1,111 research outputs found

    Technologies for Climate Change Mitigation - Transport Sector

    Get PDF

    CITIES: Energetic Efficiency, Sustainability; Infrastructures, Energy and the Environment; Mobility and IoT; Governance and Citizenship

    Get PDF
    This book collects important contributions on smart cities. This book was created in collaboration with the ICSC-CITIES2020, held in San JosĂŠ (Costa Rica) in 2020. This book collects articles on: energetic efficiency and sustainability; infrastructures, energy and the environment; mobility and IoT; governance and citizenship

    Ten Frontier Technologies for International Development

    Get PDF
    The report finds clear evidence of the potential of frontier technologies to contribute to social, economic and political development gains in a number of ways, by: • Driving innovations in business models, products and processes that provide new goods and services to ‘bottom of the pyramid’ consumers; • Providing the means by which to make better use of existing underutilised household and productive assets; • Catalysing increases in demand, nationally and internationally, which create new industries and markets, leading to macro- and microeconomic growth; and • Changing demand for labour and capital, leading to direct job creation and transformation of the workforce. For all of the potential upsides, potential downsides must also be considered. While it will largely be the private sector that will drive deployment of these technologies, the public sector through national regulation, as well as development financing, will have a major role in mediating the pace and direction of technological change, both to achieve development objectives, and to protect potential losers.As new technologies and digital business models reshape economies and disrupt incumbencies, interest has surged in the potential of novel frontier technologies to also contribute to positive changes in international development and humanitarian contexts. Widespread adoption of new technologies is acknowledged as centrally important to achieving the United Nations Sustainable Development Goals by 2030. But while frontier technologies can rapidly address large-scale economic, social or political challenges, they can also involve the displacement of existing technologies and carry considerable uncertainty and risk. Although there have been significant wins bringing the benefits of new technologies to poor consumers through examples such as mobile money or off-grid solar energy, there are many other areas where the applications may not yet have been developed into viable market solutions, or where opportunities have not yet been taken up in development practice

    Ag-IoT for crop and environment monitoring: Past, present, and future

    Get PDF
    CONTEXT: Automated monitoring of the soil-plant-atmospheric continuum at a high spatiotemporal resolution is a key to transform the labor-intensive, experience-based decision making to an automatic, data-driven approach in agricultural production. Growers could make better management decisions by leveraging the real-time field data while researchers could utilize these data to answer key scientific questions. Traditionally, data collection in agricultural fields, which largely relies on human labor, can only generate limited numbers of data points with low resolution and accuracy. During the last two decades, crop monitoring has drastically evolved with the advancement of modern sensing technologies. Most importantly, the introduction of IoT (Internet of Things) into crop, soil, and microclimate sensing has transformed crop monitoring into a quantitative and data-driven work from a qualitative and experience-based task. OBJECTIVE: Ag-IoT systems enable a data pipeline for modern agriculture that includes data collection, transmission, storage, visualization, analysis, and decision-making. This review serves as a technical guide for Ag-IoT system design and development for crop, soil, and microclimate monitoring. METHODS: It highlighted Ag-IoT platforms presented in 115 academic publications between 2011 and 2021 worldwide. These publications were analyzed based on the types of sensors and actuators used, main control boards, types of farming, crops observed, communication technologies and protocols, power supplies, and energy storage used in Ag-IoT platforms

    Cross-border Mobility for Electric Vehicles: Selected results from one of the first cross-border field tests in Europe

    Get PDF
    This book provides selected results from the accompanying research of the project CROME. The vision of the project was to create and test a safe, seamless, user-friendly and reliable mobility with electric vehicles between France and Germany as a prefiguration of a pan-European electric mobility system. Major aims were contributions to the European standardisation process of charging infrastructure for electric mobility and corresponding services, and to provide an early customer feedback

    Feature Papers of Drones - Volume I

    Get PDF
    [EN] The present book is divided into two volumes (Volume I: articles 1–23, and Volume II: articles 24–54) which compile the articles and communications submitted to the Topical Collection ”Feature Papers of Drones” during the years 2020 to 2022 describing novel or new cutting-edge designs, developments, and/or applications of unmanned vehicles (drones). Articles 1–8 are devoted to the developments of drone design, where new concepts and modeling strategies as well as effective designs that improve drone stability and autonomy are introduced. Articles 9–16 focus on the communication aspects of drones as effective strategies for smooth deployment and efficient functioning are required. Therefore, several developments that aim to optimize performance and security are presented. In this regard, one of the most directly related topics is drone swarms, not only in terms of communication but also human-swarm interaction and their applications for science missions, surveillance, and disaster rescue operations. To conclude with the volume I related to drone improvements, articles 17–23 discusses the advancements associated with autonomous navigation, obstacle avoidance, and enhanced flight plannin

    Unmanned Aerial Vehicle (UAV)-Enabled Wireless Communications and Networking

    Get PDF
    The emerging massive density of human-held and machine-type nodes implies larger traffic deviatiolns in the future than we are facing today. In the future, the network will be characterized by a high degree of flexibility, allowing it to adapt smoothly, autonomously, and efficiently to the quickly changing traffic demands both in time and space. This flexibility cannot be achieved when the network’s infrastructure remains static. To this end, the topic of UAVs (unmanned aerial vehicles) have enabled wireless communications, and networking has received increased attention. As mentioned above, the network must serve a massive density of nodes that can be either human-held (user devices) or machine-type nodes (sensors). If we wish to properly serve these nodes and optimize their data, a proper wireless connection is fundamental. This can be achieved by using UAV-enabled communication and networks. This Special Issue addresses the many existing issues that still exist to allow UAV-enabled wireless communications and networking to be properly rolled out
    • …
    corecore