7,616 research outputs found

    Combining Deep Learning and Qualitative Spatial Reasoning to Learn Complex Structures from Sparse Examples with Noise

    Full text link
    Many modern machine learning approaches require vast amounts of training data to learn new concepts; conversely, human learning often requires few examples--sometimes only one--from which the learner can abstract structural concepts. We present a novel approach to introducing new spatial structures to an AI agent, combining deep learning over qualitative spatial relations with various heuristic search algorithms. The agent extracts spatial relations from a sparse set of noisy examples of block-based structures, and trains convolutional and sequential models of those relation sets. To create novel examples of similar structures, the agent begins placing blocks on a virtual table, uses a CNN to predict the most similar complete example structure after each placement, an LSTM to predict the most likely set of remaining moves needed to complete it, and recommends one using heuristic search. We verify that the agent learned the concept by observing its virtual block-building activities, wherein it ranks each potential subsequent action toward building its learned concept. We empirically assess this approach with human participants' ratings of the block structures. Initial results and qualitative evaluations of structures generated by the trained agent show where it has generalized concepts from the training data, which heuristics perform best within the search space, and how we might improve learning and execution

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Are v1 simple cells optimized for visual occlusions? : A comparative study

    Get PDF
    Abstract: Simple cells in primary visual cortex were famously found to respond to low-level image components such as edges. Sparse coding and independent component analysis (ICA) emerged as the standard computational models for simple cell coding because they linked their receptive fields to the statistics of visual stimuli. However, a salient feature of image statistics, occlusions of image components, is not considered by these models. Here we ask if occlusions have an effect on the predicted shapes of simple cell receptive fields. We use a comparative approach to answer this question and investigate two models for simple cells: a standard linear model and an occlusive model. For both models we simultaneously estimate optimal receptive fields, sparsity and stimulus noise. The two models are identical except for their component superposition assumption. We find the image encoding and receptive fields predicted by the models to differ significantly. While both models predict many Gabor-like fields, the occlusive model predicts a much sparser encoding and high percentages of ‘globular’ receptive fields. This relatively new center-surround type of simple cell response is observed since reverse correlation is used in experimental studies. While high percentages of ‘globular’ fields can be obtained using specific choices of sparsity and overcompleteness in linear sparse coding, no or only low proportions are reported in the vast majority of studies on linear models (including all ICA models). Likewise, for the here investigated linear model and optimal sparsity, only low proportions of ‘globular’ fields are observed. In comparison, the occlusive model robustly infers high proportions and can match the experimentally observed high proportions of ‘globular’ fields well. Our computational study, therefore, suggests that ‘globular’ fields may be evidence for an optimal encoding of visual occlusions in primary visual cortex. Author Summary: The statistics of our visual world is dominated by occlusions. Almost every image processed by our brain consists of mutually occluding objects, animals and plants. Our visual cortex is optimized through evolution and throughout our lifespan for such stimuli. Yet, the standard computational models of primary visual processing do not consider occlusions. In this study, we ask what effects visual occlusions may have on predicted response properties of simple cells which are the first cortical processing units for images. Our results suggest that recently observed differences between experiments and predictions of the standard simple cell models can be attributed to occlusions. The most significant consequence of occlusions is the prediction of many cells sensitive to center-surround stimuli. Experimentally, large quantities of such cells are observed since new techniques (reverse correlation) are used. Without occlusions, they are only obtained for specific settings and none of the seminal studies (sparse coding, ICA) predicted such fields. In contrast, the new type of response naturally emerges as soon as occlusions are considered. In comparison with recent in vivo experiments we find that occlusive models are consistent with the high percentages of center-surround simple cells observed in macaque monkeys, ferrets and mice

    HyperQuaternionE:A hyperbolic embedding model for qualitative spatial and temporal reasoning

    Get PDF
    Qualitative spatial/temporal reasoning (QSR/QTR) plays a key role in research on human cognition, e.g., as it relates to navigation, as well as in work on robotics and artificial intelligence. Although previous work has mainly focused on various spatial and temporal calculi, more recently representation learning techniques such as embedding have been applied to reasoning and inference tasks such as query answering and knowledge base completion. These subsymbolic and learnable representations are well suited for handling noise and efficiency problems that plagued prior work. However, applying embedding techniques to spatial and temporal reasoning has received little attention to date. In this paper, we explore two research questions: (1) How do embedding-based methods perform empirically compared to traditional reasoning methods on QSR/QTR problems? (2) If the embedding-based methods are better, what causes this superiority? In order to answer these questions, we first propose a hyperbolic embedding model, called HyperQuaternionE, to capture varying properties of relations (such as symmetry and anti-symmetry), to learn inversion relations and relation compositions (i.e., composition tables), and to model hierarchical structures over entities induced by transitive relations. We conduct various experiments on two synthetic datasets to demonstrate the advantages of our proposed embedding-based method against existing embedding models as well as traditional reasoners with respect to entity inference and relation inference. Additionally, our qualitative analysis reveals that our method is able to learn conceptual neighborhoods implicitly. We conclude that the success of our method is attributed to its ability to model composition tables and learn conceptual neighbors, which are among the core building blocks of QSR/QTR
    • …
    corecore