiliar para encontrar las salidas. La idea detrás de esta arquitectura es permitir

que el bloque de extracción de caracteŕısticas reciba retroalimentación del todos los

bloques de predicción al mismo tiempo. La implementación de la SNN con AL se

llevó a cabo utilizando el framework SpikingJelly para la simulación de SNNs [14].

xii

Los experimentos fueron validados en los datasets neuromórficos DVS-CIFAR10 [15]

y DVS128-Gesture [16].

En segundo lugar, mejoramos el rendimiento de los SNN mediante el diseño de

una nueva arquitectura que cambia su funcionamiento a partir del control del umbral

de disparo. La red propuesta es capaz de aprender dos o mas tareas diferentes pero

realizando solo una de ellas a la vez [17]. La tarea que realiza la red se selecciona

modulando el umbral de disparo de la neurona de impulsos utilizada. Esta operación

está inspirada en la propiedad de neuromodulación de las neuronas biológicas, que

pueden regular (modificar) su dinámica interna en función de est́ımulos externos [18].

La red propuesta, red neuronal de picos multitarea (MT-SNN), consta de tres bloques.

Cada bloque está formado por una o más capas de neuronas de impulsos conectadas en

serie. El algoritmo SLAYER es usado para entrenar el sistema [19]. Los experimentos

y los resultados de implementar MT-SNN en el software neuromórfico ”Lava” de

Intel son presentados para resolver clasificación multitarea en el dataset neuromórfico

NMNIST.

En términos de implementación, probamos las redes desarrolladas en el chip

neuromórfico Loihi2 [20]. Tenemos acceso a Loihi2 a través de un acuerdo entre

VCU e Intel. El software desarrollado se agregará a la biblioteca existente de Loihi2,

llamada Lava. La precisión, los requisitos de memoria, el consumo de enerǵıa y la

latencia se utilizan para medir el rendimiento de los SNN desarrollados para resolver

una variedad de tareas en datasets neuromórficos/basados en eventos.

Conclusiones

Los sistemas NC y los SNN que utilizan tienen un gran potencial para desarrollar

IA adaptable de bajo consumo. Sin embargo, desaf́ıos como la complejidad del entre-

xiii

namiento, la selección de hiperparámetros, la flexibilidad computacional y la escasez

de datos de entrenamiento dificultan su uso más amplio.

En esta disertación, nuestro objetivo es aumentar el uso de NC mejorando el

rendimiento de los SNN. Para lograr este objetivo, propusimos dos arquitecturas SNN

para abordar estas limitaciones. La primera arquitectura utiliza aprendizaje auxiliar

para mejorar el rendimiento del entrenamiento y la eficiencia de los datos. La ar-

quitectura de la red consta de un bloque de extracción de caracteŕısticas conectado

de forma realimentada a un bloque de clasificación principal y uno o más bloques

de clasificación de tareas auxiliares. Al usar tareas auxiliares, usamos información

adicional durante el entrenamiento que ayuda en la regularización del bloque de ex-

tracción de caracteŕısticas. Como resultado, el bloque de extracción de funciones se

ve obligado a aprender funciones más generales y sólidas que ayudan a mejorar el

rendimiento de la red en la tarea principal. Nuestros experimentos confirman que el

uso de AL durante el entrenamiento da como resultado un mejor rendimiento. Sin

embargo, la mejora depende de una cuidadosa selección de la(s) tarea(s) auxiliar(es)

y del ajuste de la constante de tasa de pérdida. Los experimentos presentados se

obtuvieron solo mediante simulación, es decir, utilizando la biblioteca neuromórfica

SpikingJelly.

La segunda arquitectura, a saber, Red neuronal de picos multitarea (MT-SNN),

aprovecha las capacidades de neuromodulación de las neuronas de picos para mejorar

el rendimiento multitarea. Espećıficamente, la modulación del umbral de activación

se utiliza para modificar el funcionamiento de la red siguiendo un enfoque de tarea

única de tareas múltiples. Los resultados de nuestros experimentos probados con la

plataforma de simulación neuromórfica Lava de Intel muestran que MT-SNN predice

ambas tareas con una precisión ligeramente menor que ST-SNN. Además, la com-

paración del uso del umbral de disparo frente al uso de la corriente de entrada externa

xiv

muestra que con el umbral de disparo la precisión es mayor que con la corriente de

entrada externa.

Si bien nuestros experimentos demuestran la efectividad de las arquitecturas

propuestas, también revelan algunas limitaciones que valdŕıa la pena estudiar en

trabajos futuros. Una de esas limitaciones es el uso exclusivo de neuronas LIF. El

trabajo futuro podŕıa analizar el uso de neuronas más complejas, como las neuronas

de Izhikevich. Para utilizar neuronas IZ, se requeriŕıa una versión compatible con

retropropagación basada en picos.

xv

Abstract

ENHANCING NEUROMORPHIC COMPUTING WITH ADVANCED SPIKING

NEURAL NETWORK ARCHITECTURES

By Paolo G. Cachi

A dissertation proposal submitted in partial fulfillment of the requirements for the

degree of Doctor of Philosophy at Virginia Commonwealth University.

Virginia Commonwealth University, 2023.

Director: Krzysztof J. Cios,

Professor, Department of Computer Science

This dissertation addresses current limitations of neuromorphic computing to

create energy-efficient and adaptable artificial intelligence systems. It focuses on in-

creasing utilization of neuromorphic computing by designing novel architectures that

improve the performance of the spiking neural networks. Specifically, the architec-

tures address the issues of training complexity, hyperparameter selection, computa-

tional flexibility, and scarcity of training data. The first proposed architecture utilizes

auxiliary learning to improve training performance and data usage, while the second

architecture leverages neuromodulation capability of spiking neurons to improve mul-

titasking classification performance. The proposed architectures are tested on the

Intel’s Loihi2 neuromorphic computer using several neuromorphic data sets, such as

NMIST, DVSCIFAR10, and DVS128-Gesture. Results presented in this dissertation

demonstrate the potential of the proposed architectures, but also reveal some limita-

tions that are proposed as future work.

xvi

CHAPTER 1

INTRODUCTION

1.1 Overview

Neuromorphic computing (NC) aims to revolutionize the field of artificial intel-

ligence. NC, which is based on mimicking the structure and function of the human

brain, aims to achieve more efficient and flexible computation than the one offered

by traditional architectures based on CPU/GPU computing [21, 22, 23, 24, 25].

NC involves the design and implementation of electronic systems that use special-

ized hardware, such as field-programmable gate arrays (FPGAs) or dedicated neuro-

morphic chips, to simulate the behavior of biological neurons [1, 2, 26]. It is designed

to be much more efficient than traditional computer systems as NC is optimized for

low-power consumption and high parallelism [3, 27]. Neuromorphic computing sys-

tems are also adaptable to changing environment and can learn during their operation

[4, 28]. This makes them well-suited for solving dynamic and unpredictable scenario

problems. Examples of existing although not commercially available neuromorphic

computers are Intel’s Loihi [20, 29, 30] and IBM’s TrueNorth [31, 32].

NC use Spiking Neural Networks (SNNs) as model for its computation. SNNs are

artificial neural networks that use discrete events, called spikes, for communicating

information between neurons [33, 34, 35]. In this type of communication, each neuron

sends a spike to other neurons when it reaches a certain threshold of activation. This

allows for precise and efficient communication as the timing of the spikes conveys

information about the strength and frequency of the inputs. SNNs are more efficient

and biologically realistic than traditional artificial neural networks (ANNs) [36, 37,

1

38], neural networks that do not use spiking neurons. SNNs have been used in a variety

of tasks including image recognition [39, 40, 41, 42], audio signal processing [43, 44,

45, 46, 47], and robotics [48, 49, 50]. Implementations of SNNs on neuromorphic

hardware (such as Loihi2) reported orders of magnitude less energy consumption

than ANNs in solving the just mentioned tasks [51, 52, 53, 54, 55].

However, the usage of NC for solving real-life problems is still limited as per-

formance of SNNs is not as good as that of ANNs, when measured by accuracy and

speed of learning [5, 6, 56]. Some reasons why SNNs may not perform as well as

ANNs are:

1. SNNs are more difficult to train than ANNs: One of the challenges of

training SNNs is that they do not have a differentiable activation function,

which means that standard backpropagation techniques cannot be used for its

training [7, 8, 57, 58]. Instead, SNNs are trained using specialized algorithms

such as Spike-Timing-Dependent Plasticity (STDP) learning rule [59, 60, 61]

and Backpropagation Through Time (BPTT) [62, 63, 19]. These techniques

are typically more complex, difficult to understand, and require more computa-

tional resources compared with ANNs’ training methods. For example, although

STDP learning rule is based on findings in the biological brain, it involves com-

plex interactions between multiple neurons which makes difficult to disentangle

contribution of each individual neuron to the overall learning process.

2. SNNs are sensitive to hyperparameters: Spiking neurons have more hy-

perparameters than non-spiking ones used in ANNs, such as the threshold for

generating spikes, the time constant for the decay of the post-synaptic poten-

tial, and the refractory periods of the neuron [9, 64]. These hyperparameters

are more difficult to optimize because they interact with each other in complex

2

ways and have a significant impact on the behavior of the SNN. Using typical

hyperparameter optimization techniques, such as grid search [65] or Bayesian

optimization [66], is also more challenging since training SNNs requires long

times.

3. Data sets available for training SNNs are scarce and limited in size:

SNNs low performance is also linked with the limited size of available data

for their training [10, 67]. As dynamic systems, SNNs are better suited for

processing temporal data. Such data are called neuromorphic or event-based

data [15, 68]. Unfortunately, there is a small number of such datasets currently

available, and even worse, they are often small in terms of number of instances.

As a result, SNNs trained with these datasets exhibit over-fitting and unstable

convergence.

4. The type of functions SNNs can approximate are more limited than

in traditional ANNs: The latter are able to approximate any continuous

function to any desired degree of accuracy [11, 69]. SNNs currently approxi-

mate a more restricted set of functions depending on the spiking neuron model

used and also due to the way information is transmitted between neurons [56,

6]. This makes it more difficult for SNNs to learn some types of patterns in

the data. An example of this problem is the leaky integrate-and-fire neurons

(LIF) [70, 34], commonly used spiking neuron model, which cannot be used to

approximate biological neuron functionality such as spike frequency adaptation

or bursting behavior [71, 18]. The latter functions, however, are crucial for

maintaining stability and efficiency of neuronal circuits and modeling of certain

brain functions.

NC has great potential for building next generation of AI systems that are more

3

energy efficient and capable of adapting in real-time to changing environments. How-

ever, before NC can play a bigger role in AI and computing technology, solving the

discussed above issues related to SNNs is required.

1.2 Objectives

This dissertation aims to reduce the performance gap between neuromorphic

computing systems and traditional computing systems, especially in solving pattern

recognition tasks. To do so, we focus on addressing the described above issues with

two approaches.

First, we improve SNNs performance using Auxiliary Learning (AL) [12, 72]. AL

is a technique used in ANNs in which the network is trained on the main task and

on one or more additional, auxiliary, tasks. By using additional tasks, the network

is forced to find more general and robust parameters. Use of AL, however, requires

careful selecting of auxiliary tasks as well as the method of combining multiple tasks

during training [13]. We attempt to find the best AL setup for SNNs.

Second, we improve SNNs performance by designing new architecture that can

be modified based on changing of the firing threshold. This is done as an attempt

to exploit dynamic capabilities of SNNs. The proposed network is able to learn two

different tasks but performing only one of them at the time [17]. The task the net-

work performs is selected by modulating the firing threshold of the spiking neuron

used. This operation is inspired by the neuromodulation property of biological neu-

rons, which can regulate (modify) their internal dynamics based on external stimuli

[18]. Training with different firing thresholds allows the network to create internal

pathways for processing multiple tasks independently, which reduces problems such

as the negative transfer problem inherent in multi-task ANNs.

We enhance development of the two proposed approaches by using neuromorphic

4

data augmentation and and advanced spiking neuron model. Specifically, we focus on

the parametric leaky integrate and fire (PLIF) neuron model [73]. PLIF neurons are

modified leaky integrate and fire neurons that allow training of not only the weights

but also the membrane time constants. Using this neuron allows for neuron variability

which is an important property for achieving network robustness. Direct training of

the membrane constant has the additional benefit of eliminating its hand tuning which

alleviates issue number 3. We use data neuromorphic data augmentation to reduce

the problems of overfitting and unstable convergence present during training of SNNs

[10].

In terms of implementation, we test the developed networks on the Loihi2 neu-

romorphic chip [20, 29]. We have access to Loihi2 through an agreement between

VCU and Intel. The developed software will be added to the existing Loihi2’s library,

called Lava. Accuracy, memory requirements, energy consumption, and latency are

used to measure performance of the developed SNNs for solving a variety of tasks on

the neuromorphic/event-based data.

1.3 Organization

Chapter 2 discusses the relevant background and related work. Chapter 3 presents

the use of auxiliary learning for improving SNNs performance. Chapter 4 presents

the new SNN architecture that uses modulation of the neuron’s firing threshold for

implementing multi-task learning. Chapter 5 concludes the dissertation proposal with

conclusions and remaining work.

5

CHAPTER 2

LITERATURE REVIEW

In this chapter, we discuss relevant literature. In Section 2.1, we briefly discuss

operation and training of traditional artificial neural networks. Then, in second 2.2,

we give in-depth description of spiking neural networks. The most relevant spiking

neuron models as well as spike-based backpropagation learning are covered.

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are machine learning algorithms that are in-

spired by the structure and function of the brain’s circuits [74, 38, 75, 76]. It consists

of a large number of interconnected processing units, called neurons, which are orga-

nized in interconnected layers. By adjusting the strengths of the connections between

the neurons, ANNs can be trained to perform a wide variety of tasks, including recog-

nition and classification.

Depending on a specific architecture, ANNs can be divided into different types.

The feed-forward multi-layer perceptron is the most basic ANNs [77]. It processes a

p-dimensional input vector x into a q-dimensional output vector y = f(x) by passing

it sequentially through one or more non-linear transformation layers, called hidden

layers, according to

f(x) = fL(fL−1(fL−2(...f1(x)))) (2.1)

where each hidden layer is defined by fi(v) = g(Wv+b) with g being a non-linear

function, W is the matrix with connections weights and b a bias vector; both W and

b are normally defined as training parameters.

6

Other ANNs architectures use specialized connections between layers to accom-

modate processing of different types of input data. For example, convolutional neural

networks (CNN) [78] and recurrent neural networks (RNN) [79, 80] are designed to

better handle image and sequential data, respectively. To process image data, CNN

integrate the use of receptive fields, shared weights, and spatial sub-sampling. RNN,

on the other hand, uses feedback connections that allow information to be processed

within different time steps.

ANNs are trained using a variety of algorithms, including the most popular

backpropagation [81] and stochastic gradient descent [82]. These algorithms adjust

the strengths of the connections between the neurons in the network, W and b, to

minimize a cost function, J , that measures how well the network’s outputs, ŷ, match

true values, y. That is

minimize
W,b

J(W, b) (2.2)

where the cost function J is typically chosen as the average prediction loss (error

over all training samples), L, plus a regularization term (used for introducing soft

constraints within the search space), R:

J(W, b) =
1

N

N∑
1

L(yi, f(x,W, b)) + λR(W, b) (2.3)

While ANNs have shown great promise in a variety of applications, they also have

some limitations. One is their low energy usage efficiency. ANNs require a significant

amount of computing power to train and operate, which is a problem where energy

consumption is a concern, such as in the resource-constrained edge devices or in large-

scale distributed systems. One approach to overcome this limitation is to use more

efficient hardware and computation, such as a neuromorphic computer and spiking

7

neural networks that run on it.

2.2 Spiking Neural Networks

SNNs are neural networks that more closely mimic the way the biological neu-

rons work [33, 34, 35]. Unlike ANNs, which process data in a continuous manner,

SNNs process data in a dynamic and event-driven fashion, with each neuron firing a

spike (a brief impulse) in response to input over time. This type of operation allows

SNNs to process information in a more temporally precise way than ANNs. This is

because the spikes generated by the neurons can be timed very precisely, allowing for

representation of temporal information. This is particularly useful for tasks such as

speech recognition or video processing, where the order and timing of events is im-

portant. Additionally, SNNs are energy efficient when implemented on neuromorphic

hardware; spiking communication consumes energy only when spikes are transmitted

as opposed to continuous communication in ANNs. Using SNNs, however, requires

developing new training methods and architecture designs in order to leverage their

computational power. In the next subsections we will explain spiking neuron model

as well as the training methods.

2.2.1 Spiking neuron models

In contrast to neuron models used in ANNs, which apply nonlinear transfor-

mations to continuous data f : RP → R, spiking neurons integrate time-dependent

signals over time to generate a train of brief pulses called spikes f(t) : X(t) → y(t),

where X(t) = {x1(t), x2(t), . . . , xp(t)} and y(t) =
∑

tf
δ(t− tf) [83, 84, 85]. Different

spiking neuron models have been developed to account for different levels of biological

similarity. The well-known spiking neuron models, their computational complexity,

biological plausibility, and function capabilities are illustrated in Figure 1:

8

Fig. 1. Comparison of spiking neuron models (reprinted from [86])

9

The Hodgkin-Huxley (HH) [87] neuron model most closely simulates biological

neurons. However, it is also the most computationally demanding which restricts its

usage in SNNs. At the other extreme is the simple integrate and fire neuron model

(IF) [83] which is thus widely used in SNNs. A model that achieves good balance

between biological similarity and low computational cost is the Izhikevich (IZ) neuron

model [86]. We discuss below specific mathematical models for these three types of

spiking neuron models.

2.2.1.1 Hodgkin-Huxley Neuron Model

The Hodgkin-Huxley (HH) neuron model simulates membrane potential behavior

of biological neurons [83, 85, 87]. It defines the neuron’s membrane potential (du
dt
)

based on the total contribution of gate-dependent sodium, potassium and leak ion

currents, as follows:

CM
du

dt
= INa(u,m, h) + IK(u, n) + IL(u) + Iapp (2.4)

where CM is membrane capacitance; Iapp is an external current source; m, h and n

are gating variables; and INa(u,m, h), IK(u, n), and IL(u) are the sodium, potassium

and leak ion currents, described by:

INa(u,m, h) = gNa ·m3 · h · (ENa − u) (2.5)

IK(u, n) = gK · n4 · (EK − u) (2.6)

IL(u) = gl · (EL − u) (2.7)

where gNa, gK , and gL are maximum conductances; and ENa, Ek, and EL are reverse

potentials. Each gating variable, m, h or n, is described in terms of channel opening

10

and closing voltage-dependent functions as follows:

dx

dt
= αx(u) · (1− x)− βx(u) · x (2.8)

where x is used to represent the gating variable type, m, h or n; αx(u) and βx(u) are

the channel opening and closing voltage-dependent functions, respectively. Typical

forms of the channel opening and closing functions for m, h and n gating variables

[87, 83] are shown in Figure 2:

A B C

Fig. 2. Channel opening and closing probability functions for (A) m, (B) h, and (C)

n gating variables in HH model.

Alternatively, to Equation 2.8, the gating variables can be described in terms of

channel target and time-constant functions as follows:

dx

dt
=

x∞(u)− x

τx(u)
(2.9)

where x∞(u) is a target voltage-dependent function; and τx(u) is a time-constant

voltage-dependent function. The relationships between the alpha, beta, target, and

time-constant functions are given by:

x∞(u) =
αx(u)

αx(u) + βx(u)
(2.10)

τx(u) =
1

αx(u) + βx(u)
(2.11)

11

Figure 3 shows typical opening and closing functions for the m, h and n gating

variables [87, 83].

A B

Fig. 3. Gating variables dynamics. (A) Voltage-dependent target values, and (B) volt-

age-dependent time-constant functions for m, h, and n gating variables in HH

model.

2.2.1.2 Integrate and Fire Neuron Model

While HH models the membrane potential in terms of the interaction of sodium,

potassium and leak ion currents, the integrate and fire neuron model (IF) simplifies

it and implements it as the combination of an integrator mechanism that builds the

membrane potential based on the input signals, and a firing mechanism, that emits

an output spike every-time the membrane potential is greater than a threshold [83,

84, 85], as follows:

du

dt
=

f(u)

τf
+

g(u)

τg
I(t) (2.12)

where f(u) and g(u) are linear/nonlinear functions of the instant membrane

potential value u; τf and τg are time decaying constants; and I(t) is an input driving

signal. The most typical choices for the function f(u) can be a linear function f1(t),

12

a quadratic f2(t), or an exponential f3(t):

f1(u) = −(u− ur) (2.13)

f2(u) = a0(u− ur)(u− uc) (2.14)

f3(u) = −(u− ur) + ∆T exp
(u− ϑ)

∆T

(2.15)

where ur represents a resting membrane potential value, ∆T the sharpness factor,

ϑ the threshold variable/constant, and a0 and uc are constants with a0 > 0 and

uc > urest. The term g(u) is used to couple the driving signal I(t) into the membrane

potential function. It follows direct contribution g(u) = 1 or conductance-based

contribution g(u) = (ui − u), where ui is an input reverse potential constant.

The membrane potential u(t) is pass-through the spike generation mechanism,

where spikes are produced every time tf the membrane potential value crosses, from

below, a fixed or adaptive threshold ϑ. If the threshold is adaptive, its value follows

an exponential decay process with constant increment α after each spike:

dϑ

dt
=

ϑ0 − ϑ

τϑ0

+
∑
tf

αδ(t− tfi) (2.16)

where ϑ0 is a threshold offset value, and τϑ0 a decay time constant. After each spike is

generated a reset signal is used to reset the membrane potential and halt its operation

for time tr.

2.2.1.3 Izhikevich Neuron Model

The Izhikevich (IZ) neuron model is a great simplification of HH. It captures

many of the essential features of HH, but it does so with just two equations and

parameters, making it more computationally efficient and easier to use [86]. IZ defines

the neuron behavior in terms of a membrane potential variable, u, and a recovery

13

variable, v. The recovery variable is used to define how fast the membrane potential

goes to its resting state. The equations for both variables are given by:

du

dt
= 0.04u2 + 5u+ 140− v + I(t) (2.17)

dv

dt
= a(bu− v) (2.18)

if u ≥ 30mV then u← c, v ← v + d, emit spike (2.19)

where a, b, c and d are hyperparameters that control the functionality of the neuron.

Figure 4 shows eight different types of neuron functionality for different combinations

of the hyperparameters a, b, c and d.

regular spiking (RS) intrinsically bursting (IB) chattering (CH) fast spiking (FS)

40 ms

20 mV

low-threshold spiking (LTS)

pa
ra

m
et

er
 b

parameter c

pa
ra

m
et

er
 d

thalamo-cortical (TC)

-87 mV

-63 mV

thalamo-cortical (TC)

peak 30 mV

reset c

reset d
decay with rate a

sensitivity b

v(t)

u(t)
0 0.1

0.05

0.2

0.25

RS,IB,CH FS

LTS,TC

-65 -55 -50

2

4

8

IB

CH

RS

FS,LTS,RZ

TC

0.02
parameter a

resonator (RZ)

RZ

v(t)

I(t)

v'= 0.04v 2+5v +140 - u + I
u'= a(bv - u)

if v = 30 mV,
then v c, u u + d

a c

b d

regular spiking (RS) intrinsically bursting (IB) chattering (CH) fast spiking (FS)

40 ms

20 mV

low-threshold spiking (LTS)

pa
ra

m
et

er
 b

parameter c

pa
ra

m
et

er
 d

thalamo-cortical (TC)

-87 mV

-63 mV

thalamo-cortical (TC)

peak 30 mV

reset c

reset d
decay with rate a

sensitivity b

v(t)

u(t)
0 0.1

0.05

0.2

0.25

RS,IB,CH FS

LTS,TC

-65 -55 -50

2

4

8

IB

CH

RS

FS,LTS,RZ

TC

0.02
parameter a

resonator (RZ)

RZ

v(t)

I(t)

v'= 0.04v 2+5v +140 - u + I
u'= a(bv - u)

if v = 30 mV,
then v c, u u + d

u(t)

Text

I(t)

Fig. 4. Izhikevich neuron’s hyperparameter values and functionalities (reprinted from

[86]).

14

While IZ can reconstruct the membrane potential of several types of neurons

with negligible error, it fails at bounding the contribution of the input current (which

is inherently bounded by the gating mechanism in HH). This issue can cause the

neuron to reach not biologically plausible firing frequencies. A later work [88, 89]

corrected this problem by adding an upper bound restriction on the firing frequency.

The equation 2.19 was replaced by:

if u ≥ 30mV and t− tprev ≥ τmin then u← c, v ← v + d, emit spike

else if u ≥ 30mV then u← 30mV, no spike

(2.20)

2.2.2 Learning Methods

Learning in SNNs involves updating the between-neuron connection weights.

However, different nature of communication between spiking neurons requires the

development of specialized algorithms [7, 8, 57, 58]. There are several different ap-

proaches used for SNNs learning, which depend on the specific architecture and type

of learning problem. Some of the most commonly used learning methods are Spike

Timing Dependent Plasticity (STDP) [59, 60, 61] that performs unsupervised lo-

cal learning, reward modulated STDP (R-STDP) [90, 91] for reinforcement learning

through STDP, and spiking-based backpropagation (SBP) for supervised learning [62,

63, 19]. In this work we focus on SBP because of its advantages including bigger flex-

ibility, SBP can be used in many network architectures, and ease of handling (SBP is

well understood method as it derives of the widely used backpropagation learning).

2.2.2.1 Spike-based Backpropagation

Like the standard backpropagation algorithm, SBP uses gradient descent to up-

date the weights in order to minimize the error between the network’s predicted

output and the desired output. However, unlike the standard backpropagation al-

15

gorithm, SBP can handle dynamic operation of spiking neurons and the associated

non-linearity of the communication via spikes. To enable incorporation of tempo-

ral dependencies in the training process, SBP uses backpropagation through time

(BPTT) [19], and in order to overcome the non-linearity of the spiking mechanisms

uses surrogate gradient functions (SGD) [63].

BPTT was originally developed for training recurrent neural networks, which

can process sequences of inputs [92]. In BPTT, the error signal is propagated back

through the network not just over a single time step, but over multiple time steps.

This allows the network to take into account the past history of inputs and outputs

while adjusting its weights. The trick that allows the use of BPTT in SNNs is that the

spiking neuron model can be unfolded into a recurrent computation system [19]. Since

the membrane potential is governed by differential equations, such as equation 2.12,

its value intrinsically depends on the previous state, which is in fact the definition of

a recurrent system, as follows

du

dt
= F (u, I(t)) equivalent to u[t+ 1] = u[t] + F (u[t], I[t]) (2.21)

The exact unfolded equation will depend on the specific spiking neuron model

and architecture used. The unfolded equations for a SNNs with IF neurons and direct

input contribution are given by:

u
(l)
i [t+ 1] = βu

(l)
i [t] + I

(l)
i [t]− s

(l)
i [t] (2.22)

I
(l)
i [t+ 1] = αI

(l)
i [t]

∑
j

WijS
(l−1)
j [t] +

∑
j

VijS
(l)
j [t] (2.23)

s
(l)
i [t] = θ(u

(l)
i [t]− ϑ) (2.24)

where u
(l)
i is the membrane potential of neuron i at layer l; I

(l)
i is the input driven

signal resulted from the linear combination of the spiking signal output, s
(l)
i , from the

16

previous layer and the weights W (feed-forward) and V (recurrent); and α and β

are decay constants. The output from the spiking neuron is defined as the Heaviside

function, θ, of the membrane potential minus the threshold ϑ. The unfolded equations

of the SNNs are summarized in the computation graph shown in Figure 5.

Fig. 5. Computational graph for a SNNs with LIF neurons and direct input contribu-

tion (reprinted from [63]).

Although implementing the computational graph of the spiking operation is fea-

sible through tools such as PyTorch or TensorFlow, the non-differentiability of the

Heaviside function impedes correct calculation of the error gradients. To overcome

this issue, the SGDmethod is used [63]. The main idea behind SGD is to use a replace-

ment function as the gradient for the non-differentiable function. This replacement is

only used during the gradient calculation or backward pass training stage. The Heav-

iside function is still used during the forward pass to maintain the correct operation

of the network. Different surrogate functions are used; however, efficient functions

are preferred as BPTT is compute time intensive when used in SNNs. The typical

function used as replacement of the gradient for the Heaviside function, Θ(x), is the

17

sigmoid function, σ(x), see Figure 6.

Fig. 6. Heaviside and sigmoid function comparison for implementing surrogate gradi-

ent descent (reprinted from [63]).

2.2.3 Supporting Hardware

Different specialized hardware and neuromorphic computing systems have been

developed for running SNNs [93, 22, 27]. These systems can be categorized based on

their architectural approach into digital, analog, and mixed-signal platforms. Each

type offers distinct advantages and considerations.

Digital neuromorphic computing platforms utilize digital circuitry to implement

SNNs. These platforms employ digital representations of neurons and synapses, pro-

viding precise control over network behavior and connectivity. They offer flexibility

in terms of network size and complexity, making them well-suited for large-scale sim-

ulations. Digital platforms also facilitate on-chip learning and leverage parallelism for

efficient computation. Such platforms can be designed using fully custom Application

18

Specific Integrated Circuit (ASIC) or Field Programable Gate Array (FPGA) based

implementations.

Examples of ASIC-based implementations include IBM’s TrueNorth [32, 94, 95],

Intel’s Loihi [30] and Loihi2 [20, 29], and SpiNNaker [96, 97, 98]. These platforms

leverage custom-designed integrated circuits to achieve their neuromorphic function-

ality. On the other hand, FPGA-based implementations focus on exploring specific

in-hardware training algorithms. For instance, some FPGA-based implementations

utilize a modified STDP rule that replaces exponential operations with shift oper-

ations to reduce logic resource consumption [99]. Other implementations involve

competitive Hebbian learning on chip, utilizing biologically plausible Izhikevich neu-

rons implemented on FPGA [100]. Additionally, there are implementations that use

a simplified STDP rule with 1-bit synaptic weights to reduce computing and commu-

nication overhead [101].

Analog neuromorphic computing platforms, such as Neurogrid [102, 103], uti-

lize analog circuitry to closely mimic the behavior of neurons and synapses. These

platforms take advantage of the continuous nature of electrical signals to emulate

the dynamics of SNNs [1]. Analog implementations offer the potential for high-speed

processing and more efficient energy consumption due to the utilization of continuous

signals. They excel in applications requiring real-time processing or fine-grained con-

trol of neural dynamics. However, analog systems may encounter challenges related

to noise, variability, and scalability.

In addition to Neurogrid, there is a wide range of other neuromorphic ana-

log implementations [104, 105, 106]. These implementations include custom Field-

Programmable Analog Arrays (FPAAs), such as the field programmable neural array

(FPNA) [107] and the NeuroFPAA [108]. These platforms employ dedicated analog

circuitry to simulate neural behavior, offering alternative solutions for implementing

19

neuromorphic systems and exploring analog computing approaches.

Mixed-signal neuromorphic computing platforms combine digital and analog

components to harness the advantages of both domains. These platforms integrate the

flexibility and programmability of digital circuits with the efficiency and fine-grained

analog processing. By combining digital and analog elements, mixed-signal platforms

strike a balance between flexibility, power efficiency, and high-speed analog process-

ing. Noteworthy members of the mixed analog/digital family include the prominent

projects BrainScaleS [109, 110] and analog neuromorphic systems that store synaptic

weights in digital memory to ensure dependability and longer lifetime [111, 112] or

use digital communication within or across the neuromorphic chips [113].

Among the various options of neuromorphic computing hardware, in this dis-

sertation we use Intel’s Loihi neuromorphic computers to conduct experiments on

multi-task learning with firing threshold modulation (Chapter 4). Specifically, we

utilize the advanced iteration of Loihi, referred to as Loihi2, which offers substan-

tial enhancements over its predecessor. In the following two subsections, we present

a brief overview of the essential functionalities and primary characteristics of both

Loihi and Loihi2.

2.2.3.1 Loihi Neurmorphic Computer

Loihi is a digital fully custom ASIC neuromorphic chip developed by Intel [30].

It is fabricated using Intel’s 14-nm process and implements a total of 130,000 artificial

current-based LIF neurons and 130 million synapses. Loihi allows customization of

individual neurons, synapses, and network connectivity, allowing for the creation of

highly tailored neural circuit designs. It also features a programmable microcode

learning engine specifically designed for on-chip training.

Architecturally, Loihi employs a highly interconnected manycore mesh consist-

20

ing of 128 neuromorphic cores and three embedded x86 Lakemont processor cores

that are used to help support advanced learning rules and core management. To

facilitate communication and coordination among these cores, Loihi incorporates an

asynchronous network-on-chip (NoC) infrastructure. The NoC serves as the primary

means of transporting packetized messages between cores.

The NoC supports various types of messages, including write, read request, and

read response messages for core management and x86-to-x86 messaging. Spike mes-

sages, crucial for SNN computations, are also transmitted through the NoC, while

barrier messages enable time synchronization among the cores. Messages can orig-

inate externally from a host CPU or on-chip from the x86 cores, and they can be

directed to specific on-chip cores as needed. With its mesh protocol, Loihi achieves

impressive scalability, allowing for up to 4,096 on-chip cores and 16,384 chips, thereby

enabling large-scale neuromorphic simulations and complex computational tasks.

Synapses in Loihi are designed to have fully configurable and in-hardware adapt-

able weights, delays, and tags. Furthermore, each synapse associates with multiple

presynaptic traces, incorporating different exponential smoothing parameters. These

features contribute to the versatility of Loihi, allowing for the implementation of

various neural network architectures and synaptic plasticity mechanisms.

2.2.3.2 Loihi2 Neurmorphic Computer

Loihi 2 chip [20, 29] is a significant advancement in terms of performance and effi-

ciency over its predecessor Loihi [30] and serves as the platform for this research. The

chip retains high programmability and flexibility of Loihi allowing to fully customize

neuronal behavior, synaptic connections, and network topologies. Importantly, Loihi2

exhibits better energy efficiency, enabling running on it the computationally intensive

tasks. The key features and innovations of Loihi 2 are as follows:

21

1. Generalized event-based messaging: Unlike its predecessor, Loihi 2 allows spikes

to carry integer-valued payloads, enabling event-based messaging. This en-

hancement preserves the sparse and time-coded communication properties of

spiking neural networks (SNNs) while providing greater numerical precision.

2. Greater neuron model programmability: Loihi 2 introduces a programmable

pipeline in each neuromorphic core, expanding its range of neuron models with-

out compromising performance or efficiency. This increased programmability

supports common arithmetic, comparison, and program control flow instruc-

tions, enabling a richer space of use cases and applications.

3. Enhanced learning capabilities: While Loihi primarily supported two-factor

learning rules, Loihi 2 introduces localized ”third factors” mapped to specific

synapses. This advancement allows for the implementation of various neuro-

inspired learning algorithms, including approximations of the error backpropa-

gation algorithm commonly used in deep learning.

4. Capacity optimizations for improved resource density: Loihi 2 incorporates nu-

merous capacity optimizations to compress and maximize the efficiency of neu-

ral memory resources, resulting in improved overall resource density. Fabricated

with Intel’s pre-production version of the Intel 4 process, Loihi 2 achieves greater

application scales within a single neuromorphic chip.

5. Faster circuit speeds: Loihi 2 features fully redesigned and optimized asyn-

chronous circuits, resulting in significant processing speed improvements. With

processing speed gains ranging from 2x to 10x, Loihi 2 can process neuromor-

phic networks up to 5000x faster than biological neurons, supporting highly

efficient and high-speed computations.

22

6. Interface improvements: Loihi 2 offers more standard chip interfaces, including

faster and higher-radix interfaces. It supports faster asynchronous chip-to-chip

signaling bandwidths, destination spike broadcast features to reduce inter-chip

bandwidth utilization, and three-dimensional mesh network topologies with im-

proved scalability ports. Loihi 2 also supports seamless integration with a wider

range of standard chips and emerging event-based vision and sensor devices.

2.2.3.3 Loihi2 and Loihi 1 Comparison

Table 1 compares the main features of Loihi 2 and Loihi 1.

23

T
ab

le
1.
:
L
oi
h
i
an

d
L
oi
h
i
2
co
m
p
ar
is
on

(r
ep
ri
n
te
d
fr
om

[1
14
])
.

R
es
ou

rc
es
/F

ea
tu
re
s

L
oi
h
i

L
oi
h
i
2

P
ro
ce
ss

In
te
l
14
n
m

In
te
l
4n

m

D
ie

A
re
a

60
m
m

2
31
m
m

2

C
or
e
A
re
a

0.
41

m
m

2
0.
21

m
m

2

T
ra
n
si
st
or
s

2.
1
b
il
li
on

2.
3
b
il
li
on

M
ax

#
N
eu
ro
n
C
or
es
/C

h
ip

12
8

12
8

M
ax

#
P
ro
ce
ss
or
s/
C
h
ip

3
6

M
ax

#
N
eu
ro
n
s/
C
h
ip

12
8,
00
0

1
m
il
li
on

M
ax

#
S
y
n
ap

se
s/
C
h
ip

12
8
m
il
li
on

12
0
m
il
li
on

M
em

or
y
/N

eu
ro
n
C
or
e

20
8
K
B
,
fi
x
ed

al
lo
ca
ti
on

19
2
K
B
,
fl
ex
ib
le

al
lo
ca
ti
on

N
eu
ro
n
M
o
d
el
s

G
en
er
al
iz
ed

L
IF

F
u
ll
y
p
ro
gr
am

m
ab

le

N
eu
ro
n
S
ta
te

A
ll
o
ca
ti
on

F
ix
ed

at
24

b
y
te
s
p
er

n
eu
ro
n

V
ar
ia
b
le

fr
om

0
to

40
96

p
er

n
eu
ro
n
d
ep

en
d
in
g

on
n
eu
ro
n
m
o
d
el

re
q
u
ir
em

en
ts

24

C
on

n
ec
ti
v
it
y
F
ea
tu
re
s

B
as
ic

co
m
p
re
ss
io
n
fe
at
u
re
s:

•
V
ar
ie
ty

of
sp
ar
se

an
d
d
en
se

sy
n
ap

ti
c
co
m
p
re
ss
io
n
fo
rm

at
s

•
W
ei
gh

t
sh
ar
in
g
of

so
u
rc
e
n
eu
ro
n

fa
n
ou

t
li
st
s

In
ad

d
it
io
n
to

th
e
L
oi
h
i
1
fe
at
u
re
s:

S
h
ar
ed

sy
n
ap

se
s
fo
r
co
n
vo
lu
ti
on

•
S
y
n
ap

se
s
ge
n
er
at
ed

fr
om

se
ed

•
P
re
sy
n
ap

ti
c
w
ei
gh

t-
sc
al
in
g
fa
ct
or
s

•
C
or
e
fa
n
-o
u
t
li
st

co
m
p
re
ss
io
n
an

d
sh
ar
in
g

•
B
ro
ad

ca
st

of
sp
ik
es

at
d
es
ti
n
at
io
n
ch
ip

In
fo
rm

at
io
n
C
o
d
in
g

B
in
ar
y
sp
ik
e
ev
en
ts

G
ra
d
ed

sp
ik
e
ev
en
ts

(u
p
to

32
-b
it
p
ay
lo
ad

)

N
eu
ro
n
S
ta
te

M
on

it
or
in
g

(f
or

d
ev
el
op

m
en
t/
d
eb
u
g)

R
eq
u
ir
es

re
m
ot
e
p
au

se
an

d
q
u
er
y
of

n
eu
ro
n
m
em

or
y

N
eu
ro
n
s
ca
n
tr
an

sm
it
th
ei
r
st
at
e
on

-t
h
e-
fl
y

L
ea
rn
in
g
A
rc
h
it
ec
tu
re

P
ro
gr
am

m
ab

le
ru
le
s
ap

p
li
ed

to
p
re
-,

p
os
t-
,
an

d
re
w
ar
d
tr
ac
es

P
ro
gr
am

m
ab

le
ru
le
s
ap

p
li
ed

to
p
re
-,
p
os
t-
,
an

d

ge
n
er
al
iz
ed

“t
h
ir
d
-f
ac
to
r”

tr
ac
es

S
p
ik
e
In
p
u
t

H
an

d
le
d
b
y
em

b
ed
d
ed

p
ro
ce
ss
or
s

H
ar
d
w
ar
e
ac
ce
le
ra
ti
on

fo
r
sp
ik
e
en
co
d
in
g
an

d

sy
n
ch
ro
n
iz
at
io
n
of

L
oi
h
i
w
it
h
ex
te
rn
al

d
at
a
st
re
am

S
p
ik
e
O
u
tp
u
t

1,
00
0
h
ar
d
w
ar
e-
ac
ce
le
ra
te
d
sp
ik
e

re
ce
iv
er
s
p
er
em

b
ed
d
ed

p
ro
ce
ss
or

In
ad

d
it
io
n
to

th
e
L
oi
h
i
1
fe
at
u
re
,
h
ar
d
w
ar
e

ac
ce
le
ra
te
d
sp
ik
e
ou

tp
u
t
p
er

ch
ip

fo
r
re
p
or
ti
n
g

gr
ad

ed
p
ay
lo
ad

,t
im

in
g,

an
d
so
u
rc
e
n
eu
ro
n

25

E
x
te
rn
al

In
te
rf
ac
es

P
ro
p
ri
et
ar
y
as
y
n
ch
ro
n
ou

s
in
te
rf
ac
e

S
u
p
p
or
t
fo
r
st
an

d
ar
d
sy
n
ch
ro
n
ou

s
(S
P
I)

an
d

as
y
n
ch
ro
n
ou

s
(A

E
R
)
p
ro
to
co
ls
,
G
P
IO

,
an

d

10
00
B
A
S
E
-K

X
,2
50
0B

A
S
E
-K

X
,
an

d

10
G
B
as
e-
K
R

E
th
er
n
et

M
u
lt
i-
C
h
ip

S
ca
li
n
g

2D
ti
le
-a
b
le

ch
ip

ar
ra
y

S
in
gl
e
in
te
r-
ch
ip

as
y
n
ch
ro
n
ou

s

p
ro
to
co
l
w
it
h
fi
x
ed
p
in
-c
ou

n
t

3D
ti
le
-a
b
le

ch
ip

ar
ra
y

R
an

ge
of

in
te
r-
ch
ip

as
y
n
ch
ro
n
ou

s
p
ro
to
co
ls

w
it
h
va
ri
ab

le
p
ip
el
in
in
g
an

d
p
in
-c
ou

n
ts

op
ti
m
iz
ed

fo
rd
iff
er
en
t
sy
st
em

co
n
fi
gu

ra
ti
on

s

T
im

es
te
p
S
y
n
ch
ro
n
iz
at
io
n

H
an

d
le
d
b
y
co
re
s

A
cc
el
er
at
ed

b
y
N
oC

ro
u
te
rs

26

2.2.4 Supporting Software

Software plays a crucial role in development of SNNs and NC systems, as it

provides the necessary tools and frameworks to program and train these hardware ar-

chitectures effectively. The software stack for NC typically consists of multiple layers,

each serving a specific purpose. At the lowest level, there are programming interfaces

and compilers that enable developers to write and optimize code for neuromorphic

hardware. These tools abstract the underlying hardware complexity, allowing users

to focus on algorithm design and application development.

On top of the low-level interfaces, higher-level software frameworks and libraries

provide specialized functions for building and training SNNs on neuromorphic archi-

tectures. These frameworks often include tools for defining network topologies, spec-

ifying learning rules, and configuring the hardware parameters. They also support

efficient simulation and emulation of SNNs, enabling developers to test and validate

their algorithms before deploying them on the actual hardware.

Open-source software initiatives, such as Lava [115], SpikingJelly [14], NEST

[116], Brian [117], and SpiNNaker [97], have played a significant role in advancing the

development of neuromorphic computing software. These projects provide compre-

hensive toolkits and libraries that facilitate the design, simulation, and optimization

of neural networks on a range of neuromorphic hardware platforms. In the context of

this dissertation, two specific software frameworks have been leveraged: SpikingJelly

and Lava. We use the SpikingJelly framework for the implementation and testing

of the auxiliary learning architecture presented in Chapter 3, and the Lava frame-

work for the implementation, testing and deployment of the multi-task learning with

threshold modulation architecture in Chapter 4.

27

2.2.4.1 SpikingJelly

SpikingJelly is an open-source software framework specifically designed for SNNs.

It offers a comprehensive set of tools and functionalities that facilitate the imple-

mentation, simulation, and analysis of SNN models. Developed by the Institute of

Neuroscience, Chinese Academy of Sciences, SpikingJelly aims to provide researchers

and developers with a flexible and efficient platform for exploring the dynamics and

learning mechanisms of spiking neurons.

SpikingJelly provides a range of built-in functions for constructing network archi-

tectures, neuron models, configuring synaptic connections, and defining learning rules.

It also supports advanced training algorithms, such as Spike-based backpropagation

training (learning method used in this dissertation), STDP and reward-modulated

STDP.

Additionally, SpikingJelly offers efficient simulation capabilities optimized for

large-scale networks. It employs parallel computing techniques to accelerate the sim-

ulation process, making it suitable for simulating complex neural models of neurons

and synapses. The framework integrates seamlessly with Pytorch deep learning li-

brary.

2.2.4.2 Lava

In addition to its hardware, Loihi 2 is accompanied by Lava software environ-

ment [115], which provides a platform-agnostic framework for developing SNNs and

neuromorphic applications. The framework is designed to be modular, composable,

and extensible, allowing integration of algorithmic ideas from different sources and

enabling contributions to a shared code base. Lava’s hierarchical structure aims to

make neuromorphic programming accessible to a wider developer community.

28

Lava includes the Magma low-level interface, which facilitates mapping and exe-

cution of neural network models and sequential processes on neuromorphic hardware.

Magma supports cross-platform execution, enabling simulation on CPUs/GPUs be-

fore deployment on Loihi 2 chip or other neuromorphic platforms. The framework

incorporates a profiler tool that allows developers to measure/ estimate performance

and energy consumption across targeted back-end platforms. Lava also provides sup-

port for offline training using SLAYER [19] algorithm that enables efficient training

of TM-SNNs.

Additional features of Lava include support for offline training using tools like

SLAYER, integration with third-party frameworks such as Robotic Operating Sys-

tem (ROS), YARP, TensorFlow, PyTorch, Nengo, and other. Lava allows free use

without legal agreements with Intel. However, the lowest-level components required

for deploying applications on Loihi 2 hardware systems are accessible only to engaged

Intel NRC members at no cost.

29

CHAPTER 3

PERFORMANCE IMPROVEMENT USING AUXILIARY LEARNING

In this chapter, we address the enhancement of SNNs through usage of an advanced

ANN training method known as Auxiliary Learning (AL). In AL, the network is

designed to support training of multiple tasks, however only one of all the tasks is

consider of interest (i.e. the accuracy on the auxiliary tasks is not important). Our

results indicate that training with AL improves their accuracy. Different scenarios,

including manual and automatic combination loss using implicit differentiation, are

explored to analyze usage of auxiliary tasks. The rest of the chapter is structured as

follows: Section 3.1 introduces usage of AL for training SNN; Section 3.2 gives a brief

description of background and relevant work. Section 3.3 describes the proposed

framework for training SNNs using AL. Section 3.4 presents our experiments that

confirms the viability of AL; the chapter ends with discussion and future work.

The following papers related to this chapter were published:

1. Paolo G. Cachi, Sebastian Ventura, and Krzysztof J. Cios, “Improving Spiking

Neural Network Performance with Auxiliary Learning”, under review.

2. Paolo G. Cachi, Sebastian Ventura, and Krzysztof J. Cios, “CRBA: A Rate-

Based Algorithm Based on Competitive Spiking Neural Networks,” in Frontiers

in Computational Neuroscience, vol. 15, p. 32, 2021.

3. Paolo G. Cachi, Sebastian Ventura, and Krzysztof J. Cios, “Fast Convergence

of Competitive Spiking Neural Networks with Sample-Based Weight Initializa-

tion,” in Information Processing and Management of Uncertainty in Knowledge-

30

Based Systems, pp. 773–786, 2020.

3.1 Introduction

One of the main difficulties while training SNNs is the limited size of available

data [10, 67]. SNNs operate in the temporal domain and are well suited for processing

temporal data, such as neuromorphic or event-based data [118]. Currently, there

are few temporal datasets available for training and they frequently contain small

number of samples. For example, the two most used for comparison datasets of SNNs

performance are DVS-CIFAR10 [15] and DVS128-Gesture [16] datasets contain only

10K and 319 samples respectively. As a result, SNNs trained using these datasets

exhibit overfitting and unstable convergence.

The problem of training when small-size data is available is not specific only to

SNNs but to machine learning methods in general [119, 120]. Solutions proposed

in the past involve two main approaches: data augmentation (the creation of new

synthetic data by modification of input samples or latent feature vectors) and use

of regularization methods: direct regularization by penalty loss or indirect regular-

ization with AL. Only the first method has been studied in the framework of SNNs

[73]. However, the use of data augmentation only does not allow to leverage the full

potential of using more data. Therefore, implementing regularization methods such

as AL on top of data augmentation is required for achieving better generalization of

SNNs.

In this chapter we use AL as indirect regularization method for training SNNs.

Auxiliary learning has been used in the past for improving the performance of ANNs,

papers such as [121, 122, 12], have explore the use of one or multiple secondary

tasks as a way of regularization. The attempts have proven to be helpful in the

idea of increasing performance. Some limitations seen in the ANNs framework are

31

still present for neuromorphic data [10, 13]. We present here the study of different

ways for combination of the main and auxiliary losses as well as the selection of the

auxiliary tasks and relation of the number of tasks to be used. The implementation

of the network is carried out using the SpikingJelly framework for SNNs simulation

[14]. The experiments are validated on DVS-CIFAR10 [15] and DVS128-Gesture [16]

neuromorphic datasets.

3.2 Background and Related Work

3.2.1 Auxiliary learning

AL is a technique developed to improve the performance of ANNs when training

data size is limited or expensive to collect [121, 12, 72]. In auxiliary learning a model

is trained on multiple tasks at the same time in a similar setup as used in multi-task

learning (ML) [123, 124], see Figure 7. The difference between ML and AL is that

while ML strives for good performance on all tasks (treats all tasks as equal), AL

focuses on performance of just one task (the main task) that the networks is to solve

and treats all other tasks as auxiliary ones (used only to help improve the performance

of the main task). The auxiliary tasks can be related, or not, to the main task.

x
y1

y2

^

^
x

yM

yA

^

^

Fig. 7. multi-task and auxiliary learning. Left: In multi-task learning, the goal is to

perform more than one learning task at the same time, with all tasks being

equally importance. Right: In auxiliary learning, the goal is to learn one main

task while using one or more auxiliary tasks.

32

AL approach has several advantages. By training a network on multiple tasks

simultaneously, AL forces the network to learn more general transferable features,

which can improve its performance on the main task. AL can also improve efficiency

of training, as the network can learn from the auxiliary tasks without the need for

additional training data or computation. This can make it more practical for training

large complex neural networks. Finally, AL can serve as a regularization tool for the

network, which can improve its generalization ability by reducing over-fitting.

Performing learning of multiple tasks, as done in AL, however, creates problems

such as the negative transfer (when different tasks have conflicting goals, such as

increasing performance for one task decreases performance of the other task(s)) [125].

Another challenge is how to efficiently combine multiple loss functions, i.e., how

to weight the losses so the main task is preferred [13]. In this chapter, we tackle

these questions by investigating various setups for combining loss errors. We explore

linear loss error combination with manual tuning, as well as linear/non-linear error

combination using implicit differentiation for automatic tuning. We also examine the

impact of the number of auxiliary tasks employed in the training process.

3.2.2 Input data augmentation

Data augmentation is a technique used to increase the size and diversity of a

dataset [120, 119]. In input data augmentation, additional data is generated by

applying various transformations to the original input data, such as rotation, scaling,

cropping, or adding noise. Doing this provides more examples to learn from and can

help the trained model to generalize better on new data. Researchers studied the use

of geometrical transformations for input data augmentation on neuromorphic data

for training SNNs. Using this approach, allowed for about 4% accuracy increase [10].

This illustrates one of the problems of SNNs, namely, scarcity of event-based data for

33

their training. In this paper, in addition to input data augmentation, we use AL as

a method to increase accuracy on limited size training data.

3.3 Methods

3.3.1 Problem Definition

Consider an input space X, where X ∈ Rn, and a main task Tmain and one or

more auxiliary tasks T
(i)
aux. The expected output for the main task is Ymain and for the

auxiliary tasks Y i
aux. We want to train a spiking neural network, f(x), with weights

W that minimize loss of Tmain while using T
(i)
aux as a regularization method during

training. Note that T
(i)
aux is used during training only.

3.3.2 Architecture

The auxiliary learning architecture for training SNNs is shown in Figure 8. It

consists of a feature extraction block connected in a feed-forward fashion to the main

task and auxiliary task(s) blocks. The spiking input signal is processed by the first

block, the feature extraction block, into a latent p-dimensional spiking feature vector,

which is then fed to the main and auxiliary task classifier blocks to find the outputs.

The idea behind this architecture is to allow the feature extraction block receive

feedback from the main classifier block (main task loss) and also from the auxiliary

task classifier block(s) (auxiliary task losses) during training. In this way, the auxiliary

task classifier blocks act as regularization blocks for the feature extraction block.

In this work as the spiking neuron model, we use the parametric leaky inte-

grate and fire neuron model (PLIF) [73], which is a LIF neuron with learnable time

constants 2.21.

34

Input

Feature
Extraction Block

Auxiliary Classifier
Blocks

Main Classifier
Block

YM

Output

^ LM

∂θA
∂LA

∂θf

∂θf

∂θM

∂LM

∂LA

∂LM

YA
^ (1)

YA
^ (N)

L

LA
(N)

LA
(1)

LAh

Fig. 8. Auxiliary learning architecture. The network uses a multitask architecture in

which only one task, ”the main task”, is of importance. The other tasks, ”the

auxiliary tasks”, are used as additional regularization losses for helping the

main task performance. The auxiliary tasks are only used during training.

3.3.3 Training and Testing

The goal is to learn a set of weights, W ∗, that minimizes the loss of the main

task while utilizing the auxiliary losses as regularization parameters. This can be

expressed as the following optimization problem:

W ∗ = argmin
W

L (3.1)

where L represents the total loss, which is calculated from the main task loss,

LM , and the auxiliary task losses, L
(i)
A , as follows:

L = LM + h(L
(1)
A , L

(2)
A , ..., L

(i)
A) (3.2)

where LM is the main task loss; Li
aux are the auxiliary task losses; h is a

35

linear/non-linear operation that processes the auxiliary losses. The simplest loss

combination case is when h(.) is a linear combination of the auxiliary losses. In this

scenario, the total loss, L, can be expressed as:

L = (1− α) ∗ LM + α ∗
N∑
i=0

γiL
(i)
A (3.3)

where α is a loss rate constant that controls the rate between the main and

auxiliary losses; and γi denotes weights assigned to each auxiliary loss, and they can

be determined through manual tuning methods like grid search, or automatic tuning

methods like implicit differentiation [126]. The latter approach can also be used to

train function h(.) when a non-linear model is chosen. In this work, we compare the

results obtained by all three methods: the manual tuning of a linear combination,

automatic tuning of a linear model, and automatic tuning of a non-linear model for

h(.).

During testing, the samples are only fed into the feature extraction block and

then to the main task classifier block. The auxiliary task blocks are not used since

the focus is solely on evaluating performance of the main task.

3.4 Experiments and results

We evaluate effectiveness of AL in SNN for solving recognition tasks using CIFAR10-

DVS [15], and DVS128-Gesture [16] neuromorphic datasets. All tests are performed

using the architecture shown in Figure 8. For structuring the network we used the

VGG like architecture [127]. The number of layers used for the feature extraction

and classifier blocks for each dataset are shown in Table 2. Each layer of the feature

extraction block is composed of PLIF neurons in a convolutional layer with batch

normalization that is followed by max pooling with kernel 2x2. All convolution op-

36

erations use kernel size of 3x3 with stride 1 and padding 1. The number of channels

for all convolution layers is 128. The layers of the classifier blocks (the main and

auxiliary) are composed of a fully connected layer of PLIF neurons with dropout 0.5.

The number of features of the first fully connected layer is set to 1/4 of the number

of input vector features. The number of features for the output layer (the last fully

connected layer) is 10 times the number of classes as the average voting with stride 10

is used for computing the classification label. All results are presented as the average

of ten runs.

Table 2. Network architecture used for analyzing DVS-CIFAR10 and DVS128-Gesture

neuromorphic data.

Dataset
Number of layers per block

Feature extraction Main/Auxiliary classifier

DVS-CIFAR10 4 2

DVS128-Gesture 5 2

3.4.1 Training with one auxiliary task

First, we test performance of training SNN with just one auxiliary task. For each

dataset, we test three different auxiliary task configurations. The labels used for the

main (M) and auxiliary (A) tasks are shown in Table 3.

For DVS-CIFAR10 data, A1 is selected as a duplicate of the main task label; A2 is

categorization into living vs non-living class labels; and A3 is based on morphological

properties of the classes. For example, deer and horse are put into the same group

(group 4) because of morphological similarity. For DVS128-Gesture data, A1 is again

a duplicate of the main task; while A2 and A3 are two different categorization tasks

37

Table 3. The main task (M) and auxiliary tasks (A1, A2, A3) configurations.

CIFAR10-DVS DVS128-Gesture

Class M A1 A2 A3 Class M A1 A2 A3

Airplane 0 0 0 0 Hand clapping 0 0 1 0

Automobile 1 1 0 1 Right hand wave 1 1 3 1

Bird 2 2 1 2 Left hand wave 2 2 2 2

Cat 3 3 1 3 Right arm clockwise 3 3 3 1

Deer 4 4 1 4 Right arm counter clock 4 4 3 1

Dog 5 5 1 3 Left arm clockwise 5 5 2 2

Frog 6 6 1 5 Left arm counter clock 6 6 2 2

Horse 7 7 1 4 Arm roll 7 7 0 0

Ship 8 8 0 0 Air drums 8 8 0 0

Truck 9 9 0 1 Air guitar 9 9 4 3

Other gestures 10 10 5 4

based on morphological properties of the images.

For the above cases only a linear combination loss (Equation 3.3) is used. We test

different values of the loss rate constant α. Specifically, we use α values 0.1, 0.2, 0.3,

0.4 and 0.5. Tables 4 and 5 show accuracy for the two datasets while using different

auxiliary tasks and loss rate constants. Accuracy is recorded after 250 training epochs

for a validation set randomly selected from the training set, with a size equal to 10%

of the size of the training set.

Both data augmentation and auxiliary learning improve accuracy of the SNN.

Data augmentation results in more significant increase of performance, while the

utilization of auxiliary learning further improves the performance achieved through

38

Table 4. Accuracy for DVS-CIFAR10 dataset using auxiliary learning for 250 training

epochs.

Model
Accuracy for CIFAR10-DVS (250 epochs) [%]

A1 A2 A3

ST-SNN 72.24 ± 0.35 72.24 ± 0.35 72.24 ± 0.35

ST-SNN + aug 80.83 ± 0.70 80.83 ± 0.70 80.83 ± 0.70

AL-SNN + aug + α=0.1 80.98 ± 0.38 81.00 ± 0.40 80.78 ± 0.31

AL-SNN + aug + α=0.2 81.60 ± 0.55 80.35 ± 0.71 81.02 ± 0.67

AL-SNN + aug + α=0.3 81.38 ± 0.47 79.45 ± 0.70 81.13 ± 0.58

AL-SNN + aug + α=0.4 81.00 ± 0.49 78.90 ± 0.39 81.05 ± 0.42

AL-SNN + aug + α=0.5 81.75 ± 0.33 78.72 ± 0.44 80.85 ± 0.81

Table 5. Testing accuracy for DVS128-Gesture dataset using auxiliary learning (250

training epochs).

Model
Accuracy for DVS128-Gesture (250 epochs) [%]

A1 A2 A3

ST-SNN 96.07 ± 0.27 96.07 ± 0.27 96.07 ± 0.27

ST-SNN + aug 98.32 ± 0.31 98.32 ± 0.31 98.32 ± 0.31

AL-SNN + aug + α=0.1 98.50 ± 0.33 98.55 ± 0.37 98.44 ± 0.28

AL-SNN + aug + α=0.2 98.50 ± 0.26 98.50 ± 0.33 98.61 ± 0.28

AL-SNN + aug + α=0.3 98.67 ± 0.37 98.73 ± 0.26 98.61 ± 0.17

AL-SNN + aug + α=0.4 98.44 ± 0.33 98.61 ± 0.20 98.32 ± 0.13

AL-SNN + aug + α=0.5 98.67 ± 0.13 98.38 ± 0.16 98.55 ± 0.31

39

data augmentation alone. It is worth noting that there is a decline in performance

when using task A2 for CIFAR10-DVS data. This decrease can be attributed to

the fact that auxiliary tasks should find useful information to facilitate learning.

Apparently A2 does not provide such information for the network since living vs non-

living categorization is based on very abstract concept that the network is not able

to handle.

Regarding the choice of the loss rate constant, higher values (greater than 0.3)

yield better results (except for case A2 for CIFAR10-DVS data). However, difference

in performance is not clear-cut, making manual selection of this parameter quite

challenging. Because of this, we use an automated method for selecting the loss rate

constant; it is described in Subsection 3.4.3.

3.4.2 Training with more than one auxiliary task

Table 6 shows testing accuracies of AL with two (AL-SNN-2T), three (AL-SNN-

3T), and four (AL-SNN-4T) auxiliary tasks. The first three auxiliary tasks are the

same classification tasks as in Table 3. The fourth auxiliary task is randomly gen-

erated as a four-label classification. For convenience of comparisons, the results for

ST-SNN and the best results for AL-SNN trained with one auxiliary task, repeated

from Tables 4 and 5, are also shown.

Observe that training with more auxiliary tasks did not yield better results com-

pared to using a single auxiliary task. The process of determining appropriate selec-

tion of auxiliary tasks, their respective weights, and choosing a proper combination

of loss rate becomes highly challenging, rendering manual grid search infeasible. In

our test, uniform combination of weights of 1 for all auxiliary losses and a combi-

nation loss rate of 0.5 which, as seen from the results, is not the optimal choice.

Given the complexities involved in manual combination of multiple auxiliary tasks,

40

Table 6. Accuracy for DVS-CIFAR10 and DVS128-Gesture datasets using multiple

auxiliary tasks - 250 training epochs.

Model
Validation accuracy - 250 epochs (%)

CIFAR10-DVS DVSGesture128

ST-SNN 72.24 ± 0.35 96.07 ± 0.48

ST-SNN + aug 80.83 ± 0.70 98.32 ± 0.31

AL-SNN + aug 81.75 ± 0.33 98.73 ± 0.26

AL-SNN-2T + aug 80.22 ± 0.64 98.38 ± 0.31

AL-SNN-3T + aug 80.67 ± 0.24 98.67 ± 0.24

AL-SNN-4T + aug 80.77 ± 0.54 98.73 ± 0.33

an automated method for combining them becomes essential to effectively leverage

its strength, which is described next.

3.4.3 Using implicit differentiation

Here we use implicit differentiation to train a loss combination function, h, such

that L is minimized (Equation 3.2). Table 7 shows testing accuracies of training AL

using all four auxiliary tasks and implicit differentiation. h is tested for both linear

(AL-SNN-IDL-4T) and non-linear (AL-SNN-IDNL-4T) cases. Traditional ANN with

three hidden layers is used for the non-linear case.

Observe that employing automatic differentiation with a non-linear function h

yields the best overall result. When a linear function h is used, the obtained result is

very close to the best outcome achieved through manual grid search. These findings

show that automatic differentiation not only mitigates the challenges associated with

manual grid search but also improves the SNN system performance. It is important to

41

Table 7. Accuracy for DVS128-Gesture dataset using implicit differentiation on vali-

dation set - 250 training epochs.

Model
Accuracy after 250 epochs (%)

CIFAR10-DVS DVSGesture128

ST-SNN 72.24 ± 0.35 96.07 ± 0.48

ST-SNN + aug 80.83 ± 0.70 98.32 ± 0.31

AL-SNN + aug 81.75 ± 0.33 98.73 ± 0.26

AL-SNN-IDL-4T + aug 81.15 ± 0.27 98.67 ± 0.24

AL-SNN-IDNL-4T + aug 81.69 ± 0.34 98.84 ± 0.39

highlight that A4 is a random task that does not provide any useful information, yet

automatic differentiation successfully handles this task. This underscores robustness

and adaptability of automatic differentiation in effectively handling diverse tasks,

even when they apparently do not provide additional information.

3.4.4 Comparison with State-of-the-Art SNNs

The proposed training approach using auxiliary learning with state-of- the-art

methods, using SNN on the CIFAR10-DVS and DVSGesture128 neuromorphic datasets,

is compared. To identify the best trained networks, we conduct an analysis using

precision, recall, and F1-score. We then select the top-performing network for each

dataset. Figure 9 shows the confusion matrix for the selected networks and Table 8

shows the above performance indicators. Results are shown for 1024 training epochs

on the testing set.

Overall, SNN trained using auxiliary learning exhibits a well-balanced perfor-

mance in predicting labels for each dataset. It is worth to highlight a particular case,

42

(a) CIFAR10-DVS

(b) DVSGesture-128

Fig. 9. Confusion matrix for best performing SNN with AL for CIFAR10-DVS (a) and

DVSGesture128 (b) datasets.

43

Table 8. Accuracy, precision, recall and F1 score for best performing SNN with AL for

CIFAR10-DVS and DVSGesture128 datasets.

Dataset Model Accuracy Precision Recall F1-Score

CIFAR10-DVS AL-SNN + aug + α=0.5 82.80 0.829 0.828 0.827

DVSGesture128 AL-SNN-IDNL-4T + aug 99.31 0.993 0.993 0.993

which is the prediction of class 3 (cat) for CIFAR10-DVS data. This specific class is

the most challenging to predict in the CIFAR10-DVS dataset.

We compare the obtained results with state-of-the-art SNNs, which is shown in

Table 9.

Notice that training with auxiliary learning achieves the highest accuracy for

DVSGesture128 dataset and the second highest for CIFAR10-DVS. The highest ac-

curacy for CIFAR10-DVS is achieved by AIA, which is a SNN that uses a more

advanced neuron model than the PLIF neuron model used in this work. In fact. we

see that, training with AL achieves higher accuracy when compared with SNN that

uses PLIF neurons (PLIF and NDA). We expect that AL with AIA neuron model

would achieve the best performance.

3.5 Discussion and Future Work

In this chapter we presented the usage of auxiliary learning, in addition to data

augmentation, to improve performance of SNNs. The used network architecture con-

sists of a feature extraction block connected in a feedforward fashion to a main classi-

fication block and one or more auxiliary task classification blocks. By using auxiliary

tasks, we use additional information during training that helps in regularization of

the feature extraction block. As a result, the feature extraction block is forced to

44

Table 9. Comparison with staet-of-the-art SNNs for CIFAR10-DVS and DVSGes-

ture-128 datasets.

Model Reference CIFAR10-DVS DVSGesture-128

STBP [128] AAAI 2021 67.80 96.87

PLIF [73] ICCV 2021 74.80 97.57

Dspike [129] NeurIPS 2021 75.40 -

AutoSNN [130] ICML 2022 72.50 96.53

RecDis [131] CVPR 2022 72.42 -

DSR [132] CVPR 2022 77.27 -

NDA [10] ECCV 2022 81.70 -

SpikeFormer [133] ICLR 2023 80.90 98.30

AIA [134] ICASSP 2023 83.90 -

AL-SNN (ours) - 82.80 99.31

learn more general and robust features which helps improving SNN network perfor-

mance on the main task. The results confirm that using AL during training indeed

results in improved performance. Moreover, the experiments demonstrate that the

extent of improvement depends on careful tuning combination of loss rate parameters.

To overcome this challenge, we used automatic differentiation [126] to automatically

adjust the loss combination parameters. Note that all the experiments presented in

this study were conducted through simulation using the SpikingJelly neuromorphic

library. However, in the future we plan to leverage Intel’s Lava framework, which

enables to directly deploy the network on the Loihi2 neuromorphic chip.

45

CHAPTER 4

MULTI-TASK LEARNING WITH FIRING THRESHOLD

MODULATION

”Neuromorphic approaches and conventional machine learning should not

be considered simply two solutions to the same classes of problems, instead

it is possible to identify and exploit their task-specific advantages” [6].

In this chapter we present a SNN that can learn multiple tasks in a way that is

unique only to them, namely, their behavior can be changed based on modulation of

its firing thresholds. Specifically, we train a network to solve multiple classification

tasks performing only one at a time. The task to be performed is determined by

changing the spiking neuron’s firing threshold: with one threshold the network learns

one task, with the second threshold another task, and so on. The proposed SNN was

implemented on Intel’s Lava platform and tested on the Loihi2 neuromorphic chip

[20]. Results for multitask classification on neuromorphic NMNIST data [68] show

that SNN can effectively learn different tasks through modulation of the neurons’

firing thresholds. The proposed network constitutes to our best knowledge the first

implementation of training threshold modulated SNN.

The rest of the chapter is structured as follows. Section 4.1 presents relevant

work and introduces multitask learning using firing threshold modulation. Section

4.2 defines the problem to be solved and describes the network architecture. Section

4.3 presents simulation results of using threshold modulation for solving multitask

classification for the NMNIST data. Section 4.4 presents results of running TM-SNN

on the Loihi2 neuromorphic chip. The chapter finishes with discussion and future

46

work.

The following papers related to this chapter were published:

1. Paolo G. Cachi, Sebastian Ventura, and Krzysztof J. Cios, “Implementing

Threshold Modulated Spiking Neural Networks on Loihi2 Neuromorphic Chip”,

under review.

2. Paolo G. Cachi, Sebastian Ventura, and Krzysztof J. Cios, “TM-SNN: Threshold

Modulated Spiking Neural Network for Multi-task Learning,” in 17th Interna-

tional Work-Conference on Artificial Neural Networks (IWANN2023), 2023.

3. Paolo G. Cachi, Soumil Jain, Sebastian Ventura, Gert Cauwenberghs, and

Krzysztof J. Cios, “Reproducing Aplysia R-15 Bursting Neurodynamics on a

Neuromorphic Microchip,” in 29th IEEE International Conference on Electron-

ics, Circuits and Systems (ICECS), pp. 1–4, 2022.

4.1 Introduction

Multi-task learning (ML) is a machine learning problem in which a model is

trained to solve more than one task [123, 124]. The goal is to improve the model’s

generalization ability by learning tasks in a shared feature space. This can be useful

when there is a significant amount of shared information between the tasks, as it

allows the model to learn shared features rather than learning them separately for

each task. For example, a multi-task learning model trained to classify two different

object datasets, such as CIFAR10 and ImageNet, might learn to recognize edges and

basic shapes that are useful for both tasks. This can lead to a more efficient and

effective model, as it reuses features learned from one task to improve performance

on other tasks [122, 13]. Learning multiple tasks, however, encounters problems such

as negative transfer, which happens when different tasks have conflicting goals like

47

when increasing performance for one task decreases performance for the other(s) [125,

135].

Several solutions were proposed to deal with the negative learning problem [136,

137, 138, 17]. The one of interest here is [17], where the authors solved the multi-

task learning problem using an approach called single tasking of multiple tasks. It

consists of training a ANNs to solve more than one task but doing only one task

at a time. To implement it, they used attention-like mechanisms with adversarial

loss for training a feed-forward neural network that learns task-specific features. In

other words, attention-like mechanism is used by the network to select different set of

features. That is, the network makes use of different internal pathways for processing

each task independently, which mitigates the negative transfer problem.

Inspired by the above described solution, we propose using SNNs to implement

single tasking of multiple tasks. However, instead of controlling the behavior of the

network by using attention mechanisms, we use neuromodulation. Neuromodulation

is the property of spiking neurons to modify their intrinsic behavior based on the

presence of external stimuli [18]. Specifically, we construct a network that can switch

its behavior, namely the classification task to perform is based on the modulation of

the spiking neurons’ firing threshold. We refer to the proposed network as threshold

modulated spiking neural network (TM-SNN). Its architecture, shown in Figure 10,

consists of three blocks. Each block (described in detail later) is built of one or more

spiking neuron layers connected in a feed-forward fashion. For training TM-SNN, we

use the SLAYER backpropagation algorithm that was developed to work with SNN

[19]. TM-SNN is implemented in Intel’s Lava neuromorphic framework that allows for

its direct deployment on the Loihi2 neuromorphic chip. Experiments for multi-task

classification on NMNIST data [68] are performed.

48

4.2 Methods

4.2.1 Problem Definition

In the setting of single tasking of a multi-task problem, we assume an input space

X, where X ∈ Rn and a set of two (or more) classification labels Y (1) and Y (2), where

Y (1) = {y(1)1 , y
(1)
2 , ..., y

(1)
m } and Y (2) = {y(2)1 , y

(2)
2 , ..., y

(2)
p }. We plan to construct a SNN,

F , with weights W and an internal parameter (in our case the firing threshold) φ that

learns the transformations: y
(1)
i = F (xi | W,φ = φ1) and y

(2)
i = F (xi | W,φ = φ2).

4.2.2 Architecture

TM-SNN architecture is shown in Figure 10. It consists of three spiking neuron

blocks connected in a feed-forward fashion, similar to [139]. The spiking input signal is

processed by the first block - the feature extraction block - into a latent p-dimensional

spiking feature vector, which is then used to assign the multi-task labels using a label

classifier block. A task classifier block is used for learning the specific task that

is being performed. The idea behind this three-block architecture is to allow the

feature extraction block receive training feedback not only from the label classifier

block (classification loss) but also from the additional task classifier block (task loss).

The task classifier block is used as an auxiliary block in a similar way as in Chapter

3. The task classifier block is not used during testing. Note that in contrast to

the architecture proposed in [139], TM-SNN does not use a gradient reversal layer

before the task classifier block. This is because we want the feature extraction block

to learn specific feature vectors for each classification task rather than a common

feature vector as done in [139].

49

Labels for
task 1

Labels for
task 2

Task
number

label

Input

Feature
Extraction Block

Task Classifier
Block

Label Classifier
Block

Threshold
selector

(φ1 or φ2)

Y

Output

T

^

^

Ly=Loss(Y, Y)

Lt = Loss(T, T)

^

^

∂θt
∂Lt

∂θf

∂θf

∂θl

∂Ly

∂Lt

∂Ly

L = f(LM,LA)

Fig. 10. TM-SNN architecture. It consists of three processing blocks connected in

a feed-forward fashion: a feature extraction block and two classifier blocks.

The label classifier outputs the labels for task 1 or task 2 (or more). The task

classifier is used as a regularization mechanism to aid the feature extraction

block learn a set of independent features for each task.

4.2.3 Training and testing

The goal of training is to learn weights, W , that predicts task 1 with firing

threshold φ = φ1 and task 2 (or more tasks) when φ = φ2. To achieve this, TM-SNN

is trained for both tasks concurrently using a per-batch task selection process. Before

each batch sample presentation, a task to train TM-SNN for is selected randomly. If

task 1 is selected, then the firing threshold of the feature extraction block and the

label classifier block is set to φ = φ1 and for task 2 it is φ = φ2. After setting the

firing threshold, the training process is done using the spike-based backpropagation

SLAYER algorithm [19]. The backward process is set to minimize both the label

classifier and the task classifier loss functions. The combined loss, L, is calculated as

a simple linear combination:

L = (1− γ) ∗ Ly + γ ∗ Lt (4.1)

50

where Ly is the loss for the label classifier block given by Ly = Loss(Y, Ŷ); Lt is

the loss for the task classifier block given by Lt = Loss(T, T̂); and γ is a loss rate

constant that controls the rate between the label and task classifier losses. The true

labels for the label classifier block, Y , are constructed as a concatenation of Y1 and

Y2 = 0 or Y1 = 0 and Y2, depending on whether task 1 or task 2 was selected. The

task classifier block predicts 0 when trained for task 1 or 1 when trained on task

2 data. Note that the firing threshold is not changed for the task classifier block.

This is because the goal is for the task classifier block to backpropagate the same

information to the feature extraction block regardless of which task is being learned.

For testing, first, the firing threshold φ1 or φ2 is set depending on which task

is tested. After that, the samples are input only to the feature extraction block and

to the label classifier block. The task classifier block is not used as it is already

determined by the chosen firing threshold.

4.3 Simulation Performance of TM-SNN

Performance of TM-SNN is analyzed on the neuromorphic NMNIST data (60K

training and 10K testing samples) [68] using Intel’s Lava Framework. Five types

of experiments are performed. First, training and testing performance of TM-SNN

using different threshold values is reported, see Figure 11 and Table 10. Here we

don’t use the task classifier block since our aim is to assess the effects of selecting

different threshold values. Second, the influence of including the task classifier block

in training is analyzed, see Table 11. Third, the results of TM-SNN operating as

described above are compared with TM-SNN that uses the external input current

(not the threshold) to control its behavior, see Table 12. Fourth, the ability of TM-

SNN to learn more than two tasks is assessed, see Table 13. Fifth, we estimate and

compare computational efficiency of TM-SNN with ANNs.

51

4.3.1 Varying threshold

Figure 11 shows accuracy of TM-SNN for two-task classification problem on the

NMNIST data using different thresholds. Task 1 is the digit classification with 10

labels, and task 2 is the odd/even digit classification with 2 labels. Figure 11 also

shows the results for a single-task SNN, called ST-SNN, which was separately trained

only on task 1 or only on task 2, to establish a base case. The network architecture

for both TM-SNN and ST-SNN is essentially the same. It consists of two layers of 512

spiking neurons in the feature extraction block and two layers of 128 and 12 spiking

neurons in the label classifier block. Note that φ1 is set to 1.25 in all tests while

φ2 varies from 1.5 to 10. The constant φ1 value is used to tune spiking neurons to

operate in a normal operation mode (single tasking).

Fig. 11. Training accuracy of ST-SNN (base case) and of TM-SNN using different

threshold values: φ1 is set to 1.25 while φ2 changes from 1.5 to 10.

52

Notice in Figure 11 that using φ1 = 1.25 and φ2 = 5.0 results in performance

close to the base case scenario (when ST-SNN is trained on task 1 only). Using values

for φ1 and φ2 close to each other (φ1 = 1.25 and φ2 = 1.5) achieves results in lower

accuracies than the base case. On the other hand, using values that are too far apart

(like φ1 = 1.25 and φ2 = 10) causes longer training times for TM-SNN (see blue line

in Figure 11).

Table 10 compares testing accuracy for both tasks for different firing threshold

pairs, after 100 epochs. It also shows accuracy of the ST-SNN (base case).

Table 10. Testing results of TM-SNN using different firing threshold values.

Model
Test accuracy (%)

Task 1 Task 2

ST-SNN (base case) 98.93 99.34

TM-SNN - φ1 = 1.25, φ2 = 1.5 91.98 96.09

TM-SNN - φ1 = 1.25, φ2 = 2.0 95.50 98.51

TM-SNN - φ1 = 1.25, φ2 = 3.0 96.59 98.90

TM-SNN - φ1 = 1.25, φ2 = 5.0 97.80 99.11

TM-SNN - φ1 = 1.25, φ2 = 10.0 97.85 99.01

Two conclusions can be drawn from Table 10 results. First, similar to the train-

ing performance (shown in Figure 11) TM-SNN performs better when the difference

between φ1 and φ2 increases. Second, the best accuracies on both tasks are lower

than the accuracies of the base case, which is typical when solving multi-task prob-

lems. However, in order to improve this performance, we use the task classifier block

as well as more tasks, which results are described in the following subsection.

53

It is also informational to compare TM-SNN spiking outputs for each firing

threshold, which is shown in Figure 12 for thresholds φ1 = 1.25 and φ2 = 5 val-

ues.

Observe a drastic change in the output when the firing threshold is changed.

Specifically, when φ1 = 1.25, neuron 3 (corresponding to digit class 3) exhibits the

highest activity, while when φ1 = 5, neuron 11 (corresponding to odd-numbered

class) shows the highest activity. Also notice that the overall firing rate of the output

neurons for φ1 = 1.25 is higher than for φ2 = 5.

4.3.2 Using the task classifier block in training

The task classifier block is used to decrease the loss function value, which is in-

herent in multi-task problems. Table 11 compares accuracy when using task classifier

block during training. Results are shown for the loss constant γ (Equation 4.1) values

equal to 0.5, 0.4, 0.3, 0.2 and 0.1. All tests are done using φ1 = 1.25 and φ2 = 5

values. For convenience of the reader, the results for ST-SNN and TM-SNN (repeated

from Table 10) are also shown (two first rows).

We see that the addition of the task classifier block slightly increased accuracy

of task 1 by 0.18% and by 0.20% on task 2, both for γ = 0.3. This small increase

can be attributed to the fact that the task classifier is very simple (only two labels).

Note that the task classifier block reaches a plateau very close to 100% accuracy after

training for only 20 epochs.

4.3.3 Use of a firing threshold vs using an external input current

Table 12, shows accuracy of a SNN that uses modulation via changing the ex-

ternal input current, called EC-SNN, instead of modulating firing threshold. The

architecture of EC-SNN is essentially the same as TM-SNN. The training was done

54

(a) Input of class/digit 3

(b) Output with φ1 = 1.25

(c) Output with φ1 = 5

Fig. 12. Example spiking output when TM-SNN is presented with input representing

digit 4 (a) with φ1 = 1.25 threshold (b) and with φ2 = 5 (c).

55

Table 11. Testing accuracy of TM-SNN when using task classifier block

Test accuracy (%)
Model

Task 1 Task 2

ST-SNN - Base case 98.93 99.34

TM-SNN (without task classifier) 97.80 99.11

TM-SNN / γ = 0.1 97.90 99.29

TM-SNN / γ = 0.2 97.86 99.23

TM-SNN / γ = 0.3 97.98 99.31

TM-SNN / γ = 0.4 97.70 99.18

TM-SNN / γ = 0.5 97.77 99.20

for 100 epochs using Iext1 = 0 for task 1 and Iext2 equal to 0.05, 0.1, 0.5, 1 and 5 for

task 2.

Notice that while controlling Iext the results are lower than when modifying the

firing threshold of neurons. This finding suggests that firing threshold modulation

outperforms external current modulation in the context of multitask learning. Fur-

thermore, this outcome is consistent with the behavior of biological circuits during

neuromodulation.

4.3.4 Learning several classification tasks at the same time

We test the ability of TM-SNN to learn more than two tasks at the same time.

Table 13 shows testing accuracies of TM-SNN trained with two, three, and four tasks.

The firing threshold for the first tasks is set at 1.25 and for the other tasks are 5,

10 and 15. Task 1 and task 2 are the same classification tasks from the previous

56

Table 12. Testing accuracy of TM-SNN when an external current Iext is used to control

the network operation.

Testing accuracy (%)

Model
Task 1 Task 2

ST-SNN (base case) 98.93 99.34

TM-SNN / γ = 0.3 97.98 99.31

EC-SNN / Iext2 = 0.05 95.63 98.06

EC-SNN / Iext2 = 0.1 96.05 97.86

EC-SNN / Iext2 = 0.5 96.07 97.66

EC-SNN / Iext2 = 1.0 95.78 97.62

EC-SNN / Iext2 = 5.0 92.20 97.95

experiments (10 digit label classification and odd/even digit classification). Task 3 is

greater/less than 5 classification (2 labels), and task 4 is the modulo operation of 3

classification (3 labels). The network architecture is the same as in the previous case

with the exception that the number of output neurons are changed accordingly. Table

13 also includes the single task SNN (ST-SNN) trained with each task independently

for reference.

Results show that threshold modulation also works for cases involving more than

two classification tasks. Interesting is the result of training TM-SNN for three tasks

that resulted in higher accuracy than training for two tasks. However, the accuracy

decreased when number of tasks is four.

57

Table 13. Testing accuracy of TM-SNN trained on four tasks.

Model
Testing accuracy (%)

Task 1 Task 2 Task 3 Task 4

ST-SNN (base case) 98.93 99.34 99.01 98.97

TM-SNN (2 tasks) 97.98 99.34 - -

TM-SNN (3 tasks) 98.24 99.17 98.84 -

TM-SNN (4 tasks) 97.05 98.83 98.33 98.11

4.3.5 Comparison of TM-SNN with ANN

We compare computational efficiency of TM-SNN vs ANN in terms of neuron

activity (number of events) and synaptic operations (SynOps). These indicators are

directly proportional to the network’s energy consumption. Table 14 compares results

of TM-SNN and ANN with the similar architecture (4 fully connected layers of 512,

512, 128 and 14 neurons, respectively). For TM-SNN, we select the best trained

network from the previous experiment, which involved training it for three different

tasks. Table 14 shows the number of events and SynOps at each layer under different

threshold values: φ = 1.25, φ = 5, and φ = 10. Number of activations and multiply-

accumulate operations (MACs) are the corresponding indicators for computational

efficiency in the ANN.

We observe that TM-SNN exhibits a higher degree event efficiency (TM-SNNs’

events vs ANNs’ activations) and operations sparsity (SynOps vs MACs) than ANN.

This is expected since SNN rely on temporal sparse computations rather than con-

tinuous activation functions. Importantly, the degree of computational efficiency

achieved by TM-SNN depends on the threshold value. Higher threshold values, such

58

T
ab

le
14
.
E
ve
n
ts

an
d
S
y
n
O
p
s
co
m
p
ar
is
on

of
T
M
-S
N
N

v
s
A
N
N
.

T
M
-S
N
N

(φ
=

1.
25
)

T
M
-S
N
N

(φ
=

5)
T
M
-S
N
N

(φ
=

10
)

A
N
N

L
ay
er

S
h
ap

e
E
ve
n
ts

S
y
n
O
p
s

E
ve
n
ts

S
y
n
O
p
s

E
ve
n
ts

S
y
n
O
p
s

A
ct
iv
at
io
n
s

M
A
C
s

F
u
ll
y
C
on

-1
(-
1,

51
2)

90
.4
8

46
,3
25
.6
0

48
.0
9

24
,6
23
.8
4

30
.9
3

15
,8
33
.6
9

51
2

1’
18
3,
74
4

F
u
ll
y
C
on

-2
(-
1,

51
2)

20
7.
39

10
6,
18
2.
58

90
.9
3

46
,5
55
.2
7

30
.2
7

15
,4
97
.3
2

51
2

26
2,
14
4

F
u
ll
y
C
on

-3
(-
1,

12
8)

1.
45

18
5.
98

2.
48

31
7.
70

3.
36

43
0.
37

12
8

65
5,
33
6

F
u
ll
y
C
on

-4
(-
1,

14
)

0.
51

7.
15

0.
58

8.
14

0.
55

7.
70

14
1,
79
2

T
O
T
A
L

29
9.
83

15
2,
70
1.
30

14
2.
08

71
,5
04
.9
6

65
.1
1

31
,7
69
.0
8

3,
47
8

1’
51
3,
21
6

G
A
IN

11
.6
0x

9.
91
x

24
.4
8x

21
.1
6x

53
.4
2x

47
.6
3x

1x
1x

59

as φ = 1.25, lead to a substantial reduction in the number of events and SynOps.

This indicates that by modifying the threshold value, we control both the computa-

tional load and energy consumption. The ability to modulate the threshold provides

great flexibility to regulate the network’s energy requirements to specific operating

conditions.

4.4 Profiling on Loihi2

The Lava framework provides the NetX functionality that enables deployment

of SNN on the Loihi2 chip. In this section, we present a comparative analysis of

performance of MT-SNN deployed on Loihi2 using the Lava framework. The Loihi2

chip is accessible through Intel’s Oheogulch board, a platform for experimentation

and evaluation of the Loihi2. By leveraging the capabilities of the Lava framework

and utilizing the computational power of the Loihi2, we investigate the efficiency and

effectiveness of the MT-SNN model in multitask classification.

4.4.1 Network Selection

To identify a suitable network for deployment, we analyze the top three best-

performing TM-SNN (see the previous subsection where TM-SNN was trained with

3 tasks). The accuracy comparison on the validation set of these top three networks

are presented in Tables 15. In addition to accuracy, we also calculate precision, recall,

and F1 score which are shown in Table 16.

The precision, recall, and F1 scores of the three TM-SNN are consistently very

high (close to 1). This indicates that TM-SNN demonstrates a well-balanced per-

formance in predicting all three tasks. Among the three models, we select TM-SNN

number 3 for deployment due to its overall superior performance across all tasks. It

60

Table 15. Testing accuracy for the top-three, on task 1, TM-SNN

Model
Testing Accuracy (%)

Task 1 Task 2 Task 3

1 98.32 98.92 98.63

2 98.29 98.99 98.70

3 98.26 99.01 98.80

achieves the highest performance on tasks 2 and 3 while maintaining only a slightly

lower performance on task 1. This selection ensures the best overall performance

while still considering the specific challenges posed by task 1. The confusion matrix

for TM-SNN number 3 on the validation set is shown in Figure 13.

4.4.2 Execution time

Execution time in Loihi2 is measured using the execution time profiler, which

measures the total and average time per step. Figure 14 shows the plots of execution

time for one sample presentation using TM-SNN for the three tasks classification.

While NMNIST sample consists of 300 timesteps, we extended the duration to 350

timesteps to allow the network to return to its resting state before the next sample

presentation. The network used in this analysis is the top-performing network when

training with three tasks using firing threshold values of 1.25, 5 and 10 (see Subsection

4.3.4).

Contrary to our expectations, the execution time per time step in Loihi2 is not

as fast as anticipated. On average, each time step takes approximately 0.075 seconds,

resulting in a throughput of 0.44. This relatively slow execution rate is primarily

61

T
ab

le
16
.
P
re
ci
si
on

,
re
ca
ll
an

d
F
1
sc
or
e
fo
r
th
e
to
p
-t
h
re
e,

on
ta
sk

1,
T
M
-S
N
N
.

M
o
d
el

P
re
ci
si
on

R
ec
al
l

F
1
sc
or
e

T
as
k
1

T
as
k
2

T
as
k
3

T
as
k
1

T
as
k
2

T
as
k
3

T
as
k
1

T
as
k
2

T
as
k
3

1
0.
98
3

0.
98
9

0.
98
6

0.
98
3

0.
98
9

0.
98
6

0.
98
3

0.
98
9

0.
98
6

2
0.
98
3

0.
99
0

0.
98
7

0.
98
3

0.
99
0

0.
98
7

0.
98
3

0.
99
0

0.
98
7

3
0.
98
3

0.
99
0

0.
98
8

0.
98
3

0.
99
0

0.
98
8

0.
98
3

0.
99
0

0.
98
8

62

(a) Task 1 (b) Task 2

(c) Task 3

Fig. 13. Confusion matrix of TM-SNN number 3 for three task classification on NM-

NIST data.

63

Fig. 14. TM-SNN’s execution time in seconds for one sample presentation using

φ = 1.25, φ = 5, and φ = 10.

attributed to a bottleneck caused by communication time between the host computer

and the Loihi 2 chip when submitting input samples. However, we anticipate a

significant improvement once the dedicated spike input feature of Loihi2 is integrated

into Lava. Furthermore, the results do not show significant difference in execution

time when varying firing threshold values. These results shed light on the current

performance limitations and highlight the ongoing need to develop better solutions

addressing these challenges.

4.4.3 Power consumption

Power consumption is measured using Lava’s Loihi2Power profiling module. It

measures power consumption across the whole Oheogulch board. Figure 15 shows

power consumption during 2000 micro secs. The plot includes total power, total

static power consumed when idle (static power), supply power (VDD power), memory

circuit power (VDD-M power) and input output peripheral circuits power (VDD-IO).

64

Fig. 15. TM-SNN’s power consumption in watts for TM-SNN using φ = 1.25.

To evaluate the power consumption of TM-SNN for multi-task classification, we

show a summary of the consumed power in Table 17. It should be noted that due

to the current Loihi2 bottleneck, the differences in power consumption depending on

the task being solved cannot be spotted. This is because the implementation spends

more time on the communication phase between the host computer and the Loihi2

chip, which dominates the power consumption across all tasks.

4.4.4 Spiking Activity

Spiking activity in terms of synaptic operations (SynOps) in Loihi2 is measured

using the Loihi2Activity profiler in Lava. Figure 16 shows the SynOps per sample for

TM-SNN run on Loihi2. Similar to previous experiments, the results are shown for

the three-task configuration using 200 samples.

The results obtained on Loihi2 align with the estimated computational efficiency

discussed in Subsection 4.3.5. Specifically, the number of synaptic operations (Syn-

65

Table 17. Testing accuracy of MT-SNN trained for four tasks.

TM-SNN Power Consumption

φ = 1.25 φ = 5 φ = 10

Total Power [mW] 531.86 522.34 532.93

Static Power [mW] 549.52 517.17 547.68

VDD Power [mW] 182.62 184.06 181.88

VDD-M Power [mW] 287.52 286.33 293.34

W VDD-IO Power [mW] 61.72 51.94 57.71

Total Energy [mJ/sample] 16,245.60 14,361.59 14,329.74

Dynamic Energy [mJ/sample] 539.52 141.75 396.67

Ops) used varies depending on the firing threshold. Using a low firing threshold,

like φ = 1.25, the number of SynOps is relatively higher, indicating higher frequency

of spikes and greater energy consumption. On the other hand, increasing the fir-

ing threshold to φ = 5 and φ = 10 leads to the decrease in the number of SynOps

used. This reduction demonstrates the ability of threshold modulation to control the

spiking activity, directly impacting the energy consumption requirements.

By effectively modulating the firing threshold, TM-SNN can dynamically adjust

the level of spiking activity. The results obtained on Loihi2 highlight the practical

application of threshold modulation in controlling spiking activity and energy require-

ments. This capability can be very important in resource-constrained scenarios where

energy efficiency is critical.

66

Fig. 16. Spiking activity in terms of SynOps when running TM-SNN on Loihi2 for

three tasks configuration with φ = 1.25, φ = 5, and φ = 10.

4.4.5 Memory usage

Figure 17 shows the relative, per core, memory usage of TM-SNN. It is important

to mention that the memory usage does not vary depending on the tested task, as

the only parameter that is being changed is the firing threshold and not the network

configuration (weights).

TM-SNN consumes less than half of the total memory on a Loihi2 chip. Further-

more, the memory usage plot provides insights into the efficient mapping of memory

across the network cores, shows compact nature of memory allocation in Loihi2.

67

Fig. 17. Relative per core memory usage of TM-SNN on the Loihi2 neuromoprhic chip.

4.5 Discussion and Future Work

In this chapter, we introduced a novel spiking neural network architecture called

Threshold Modulated Spiking Neural Networks (TM-SNN) for addressing multi-task

classification problems. TM-SNN utilizes firing threshold modulation to adapt its be-

havior during operation. The architecture consists of three processing blocks: feature

extraction, label classification, and task classification. The task classification block

serves as an additional source for regularizing the feature extraction block. Through

training, the inclusion of the task classifier block resulted in a slight improvement in

testing accuracy.

Our experiments were conducted using Intel’s Lava neuromorphic platform, and

we performed tests in both simulation and on the Loihi2 neuromorphic chip. The

results demonstrate that TM-SNN is capable of learning multiple tasks with only

a marginal reduction in accuracy compared to spiking neural networks trained for

single task classification (ST-SNN). Specifically, TM-SNN achieved accuracy rates

68

of 98.24%, 99.17%, and 98.84% for the three task classifications, respectively, while

ST-SNN achieved 98.93%, 99.34%, and 99.01% accuracy.

Comparing the use of a firing threshold modulation to the use of external input

current, we observe that modulation of the firing threshold leads to better accuracy

performance. In terms of computational efficiency, TM-SNN exhibits a lower energy

consumption compared to artificial neural networks. It utilizes 9.91x, 21.16x, and

47.63x fewer synaptic operations (SynOps) depending on the task and firing threshold

employed. The observed variation in energy consumption based on the firing threshold

modulation is particularly noteworthy as it highlights the flexibility of TM-SNN in

optimizing energy usage.

While the results presented in this chapter pertain specifically to multitask clas-

sification on the NMNIST dataset, future work can expand the application of thresh-

old modulation to more complex problems. For instance, employing firing threshold

modulation for wheel angle control in autonomous driving based on images. We ac-

knowledge that the manual modulation of the firing threshold in TM-SNN limits its

flexibility. Therefore, future efforts will focus on exploring dynamic modulation of

the firing threshold to enhance the adaptability and versatility of the system. These

proposed improvements are part of our ongoing work.

69

CHAPTER 5

CONCLUSIONS AND FUTURE WORK

This chapter summarizes the overall conclusions of the dissertation and specifies some

ideas as future work.

NC systems and the SNNs they use have great potential for developing low-

power adaptable AI. However, challenges such as training complexity, hyperparameter

selection, computational flexibility and scarcity of training data hinder their wider

use.

In this dissertation, we aim to increase usage of NC by enhancing performance

of SNNs. To achieve this goal, we proposed two SNNs architectures to address these

limitations. The first architecture, presented in Chapter 3, utilizes auxiliary learning

to improve training performance and data efficiency. The second architecture, pre-

sented in Chapter 4, leverages the neuromodulation capabilities of spiking neurons

to enhance multitask performance. We validate the proposed architectures through

experiments using the SpikingJelly and Lava neuromorphic libraries.

While our experiments demonstrate effectiveness of the proposed architectures,

they also reveal some limitations that would be worth studying in future work. One

of such limitation is the ussage of LIF neurons only. Future work could analyze use

IZ neurons as well as its deployment on the Loihi2 neuromorphic computer hardware.

To utilize IZ neurons, a compatible with spike-based backpropagation version of it is

required. To use Loihi2, extensions to the Lava software package is needed.

70

Appendix A

ABBREVIATIONS

AL Auxiliary Learning

ANNs Artificial Neural Networks

BPTT Backpropagation Through Time

CNN Convolutional Neural Network

FPGAs field-programmable gate arrays

HH Hodgkin-Huxley

IF Integrate and Fire

IZ Izhikevich

LIF Leaky Integrate and Fire

ML multi-task Learning

MT-SNN multi-task Spiking Neural Network

MT-SNN-EC multi-task Spiking Neural Network with External Current

NC Neuromorphic Computing

PLIF Parametric Leaky Integrate and Fire

R-STDP Reward Modulated STDP

RNN Recurrent Neural Network

SBP Spike-based Backpropagation

SGD Surrogate Gradient Descent

SNNs Spiking Neural Networks

ST-SNN Single-task Spiking Neural Network

STDP Spike-Timing-Dependent Plasticity

71

Appendix B

LIST OF PUBLICATIONS BY THE AUTHOR

This appendix presents a list of the author’s published journal and peer-reviewed

conference publications.

B.1 Journal Publications

1. Paolo G. Cachi, Sebastian Ventura, and Krzysztof J. Cios, “Improving Spiking

Neural Network Performance with Auxiliary Learning”, under review.

2. Paolo G. Cachi, Sebastian Ventura, and Krzysztof J. Cios, “Implementing

Threshold Modulated Spiking Neural Networks on Loihi2 Neuromorphic Chip”,

under review.

3. Paolo G. Cachi, Sebastian Ventura, and Krzysztof J. Cios, “CRBA: A Rate-

Based Algorithm Based on Competitive Spiking Neural Networks,” in Frontiers

in Computational Neuroscience, vol. 15, p. 32, 2021.

B.2 Journal Publications

1. Paolo G. Cachi, Sebastian Ventura, and Krzysztof J. Cios, “TM-SNN: Threshold

Modulated Spiking Neural Network for Multi-task Learning,” in 17th Interna-

tional Work-Conference on Artificial Neural Networks (IWANN2023), in press

2023.

2. Paolo G. Cachi, Soumil Jain, Sebastian Ventura, Gert Cauwenberghs, and

Krzysztof J. Cios, “Reproducing Aplysia R-15 Bursting Neurodynamics on a

72

Neuromorphic Microchip,” in 29th IEEE International Conference on Electron-

ics, Circuits and Systems (ICECS), pp. 1–4, 2022.

3. Paolo G. Cachi, Sebastian Ventura, and Krzysztof J. Cios, “Improving Spiking

Neural Network Performance with Auxiliary Learning”, in development 2023.

4. Paolo G. Cachi, Sebastian Ventura, and Krzysztof J. Cios, “Fast Convergence

of Competitive Spiking Neural Networks with Sample-Based Weight Initializa-

tion,” in Information Processing and Management of Uncertainty in Knowledge-

Based Systems, pp. 773–786, 2020.

73

REFERENCES

[1] C. Mead. “Neuromorphic electronic systems”. In: Proceedings of the IEEE

78.10 (1990), pp. 1629–1636. doi: 10.1109/5.58356.

[2] Steve Furber. “Large-scale neuromorphic computing systems”. In: Journal

of Neural Engineering 13.5 (Aug. 2016), p. 051001. doi: 10.1088/1741-

2560/13/5/051001. url: https://dx.doi.org/10.1088/1741-2560/13/5/

051001.

[3] Geoffrey W. Burr et al. “Neuromorphic computing using non-volatile mem-

ory”. In: Advances in Physics: X 2.1 (2017), pp. 89–124. doi: 10.1080/

23746149.2016.1259585. eprint: https://doi.org/10.1080/23746149.

2016.1259585. url: https://doi.org/10.1080/23746149.2016.1259585.

[4] Shufang Zhao et al. “Neuromorphic-computing-based adaptive learning using

ion dynamics in flexible energy storage devices”. In: National Science Review

9.11 (Aug. 2022). nwac158. issn: 2095-5138. doi: 10.1093/nsr/nwac158.

eprint: https://academic.oup.com/nsr/article-pdf/9/11/nwac158/

47840181/nwac158_supplemental_file.pdf. url: https://doi.org/

10.1093/nsr/nwac158.

[5] Aboozar Taherkhani et al. “A Review of Learning in Biologically Plausible

Spiking Neural Networks”. In: Neural Netw. 122.C (Feb. 2020), pp. 253–272.

issn: 0893-6080. doi: 10 . 1016 / j . neunet . 2019 . 09 . 036. url: https :

//doi.org/10.1016/j.neunet.2019.09.036.

[6] Michael Pfeiffer and Thomas Pfeil. “Deep Learning With Spiking Neurons:

Opportunities and Challenges”. In: Frontiers in Neuroscience 12 (2018). issn:

74

1662-453X. doi: 10.3389/fnins.2018.00774. url: https://www.frontiersin.

org/articles/10.3389/fnins.2018.00774.

[7] Jason K. Eshraghian et al. Training Spiking Neural Networks Using Lessons

From Deep Learning. 2021. doi: 10.48550/ARXIV.2109.12894. url: https:

//arxiv.org/abs/2109.12894.

[8] Amirhossein Tavanaei et al. “Deep learning in spiking neural networks”. In:

Neural Networks 111 (2019), pp. 47–63. issn: 0893-6080. doi: https://doi.

org/10.1016/j.neunet.2018.12.002. url: https://www.sciencedirect.

com/science/article/pii/S0893608018303332.

[9] C Koch, M Rapp, and I Segev. “A brief history of time (constants)”. en. In:

Cereb Cortex 6.2 (Mar. 1996), pp. 93–101.

[10] Yuhang Li et al. “Neuromorphic Data Augmentation for Training Spiking

Neural Networks”. In: Computer Vision – ECCV 2022. Ed. by Shai Avidan

et al. Cham: Springer Nature Switzerland, 2022, pp. 631–649. isbn: 978-3-

031-20071-7.

[11] Andrew R. Barron. “Approximation and estimation bounds for artificial neu-

ral networks”. In: Machine Learning 14.1 (Jan. 1994), pp. 115–133. issn:

1573-0565. doi: 10.1007/BF00993164. url: https://doi.org/10.1007/

BF00993164.

[12] Shikun Liu, Andrew Davison, and Edward Johns. “Self-Supervised General-

isation with Meta Auxiliary Learning”. In: Advances in Neural Information

Processing Systems. Ed. by H. Wallach et al. Vol. 32. Curran Associates,

Inc., 2019. url: https://proceedings.neurips.cc/paper/2019/file/

92262bf907af914b95a0fc33c3f33bf6-Paper.pdf.

75

[13] Trevor Standley et al. Which Tasks Should Be Learned Together in Multi-task

Learning? 2019. doi: 10.48550/ARXIV.1905.07553. url: https://arxiv.

org/abs/1905.07553.

[14] Wei Fang et al. SpikingJelly. https://github.com/fangwei123456/spikingjelly.

Accessed: 2023-07-08. 2020.

[15] Hongmin Li et al. “CIFAR10-DVS: An Event-Stream Dataset for Object Clas-

sification”. In: Frontiers in Neuroscience 11 (2017). issn: 1662-453X. doi:

10 . 3389 / fnins . 2017 . 00309. url: https : / / www . frontiersin . org /

articles/10.3389/fnins.2017.00309.

[16] Arnon Amir et al. “A Low Power, Fully Event-Based Gesture Recognition

System”. In: 2017 IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). 2017, pp. 7388–7397. doi: 10.1109/CVPR.2017.781.

[17] Kevis-Kokitsi Maninis, Ilija Radosavovic, and Iasonas Kokkinos. “Attentive

Single-Tasking of Multiple Tasks”. In: CoRR abs/1904.08918 (2019). arXiv:

1904.08918. url: http://arxiv.org/abs/1904.08918.

[18] Eve Marder. “Neuromodulation of neuronal circuits: back to the future”. In:

Neuron 76.1 (Oct. 2012), pp. 1–11. doi: 10.1016/j.neuron.2012.09.010.

[19] Sumit Bam Shrestha and Garrick Orchard. SLAYER: Spike Layer Error Re-

assignment in Time. 2018. doi: 10.48550/ARXIV.1810.08646. url: https:

//arxiv.org/abs/1810.08646.

[20] Garrick Orchard et al. “Efficient Neuromorphic Signal Processing with Loihi

2”. In: CoRR abs/2111.03746 (2021). arXiv: 2111.03746. url: https://

arxiv.org/abs/2111.03746.

76

[21] Dennis V Christensen et al. “2022 roadmap on neuromorphic computing and

engineering”. In: Neuromorphic Computing and Engineering 2.2 (May 2022),

p. 022501. doi: 10.1088/2634-4386/ac4a83. url: https://dx.doi.org/

10.1088/2634-4386/ac4a83.

[22] Catherine D. Schuman et al. “Opportunities for neuromorphic computing

algorithms and applications”. In: Nature Computational Science 2.1 (Jan.

2022), pp. 10–19. issn: 2662-8457. doi: 10.1038/s43588- 021- 00184- y.

url: https://doi.org/10.1038/s43588-021-00184-y.

[23] Danijela Marković et al. “Physics for neuromorphic computing”. In: Nature

Reviews Physics 2.9 (Sept. 2020), pp. 499–510. issn: 2522-5820. doi: 10.

1038/s42254-020-0208-2. url: https://doi.org/10.1038/s42254-020-

0208-2.

[24] Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. “Towards spike-

based machine intelligence with neuromorphic computing”. In:Nature 575.7784

(Nov. 2019), pp. 607–617. issn: 1476-4687. doi: 10.1038/s41586-019-1677-

2. url: https://doi.org/10.1038/s41586-019-1677-2.

[25] Shih-Chii Liu et al. Event-based neuromorphic systems. John Wiley & Sons,

2014.

[26] Yoeri van de Burgt et al. “Organic electronics for neuromorphic computing”.

In: Nature Electronics 1.7 (July 2018), pp. 386–397. issn: 2520-1131. doi:

10.1038/s41928-018-0103-3. url: https://doi.org/10.1038/s41928-

018-0103-3.

[27] Catherine D. Schuman et al. “A Survey of Neuromorphic Computing and

Neural Networks in Hardware”. In: CoRR abs/1705.06963 (2017). arXiv:

1705.06963. url: http://arxiv.org/abs/1705.06963.

77

[28] Aaron R. Voelker and Chris Eliasmith. “Improving Spiking Dynamical Net-

works: Accurate Delays, Higher-Order Synapses, and Time Cells”. In: Neural

Computation 30.3 (2018), pp. 569–609. doi: 10.1162/neco_a_01046.

[29] Mike Davies et al. “Advancing Neuromorphic Computing With Loihi: A Sur-

vey of Results and Outlook”. In: Proceedings of the IEEE 109.5 (2021),

pp. 911–934. doi: 10.1109/JPROC.2021.3067593.

[30] Mike Davies et al. “Loihi: A Neuromorphic Manycore Processor with On-Chip

Learning”. In: IEEE Micro 38.1 (2018), pp. 82–99. doi: 10.1109/MM.2018.

112130359.

[31] Michael V. DeBole et al. “TrueNorth: Accelerating From Zero to 64 Million

Neurons in 10 Years”. In: Computer 52.5 (2019), pp. 20–29. doi: 10.1109/

MC.2019.2903009.

[32] Filipp Akopyan et al. “TrueNorth: Design and Tool Flow of a 65 mW 1

Million Neuron Programmable Neurosynaptic Chip”. In: IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems 34.10 (2015),

pp. 1537–1557. doi: 10.1109/TCAD.2015.2474396.

[33] SAMANWOY GHOSH-DASTIDAR and HOJJAT ADELI. “SPIKING NEU-

RAL NETWORKS”. In: International Journal of Neural Systems 19.04 (2009).

PMID: 19731402, pp. 295–308. doi: 10.1142/S0129065709002002. eprint:

https://doi.org/10.1142/S0129065709002002. url: https://doi.org/

10.1142/S0129065709002002.

[34] Wulfram Gerstner and Werner M. Kistler. Spiking Neuron Models: Single

Neurons, Populations, Plasticity. Cambridge University Press, 2002. doi: 10.

1017/CBO9780511815706.

78

[35] Wolfgang Maass. “Networks of spiking neurons: The third generation of neu-

ral network models”. In: Neural Networks 10.9 (1997), pp. 1659–1671. issn:

0893-6080. doi: https://doi.org/10.1016/S0893-6080(97)00011-7. url:

https://www.sciencedirect.com/science/article/pii/S0893608097000117.

[36] Laith Alzubaidi et al. “Review of deep learning: concepts, CNN architectures,

challenges, applications, future directions”. In: Journal of Big Data 8.1 (Mar.

2021), p. 53. issn: 2196-1115. doi: 10.1186/s40537-021-00444-8. url:

https://doi.org/10.1186/s40537-021-00444-8.

[37] Frank Emmert-Streib et al. “An Introductory Review of Deep Learning for

Prediction Models With Big Data”. In: Frontiers in Artificial Intelligence 3

(2020). issn: 2624-8212. doi: 10.3389/frai.2020.00004. url: https:

//www.frontiersin.org/articles/10.3389/frai.2020.00004.

[38] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep learning”. In: Na-

ture 521.7553 (May 2015), pp. 436–444. issn: 1476-4687. doi: 10 . 1038 /

nature14539. url: https://doi.org/10.1038/nature14539.

[39] Guillermo Gallego et al. “Event-Based Vision: A Survey”. In: IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 44.1 (Jan. 2022), pp. 154–

180. doi: 10.1109/tpami.2020.3008413. url: https://doi.org/10.1109%

5C%2Ftpami.2020.3008413.

[40] Boudjelal Meftah et al. “Image Processing with Spiking Neuron Networks”.

In: Artificial Intelligence, Evolutionary Computing and Metaheuristics: In the

Footsteps of Alan Turing. Ed. by Xin-She Yang. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2013, pp. 525–544. isbn: 978-3-642-29694-9. doi: 10.1007/

978-3-642-29694-9_20. url: https://doi.org/10.1007/978-3-642-

29694-9_20.

79

[41] J. Shin et al. “Recognition of Partially Occluded and Rotated Images With

a Network of Spiking Neurons”. In: IEEE Transactions on Neural Networks

21.11 (Nov. 2010), pp. 1697–1709. issn: 1941-0093. doi: 10.1109/TNN.2010.

2050600.

[42] Krzysztof J. Cios and Inho Shin. “Image recognition neural network: IRNN”.

In: Neurocomputing 7.2 (1995), pp. 159–185. issn: 0925-2312. doi: https:

//doi.org/10.1016/0925-2312(93)E0062-I.

[43] Kaushalya Kumarasinghe, Nikola Kasabov, and Denise Taylor. “Brain-inspired

spiking neural networks for decoding and understanding muscle activity and

kinematics from electroencephalography signals during hand movements”. In:

Scientific Reports 11.1 (Jan. 2021), p. 2486. issn: 2045-2322. doi: 10.1038/

s41598-021-81805-4. url: https://doi.org/10.1038/s41598-021-

81805-4.

[44] Soufiyan Bahadi, Jean Rouat, and Éric Plourde. “Adaptive Approach for

Sparse Representations Using the Locally Competitive Algorithm for Audio”.

In: 2021 IEEE 31st International Workshop on Machine Learning for Signal

Processing (MLSP). 2021, pp. 1–6. doi: 10.1109/MLSP52302.2021.9596348.

[45] Juan P. Dominguez-Morales et al. “Deep Spiking Neural Network model for

time-variant signals classification: a real-time speech recognition approach”.

In: 2018 International Joint Conference on Neural Networks (IJCNN). 2018,

pp. 1–8. doi: 10.1109/IJCNN.2018.8489381.

[46] Jens Kremkow, Ad Aertsen, and Arvind Kumar. “Gating of Signal Propa-

gation in Spiking Neural Networks by Balanced and Correlated Excitation

and Inhibition”. In: Journal of Neuroscience 30.47 (2010), pp. 15760–15768.

issn: 0270-6474. doi: 10.1523/JNEUROSCI.3874-10.2010. eprint: https:

80

//www.jneurosci.org/content/30/47/15760.full.pdf. url: https:

//www.jneurosci.org/content/30/47/15760.

[47] R.F. Lyon and C. Mead. “An analog electronic cochlea”. In: IEEE Transac-

tions on Acoustics, Speech, and Signal Processing 36.7 (1988), pp. 1119–1134.

doi: 10.1109/29.1639.

[48] Michael Ehrlich et al. “Adaptive control of a wheelchair mounted robotic arm

with neuromorphically integrated velocity readings and online-learning”. In:

Frontiers in Neuroscience 16 (2022). issn: 1662-453X. doi: 10.3389/fnins.

2022.1007736. url: https://www.frontiersin.org/articles/10.3389/

fnins.2022.1007736.

[49] Marco Monforte et al. “Where and When: Event-Based Spatiotemporal Tra-

jectory Prediction from the iCub’s Point-Of-View”. In: 2020 IEEE Interna-

tional Conference on Robotics and Automation (ICRA). 2020, pp. 9521–9527.

doi: 10.1109/ICRA40945.2020.9197373.

[50] Daniel Gutierrez-Galan et al. “Neuropod: A real-time neuromorphic spiking

CPG applied to robotics”. In: Neurocomputing 381 (Mar. 2020), pp. 10–19.

doi: 10.1016/j.neucom.2019.11.007. url: https://doi.org/10.1016%

5C%2Fj.neucom.2019.11.007.

[51] Mohammadreza Mohammadi et al. “Static hand gesture recognition for Amer-

ican sign language using neuromorphic hardware”. In: Neuromorphic Com-

puting and Engineering 2.4 (Oct. 2022), p. 044005. doi: 10.1088/2634-

4386/ac94f3. url: https://dx.doi.org/10.1088/2634-4386/ac94f3.

[52] Elvin Hajizada et al. “Interactive Continual Learning for Robots: A Neuro-

morphic Approach”. In: Proceedings of the International Conference on Neu-

romorphic Systems 2022. ICONS ’22. Knoxville, TN, USA: Association for

81

Computing Machinery, 2022. isbn: 9781450397896. doi: 10.1145/3546790.

3546791. url: https://doi.org/10.1145/3546790.3546791.

[53] Kyle Buettner and Alan D. George. “Heartbeat Classification with Spiking

Neural Networks on the Loihi Neuromorphic Processor”. In: 2021 IEEE Com-

puter Society Annual Symposium on VLSI (ISVLSI). 2021, pp. 138–143. doi:

10.1109/ISVLSI51109.2021.00035.

[54] Enea Ceolini et al. “Hand-Gesture Recognition Based on EMG and Event-

Based Camera Sensor Fusion: A Benchmark in Neuromorphic Computing”.

In: Frontiers in Neuroscience 14 (2020). issn: 1662-453X. doi: 10.3389/

fnins.2020.00637. url: https://www.frontiersin.org/articles/10.

3389/fnins.2020.00637.

[55] J. Darby Smith et al. “Solving a Steady-State PDE Using Spiking Networks

and Neuromorphic Hardware”. In: International Conference on Neuromorphic

Systems 2020. ICONS 2020. Oak Ridge, TN, USA: Association for Computing

Machinery, 2020. isbn: 9781450388511. doi: 10.1145/3407197.3407202.

url: https://doi.org/10.1145/3407197.3407202.

[56] Maxence Bouvier et al. “Spiking Neural Networks Hardware Implementations

and Challenges: A Survey”. In: J. Emerg. Technol. Comput. Syst. 15.2 (Apr.

2019). issn: 1550-4832. doi: 10.1145/3304103. url: https://doi.org/10.

1145/3304103.

[57] Yujie Wu et al. “Direct Training for Spiking Neural Networks: Faster, Larger,

Better”. In: Proceedings of the Thirty-Third AAAI Conference on Artificial

Intelligence and Thirty-First Innovative Applications of Artificial Intelligence

Conference and Ninth AAAI Symposium on Educational Advances in Artifi-

cial Intelligence. AAAI’19/IAAI’19/EAAI’19. Honolulu, Hawaii, USA: AAAI

82

Press, 2019. isbn: 978-1-57735-809-1. doi: 10.1609/aaai.v33i01.33011311.

url: https://doi.org/10.1609/aaai.v33i01.33011311.

[58] Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. “Training Deep Spiking

Neural Networks Using Backpropagation”. In: Frontiers in Neuroscience 10

(2016). issn: 1662-453X. doi: 10.3389/fnins.2016.00508. url: https:

//www.frontiersin.org/articles/10.3389/fnins.2016.00508.

[59] Wulfram Gerstner and Werner M. Kistler. “Mathematical formulations of

Hebbian learning”. In: Biological Cybernetics 87.5 (2002), pp. 404–415. issn:

1432-0770. doi: 10.1007/s00422-002-0353-y. url: https://doi.org/10.

1007/s00422-002-0353-y.

[60] Donald Olding Hebb. The organization of behavior: a neuropsychological the-

ory. J. Wiley; Chapman & Hall, 1949.

[61] Jerzy Konorski. Conditioned reflexes and neuron organization. Cambridge

University Press, 1948.

[62] Jacques Kaiser, Hesham Mostafa, and Emre Neftci. “Synaptic Plasticity Dy-

namics for Deep Continuous Local Learning (DECOLLE)”. In: Frontiers in

Neuroscience 14 (2020). issn: 1662-453X. doi: 10.3389/fnins.2020.00424.

url: https://www.frontiersin.org/articles/10.3389/fnins.2020.

00424.

[63] Emre O. Neftci, Hesham Mostafa, and Friedemann Zenke. “Surrogate Gra-

dient Learning in Spiking Neural Networks: Bringing the Power of Gradient-

Based Optimization to Spiking Neural Networks”. In: IEEE Signal Processing

Magazine 36.6 (2019), pp. 51–63. doi: 10.1109/MSP.2019.2931595.

83

[64] Maurizio Mattia and Paolo Del Giudice. “Population dynamics of interacting

spiking neurons”. en. In: Phys Rev E Stat Nonlin Soft Matter Phys 66.5 Pt 1

(Nov. 2002), p. 051917.

[65] Petro Liashchynskyi and Pavlo Liashchynskyi. Grid Search, Random Search,

Genetic Algorithm: A Big Comparison for NAS. 2019. doi: 10.48550/ARXIV.

1912.06059. url: https://arxiv.org/abs/1912.06059.

[66] Peter I. Frazier. A Tutorial on Bayesian Optimization. 2018. doi: 10.48550/

ARXIV.1807.02811. url: https://arxiv.org/abs/1807.02811.

[67] Bojian Yin, Federico Corradi, and Sander M. Bohté. Effective and Efficient

Computation with Multiple-timescale Spiking Recurrent Neural Networks. 2020.

doi: 10.48550/ARXIV.2005.11633. url: https://arxiv.org/abs/2005.

11633.

[68] Garrick Orchard et al. “Converting Static Image Datasets to Spiking Neuro-

morphic Datasets Using Saccades”. In: Frontiers in Neuroscience 9 (2015).

issn: 1662-453X. doi: 10.3389/fnins.2015.00437.

[69] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedfor-

ward networks are universal approximators”. In: Neural Networks 2.5 (1989),

pp. 359–366. issn: 0893-6080. doi: https://doi.org/10.1016/0893-

6080(89)90020- 8. url: https://www.sciencedirect.com/science/

article/pii/0893608089900208.

[70] Eilen Nordlie, Tom Tetzlaff, and Gaute Einevoll. “Rate Dynamics of Leaky

Integrate-and-Fire Neurons with Strong Synapses”. In: Frontiers in Compu-

tational Neuroscience 4 (2010). issn: 1662-5188. doi: 10.3389/fncom.2010.

00149. url: https://www.frontiersin.org/articles/10.3389/fncom.

2010.00149.

84

[71] Gabrielle J. Gutierrez, Timothy O’Leary, and Eve Marder. “Multiple Mecha-

nisms Switch an Electrically Coupled, Synaptically Inhibited Neuron between

Competing Rhythmic Oscillators”. In: Neuron 77.5 (2013), pp. 845–858. issn:

0896-6273.

[72] Yunshu Du et al. Adapting Auxiliary Losses Using Gradient Similarity. 2018.

doi: 10.48550/ARXIV.1812.02224. url: https://arxiv.org/abs/1812.

02224.

[73] Wei Fang et al. Incorporating Learnable Membrane Time Constant to Enhance

Learning of Spiking Neural Networks. 2020. doi: 10.48550/ARXIV.2007.

05785. url: https://arxiv.org/abs/2007.05785.

[74] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. http:

//www.deeplearningbook.org. MIT Press, 2016.

[75] F Rosenblatt. “The perceptron: a probabilistic model for information storage

and organization in the brain”. en. In: Psychol Rev 65.6 (Nov. 1958), pp. 386–

408.

[76] Warren S. McCulloch and Walter Pitts. “A logical calculus of the ideas im-

manent in nervous activity”. In: The bulletin of mathematical biophysics 5.4

(Dec. 1943), pp. 115–133. issn: 1522-9602. doi: 10.1007/BF02478259. url:

https://doi.org/10.1007/BF02478259.

[77] David E. Rumelhart and James L. McClelland. “Learning Internal Repre-

sentations by Error Propagation”. In: Parallel Distributed Processing: Explo-

rations in the Microstructure of Cognition: Foundations. 1987, pp. 318–362.

85

[78] Y. LeCun et al. “Backpropagation Applied to Handwritten Zip Code Recogni-

tion”. In: Neural Computation 1.4 (1989), pp. 541–551. doi: 10.1162/neco.

1989.1.4.541.

[79] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent Neural Net-

work Regularization. 2014. doi: 10.48550/ARXIV.1409.2329. url: https:

//arxiv.org/abs/1409.2329.

[80] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In:

Neural Computation 9.8 (Nov. 1997), pp. 1735–1780. issn: 0899-7667. doi:

10.1162/neco.1997.9.8.1735. eprint: https://direct.mit.edu/neco/

article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf. url: https:

//doi.org/10.1162/neco.1997.9.8.1735.

[81] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning

representations by back-propagating errors”. In: Nature 323.6088 (Oct. 1986),

pp. 533–536. issn: 1476-4687. doi: 10.1038/323533a0. url: https://doi.

org/10.1038/323533a0.

[82] Léon Bottou. “Online Algorithms and Stochastic Approximations”. In: Online

Learning and Neural Networks. Ed. by David Saad. revised, oct 2012. Cam-

bridge, UK: Cambridge University Press, 1998. url: http://leon.bottou.

org/papers/bottou-98x.

[83] Wulfram Gerstner et al. Neuronal Dynamics: From Single Neurons to Net-

works and Models of Cognition. New York, NY, USA: Cambridge University

Press, 2014.

[84] Eric R Kandel et al. Principles of neural science. Vol. 5. McGraw-hill New

York, 2013.

86

[85] Christof Koch and Idan Segev. Methods in neuronal modeling: from ions to

networks. MIT Press, 1998.

[86] E.M. Izhikevich. “Simple model of spiking neurons”. In: IEEE Transactions

on Neural Networks 14.6 (2003), pp. 1569–1572. doi: 10.1109/TNN.2003.

820440.

[87] A L Hodgkin and A F Huxley. “A quantitative description of membrane

current and its application to conduction and excitation in nerve”. In: The

Journal of physiology 117.4 (Aug. 1952), pp. 500–544.

[88] Beata Strack, Kimberle M Jacobs, and Krzysztof J Cios. “Simulating ver-

tical and horizontal inhibition with short-term dynamics in a multi-column

multi-layer model of neocortex”. en. In: Int. J. Neural Syst. 24.5 (Aug. 2014),

p. 1440002.

[89] Beata Strack, Kimberle M. Jacobs, and Krzysztof J. Cios. “Biological restraint

on the Izhikevich neuron model essential for seizure modeling”. In: 2013 6th

International IEEE/EMBS Conference on Neural Engineering (NER). 2013,

pp. 395–398. doi: 10.1109/NER.2013.6695955.

[90] Nicolas Frémaux, Henning Sprekeler, and Wulfram Gerstner. “Functional re-

quirements for reward-modulated spike-timing-dependent plasticity”. en. In:

J Neurosci 30.40 (Oct. 2010), pp. 13326–13337.

[91] Robert Legenstein, Dejan Pecevski, and Wolfgang Maass. “A Learning Theory

for Reward-Modulated Spike-Timing-Dependent Plasticity with Application

to Biofeedback”. In: PLOS Computational Biology 4.10 (Oct. 2008), pp. 1–27.

doi: 10.1371/journal.pcbi.1000180. url: https://doi.org/10.1371/

journal.pcbi.1000180.

87

[92] Michael C. Mozer. “A Focused Backpropagation Algorithm for Temporal Pat-

tern Recognition”. In: Complex Syst. 3 (1989).

[93] Amar Shrestha et al. “A Survey on Neuromorphic Computing: Models and

Hardware”. In: IEEE Circuits and Systems Magazine 22.2 (2022), pp. 6–35.

doi: 10.1109/MCAS.2022.3166331.

[94] Paul A. Merolla et al. “A million spiking-neuron integrated circuit with a

scalable communication network and interface”. In: Science 345.6197 (2014),

pp. 668–673. doi: 10 . 1126 / science . 1254642. eprint: https : / / www .

science.org/doi/pdf/10.1126/science.1254642. url: https://www.

science.org/doi/abs/10.1126/science.1254642.

[95] Andrew S. Cassidy et al. “Cognitive computing building block: A versatile

and efficient digital neuron model for neurosynaptic cores”. In: The 2013

International Joint Conference on Neural Networks (IJCNN). 2013, pp. 1–

10. doi: 10.1109/IJCNN.2013.6707077.

[96] Christian Mayr, Sebastian Höppner, and Steve B. Furber. “SpiNNaker 2: A 10

Million Core Processor System for Brain Simulation and Machine Learning”.

In: CoRR abs/1911.02385 (2019). arXiv: 1911.02385. url: http://arxiv.

org/abs/1911.02385.

[97] Steve B. Furber et al. “The SpiNNaker Project”. In: Proceedings of the IEEE

102.5 (2014), pp. 652–665. doi: 10.1109/JPROC.2014.2304638.

[98] Eustace Painkras et al. “SpiNNaker: A 1-W 18-Core System-on-Chip for

Massively-Parallel Neural Network Simulation”. In: IEEE Journal of Solid-

State Circuits 48.8 (2013), pp. 1943–1953. doi: 10.1109/JSSC.2013.2259038.

88

[99] Haowen Fang et al. “Scalable NoC-based Neuromorphic Hardware Learning

and Inference”. In: 2018 International Joint Conference on Neural Networks

(IJCNN). 2018, pp. 1–8. doi: 10.1109/IJCNN.2018.8489619.

[100] Moslem Heidarpur et al. “CORDIC-SNN: On-FPGA STDP Learning With

Izhikevich Neurons”. In: IEEE Transactions on Circuits and Systems I: Reg-

ular Papers 66.7 (2019), pp. 2651–2661. doi: 10.1109/TCSI.2019.2899356.

[101] Amirreza Yousefzadeh et al. “On Practical Issues for Stochastic STDP Hard-

ware With 1-bit Synaptic Weights”. In: Frontiers in Neuroscience 12 (2018).

issn: 1662-453X. doi: 10.3389/fnins.2018.00665. url: https://www.

frontiersin.org/articles/10.3389/fnins.2018.00665.

[102] Dion Khodagholy et al. “NeuroGrid: recording action potentials from the

surface of the brain”. In: Nature Neuroscience 18.2 (Feb. 2015), pp. 310–315.

issn: 1546-1726. doi: 10.1038/nn.3905. url: https://doi.org/10.1038/

nn.3905.

[103] Ben Varkey Benjamin et al. “Neurogrid: A Mixed-Analog-Digital Multichip

System for Large-Scale Neural Simulations”. In: Proceedings of the IEEE

102.5 (2014), pp. 699–716. doi: 10.1109/JPROC.2014.2313565.

[104] Konstantinos I. Papadimitriou et al. “Neuromorphic log-domain silicon synapse

circuits obey bernoulli dynamics: a unifying tutorial analysis”. In: Frontiers in

Neuroscience 8 (2015). issn: 1662-453X. doi: 10.3389/fnins.2014.00428.

url: https://www.frontiersin.org/articles/10.3389/fnins.2014.

00428.

[105] Massimiliano Giulioni et al. “Robust Working Memory in an Asynchronously

Spiking Neural Network Realized with Neuromorphic VLSI”. In: Frontiers in

Neuroscience 5 (2012). issn: 1662-453X. doi: 10.3389/fnins.2011.00149.

89

url: https://www.frontiersin.org/articles/10.3389/fnins.2011.

00149.

[106] Theodore Yu and Gert Cauwenberghs. “Analog VLSI Biophysical Neurons

and Synapses With Programmable Membrane Channel Kinetics”. In: IEEE

Transactions on Biomedical Circuits and Systems 4.3 (2010), pp. 139–148.

doi: 10.1109/TBCAS.2010.2048566.

[107] E. Farquhar, C. Gordon, and P. Hasler. “A field programmable neural array”.

In: 2006 IEEE International Symposium on Circuits and Systems. 2006, 4

pp.–4117. doi: 10.1109/ISCAS.2006.1693534.

[108] Ming Liu, Hua Yu, and Wei Wang. “FPAA Based on Integration of CMOS

and Nanojunction Devices for Neuromorphic Applications”. In: Nano-Net.

Ed. by Maggie Cheng. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009,

pp. 44–48. isbn: 978-3-642-02427-6.

[109] Christian Pehle et al. “The BrainScaleS-2 Accelerated Neuromorphic System

With Hybrid Plasticity”. In: Frontiers in Neuroscience 16 (2022). issn: 1662-

453X. doi: 10.3389/fnins.2022.795876. url: https://www.frontiersin.

org/articles/10.3389/fnins.2022.795876.

[110] Eric Muller et al. “The Operating System of the Neuromorphic BrainScaleS-1

System”. In: CoRR abs/2003.13749 (2020). arXiv: 2003.13749. url: https:

//arxiv.org/abs/2003.13749.

[111] Federico Corradi et al. “Decision making and perceptual bistability in spike-

based neuromorphic VLSI systems”. In: 2015 IEEE International Symposium

on Circuits and Systems (ISCAS). 2015, pp. 2708–2711. doi: 10.1109/ISCAS.

2015.7169245.

90

[112] Mihai A Petrovici et al. “Characterization and compensation of network-level

anomalies in mixed-signal neuromorphic modeling platforms”. en. In: PLoS

One 9.10 (Oct. 2014), e108590.

[113] Srinjoy Mitra, Giacomo Indiveri, and Stefano Fusi. “Learning to classify com-

plex patterns using a VLSI network of spiking neurons”. In: Advances in Neu-

ral Information Processing Systems. Ed. by J. Platt et al. Vol. 20. Curran As-

sociates, Inc., 2007. url: https://proceedings.neurips.cc/paper_files/

paper/2007/file/c3992e9a68c5ae12bd18488bc579b30d-Paper.pdf.

[114] Taking Neuromorphic Computing to the Next Level with Loihi 2. https://

download.intel.com/newsroom/2021/new-technologies/neuromorphic-

computing-loihi-2-brief.pdf. Accessed: 07-08-2023.

[115] Intel Labs. Lava Software. https://github.com/lava-nc/lava-dl. Ac-

cessed: 2023-07-08. 2023.

[116] Marc-Oliver Gewaltig and Markus Diesmann. “NEST (NEural Simulation

Tool)”. In: Scholarpedia 2.4 (2007), p. 1430.

[117] Marcel Stimberg, Romain Brette, and Dan FM Goodman. “Brian 2, an intu-

itive and efficient neural simulator”. In: eLife 8 (Aug. 2019). Ed. by Frances K

Skinner, e47314. issn: 2050-084X. doi: 10.7554/eLife.47314.

[118] Alexander Kugele et al. “Efficient Processing of Spatio-Temporal Data Streams

With Spiking Neural Networks”. In: Frontiers in Neuroscience 14 (2020).

issn: 1662-453X. doi: 10.3389/fnins.2020.00439. url: https://www.

frontiersin.org/articles/10.3389/fnins.2020.00439.

[119] Nour Eldeen Khalifa, Mohamed Loey, and Seyedali Mirjalili. “A comprehen-

sive survey of recent trends in deep learning for digital images augmentation”.

91

In: Artificial Intelligence Review 55.3 (Mar. 2022), pp. 2351–2377. issn: 1573-

7462. doi: 10.1007/s10462-021-10066-4. url: https://doi.org/10.

1007/s10462-021-10066-4.

[120] Connor Shorten and Taghi M. Khoshgoftaar. “A survey on Image Data Aug-

mentation for Deep Learning”. In: Journal of Big Data 6.1 (July 2019), p. 60.

issn: 2196-1115. doi: 10.1186/s40537-019-0197-0. url: https://doi.

org/10.1186/s40537-019-0197-0.

[121] Baifeng Shi et al. Auxiliary Task Reweighting for Minimum-data Learning.

2020. doi: 10.48550/ARXIV.2010.08244. url: https://arxiv.org/abs/

2010.08244.

[122] Fynn Schröder and Chris Biemann. “Estimating the influence of auxiliary

tasks for multi-task learning of sequence tagging tasks”. In: Proceedings of

the 58th Annual Meeting of the Association for Computational Linguistics.

Online: Association for Computational Linguistics, July 2020, pp. 2971–2985.

doi: 10.18653/v1/2020.acl-main.268. url: https://aclanthology.org/

2020.acl-main.268.

[123] Michael Crawshaw. “Multi-Task Learning with Deep Neural Networks: A Sur-

vey”. In: CoRR abs/2009.09796 (2020). arXiv: 2009.09796. url: https:

//arxiv.org/abs/2009.09796.

[124] Sebastian Ruder. An Overview of Multi-Task Learning in Deep Neural Net-

works. 2017. doi: 10.48550/ARXIV.1706.05098. url: https://arxiv.org/

abs/1706.05098.

[125] Zirui Wang et al. Characterizing and Avoiding Negative Transfer. 2018. doi:

10.48550/ARXIV.1811.09751. url: https://arxiv.org/abs/1811.09751.

92

[126] Aviv Navon et al. “Auxiliary Learning by Implicit Differentiation”. In: CoRR

abs/2007.02693 (2020). arXiv: 2007.02693. url: https://arxiv.org/abs/

2007.02693.

[127] Karen Simonyan and Andrew Zisserman. Very Deep Convolutional Networks

for Large-Scale Image Recognition. 2014. doi: 10.48550/ARXIV.1409.1556.

url: https://arxiv.org/abs/1409.1556.

[128] Hanle Zheng et al. Going Deeper With Directly-Trained Larger Spiking Neural

Networks. 2020. arXiv: 2011.05280 [cs.NE].

[129] Yuhang Li et al. “Differentiable Spike: Rethinking Gradient-Descent for Train-

ing Spiking Neural Networks”. In: Advances in Neural Information Process-

ing Systems. Ed. by M. Ranzato et al. Vol. 34. Curran Associates, Inc., 2021,

pp. 23426–23439.

[130] Byunggook Na et al. “AutoSNN: Towards Energy-Efficient Spiking Neural

Networks”. In: CoRR abs/2201.12738 (2022). arXiv: 2201.12738. url: https:

//arxiv.org/abs/2201.12738.

[131] Yufei Guo et al. “RecDis-SNN: Rectifying Membrane Potential Distribution

for Directly Training Spiking Neural Networks”. In: 2022 IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR). 2022, pp. 326–

335. doi: 10.1109/CVPR52688.2022.00042.

[132] Qingyan Meng et al. Training High-Performance Low-Latency Spiking Neu-

ral Networks by Differentiation on Spike Representation. 2023. arXiv: 2205.

00459 [cs.NE].

93

[133] Zhaokun Zhou et al. “Spikformer: When Spiking Neural Network Meets Trans-

former”. In: The Eleventh International Conference on Learning Representa-

tions. 2023.

[134] Haibo Shen et al. “Training Stronger Spiking Neural Networks with Biomimetic

Adaptive Internal Association Neurons”. In: ICASSP 2023 - 2023 IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP).

2023, pp. 1–5. doi: 10.1109/ICASSP49357.2023.10096958.

[135] Michael T Rosenstein et al. “To transfer or not to transfer”. In: NIPS 2005

workshop on transfer learning. Vol. 898. 2005.

[136] Hakan Bilen and Andrea Vedaldi. “Universal representations: The missing link

between faces, text, planktons, and cat breeds”. In: CoRR abs/1701.07275

(2017). arXiv: 1701.07275. url: http://arxiv.org/abs/1701.07275.

[137] Pengfei Liu, Xipeng Qiu, and Xuanjing Huang. “Adversarial Multi-task Learn-

ing for Text Classification”. In: CoRR abs/1704.05742 (2017). arXiv: 1704.

05742. url: http://arxiv.org/abs/1704.05742.

[138] Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. “Efficient parametriza-

tion of multi-domain deep neural networks”. In: CoRR abs/1803.10082 (2018).

arXiv: 1803.10082. url: http://arxiv.org/abs/1803.10082.

[139] Yaroslav Ganin and Victor Lempitsky. “Unsupervised Domain Adaptation by

Backpropagation”. In: Proceedings of the 32nd International Conference on

International Conference on Machine Learning - Volume 37. ICML’15. Lille,

France: JMLR.org, 2015, pp. 1180–1189.

94

VITA

Paolo G. Cachi received his Bachelor’s degree in Electronic Engineering from the San

Antonio Abad del Cusco University in Peru in 2012 and his Master’s degree in Electri-

cal Engineering from the Pontif́ıcia Universidade Católica do Rio de Janeiro in Brazil

in 2015. He began the Doctor of Philosophy program at Virginia Commonwealth

University in Richmond, Virginia in 2018 and is currently working as a research assis-

tant under the supervision of Professor Krzysztof Cios. His research interests include

neuromorphic computing, spiking neural networks, machine learning, and artificial

general intelligence.

95

DOCTORAL STUDIES Page 1 of 1

REASONED SUPERVISOR'S REPORT

This document is to be presented together with the filing of the thesis at
https://moodle.uco.es/ctp3/

PhD STUDENT

THESIS TITLE:

REASONED SUPERVISOR'S REPORT

(Ratifying the advisor's favorable report. Only when the advisor does not belong to the University of Cordoba)

Mr.	Paolo	Cachi’s	research	has	been	in	the	area	of	spiking	neural	networks.	In	particular	he	used	
auxiliary	learning	for	their	improving	performance.	The	network	architecture	he	proposed	consists	of	
a	feature	extraction	block	connected	in	a	feed-forward	fashion	to	a	main	classification	block	and	one	or	
more	auxiliary	classification	blocks.	By	using	auxiliary	tasks,	additional	information	during	training	is	
used	to	help	regularize	the	feature	extraction	block.	As	a	result,	the	feature	extraction	block	learns	
more	general	and	robust	features	which	improves	performance	on	the	main	task.	The	experiments	
were	performed	using	the	SpikingJelly	neuromorphic	library	as	well	as	using	Intel’s	Lava	framework.		
The	other	area	of	his	research	has	been	in	multi-task	(MT)	spiking	neural	networks	(SNN)	learning	
using	modification	of	the	firing	threshold	to	modify	its	operation.	The	MT-SNN	architecture	consists	of	
three	processing	blocks	for	feature	extraction,	label	classification	and	task	classification.	Results	of	
extensive	experiments	using	Intel’s	Lava	neuromorphic	simulation	platform	show	that	MTSNN	
predicts	both	tasks	with	only	slightly	lower	accuracy	than	single	task	SNN.	Comparing	using	
modification	of	the	firing	threshold	of	neurons	with	changing	the	external	input	current	to	neurons	
showed	that	the	networks	with	the	former	achieved	better	accuracy	than	using	the	latter.	The	network	
was	tested	on	Loihi2	neuromorphic	computer	on	several	neuromorphic	event-based	datasets.

Hence, the presentation of the doctoral thesis is authorized.

Cordoba, on the 25 de junio de 2023

The supervisor(s)

Signed: K J C
Krzysztof Cios

 Signed: ______________________
Sebastian Ventura Soto

Paolo Gabriel Alejandro Cachi Delgado

Enhancing Neuromorphic Computing with Advanced Spiking Neural Network Architectures

Firmado digitalmente
por VENTURA SOTO
SEBASTIAN EMILIO -
30510000V
Fecha: 2023.07.03
19:14:36 +02'00'

