2,116 research outputs found

    Intrusion Detection System: A Survey Using Data Mining and Learning Methods

    Get PDF
    In spite of growing information system widely, security has remained one hard-hitting area for computers as well as networks. In information protection, Intrusion Detection System (IDS) is used to safeguard the data confidentiality, integrity and system availability from various types of attacks. Data mining is an efficient artifice applied to intrusion detection to ascertain a new outline from the massive network data as well as it used to reduce the strain of the manual compilations of the normal and abnormal behavior patterns. Intrusion Detection System (IDS) is an essential method to protect network security from incoming on-line threats. Machine learning enable automates the classification of network patterns. This piece of writing reviews the present state of data mining techniques and compares various data mining techniques used to implement an intrusion detection system such as, Support Vector Machine, Genetic Algorithm, Neural network, Fuzzy Logic, Bayesian Classifier, K- Nearest Neighbor and decision tree Algorithms by highlighting a advantage and disadvantages of each of the techniques. This paper review the learning and detection methods in IDS, discuss the problems with existing intrusion detection systems and review data reduction techniques used in IDS in order to deal with huge volumes of audit data. Finally, conclusion and recommendation are included. Keywords: Classification, Data Mining, Intrusion Detection System, Security, Anomaly Detection, Types of attacks, Machine Learning Technique

    A denial of service detector based on maximum likelihood detection and the random neural network

    Get PDF
    In spite of extensive research in defence against De- nial of Service (DoS), such attacks remain a predom- inant threat in today’s networks. Due to the sim- plicity of the concept and the availability of the rele- vant attack tools, launching a DoS attack is relatively easy, while defending a network resource against it is disproportionately difficult. The first step of any comprehensive protection scheme against DoS is the detection of its existence, ideally long before the de- structive traffic build-up. In this paper we propose a generic approach for DoS detection which uses multi- ple Bayesian classifiers and random neural networks (RNN). Our method is based on measuring various instantaneous and statistical variables describing the incoming network traffic, acquiring a likelihood esti- mation and fusing the information gathered from the individual input features using likelihood averaging and different architectures of RNNs. We present and compare seven different implementations of it and evaluate our experimental results obtained in a large networking testbed

    Real time DDoS detection using fuzzy estimators

    Get PDF
    We propose a method for DDoS detection by constructing a fuzzy estimator on the mean packet inter arrival times. We divided the problem into two challenges, the first being the actual detection of the DDoS event taking place and the second being the identification of the offending IP addresses. We have imposed strict real time constraints for the first challenge and more relaxed constraints for the identification of addresses. Through empirical evaluation we confirmed that the detection can be completed within improved real time limits and that by using fuzzy estimators instead of crisp statistical descriptors we can avoid the shortcomings posed by assumptions on the model distribution of the traffic. In addition we managed to obtain results under a 3 sec detection window. © 2012 Elsevier Ltd. All rights reserved

    A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks

    Get PDF
    With increasing reliance on Internet of Things (IoT) devices and services, the capability to detect intrusions and malicious activities within IoT networks is critical for resilience of the network infrastructure. In this paper, we present a novel model for intrusion detection based on two-layer dimension reduction and two-tier classification module, designed to detect malicious activities such as User to Root (U2R) and Remote to Local (R2L) attacks. The proposed model is using component analysis and linear discriminate analysis of dimension reduction module to spate the high dimensional dataset to a lower one with lesser features. We then apply a two-tier classification module utilizing Naïve Bayes and Certainty Factor version of K-Nearest Neighbor to identify suspicious behaviors. The experiment results using NSL-KDD dataset shows that our model outperforms previous models designed to detect U2R and R2L attacks

    Improving intrusion detection systems using data mining techniques

    Get PDF
    Recent surveys and studies have shown that cyber-attacks have caused a lot of damage to organisations, governments, and individuals around the world. Although developments are constantly occurring in the computer security field, cyber-attacks still cause damage as they are developed and evolved by hackers. This research looked at some industrial challenges in the intrusion detection area. The research identified two main challenges; the first one is that signature-based intrusion detection systems such as SNORT lack the capability of detecting attacks with new signatures without human intervention. The other challenge is related to multi-stage attack detection, it has been found that signature-based is not efficient in this area. The novelty in this research is presented through developing methodologies tackling the mentioned challenges. The first challenge was handled by developing a multi-layer classification methodology. The first layer is based on decision tree, while the second layer is a hybrid module that uses two data mining techniques; neural network, and fuzzy logic. The second layer will try to detect new attacks in case the first one fails to detect. This system detects attacks with new signatures, and then updates the SNORT signature holder automatically, without any human intervention. The obtained results have shown that a high detection rate has been obtained with attacks having new signatures. However, it has been found that the false positive rate needs to be lowered. The second challenge was approached by evaluating IP information using fuzzy logic. This approach looks at the identity of participants in the traffic, rather than the sequence and contents of the traffic. The results have shown that this approach can help in predicting attacks at very early stages in some scenarios. However, it has been found that combining this approach with a different approach that looks at the sequence and contents of the traffic, such as event- correlation, will achieve a better performance than each approach individually

    Application of a Layered Hidden Markov Model in the Detection of Network Attacks

    Get PDF
    Network-based attacks against computer systems are a common and increasing problem. Attackers continue to increase the sophistication and complexity of their attacks with the goal of removing sensitive data or disrupting operations. Attack detection technology works very well for the detection of known attacks using a signature-based intrusion detection system. However, attackers can utilize attacks that are undetectable to those signature-based systems whether they are truly new attacks or modified versions of known attacks. Anomaly-based intrusion detection systems approach the problem of attack detection by detecting when traffic differs from a learned baseline. In the case of this research, the focus was on a relatively new area known as payload anomaly detection. In payload anomaly detection, the system focuses exclusively on the payload of packets and learns the normal contents of those payloads. When a payload\u27s contents differ from the norm, an anomaly is detected and may be a potential attack. A risk with anomaly-based detection mechanisms is they suffer from high false positive rates which reduce their effectiveness. This research built upon previous research in payload anomaly detection by combining multiple techniques of detection in a layered approach. The layers of the system included a high-level navigation layer, a request payload analysis layer, and a request-response analysis layer. The system was tested using the test data provided by some earlier payload anomaly detection systems as well as new data sets. The results of the experiments showed that by combining these layers of detection into a single system, there were higher detection rates and lower false positive rates
    • …
    corecore