2,616 research outputs found

    Acoustic data-driven lexicon learning based on a greedy pronunciation selection framework

    Full text link
    Speech recognition systems for irregularly-spelled languages like English normally require hand-written pronunciations. In this paper, we describe a system for automatically obtaining pronunciations of words for which pronunciations are not available, but for which transcribed data exists. Our method integrates information from the letter sequence and from the acoustic evidence. The novel aspect of the problem that we address is the problem of how to prune entries from such a lexicon (since, empirically, lexicons with too many entries do not tend to be good for ASR performance). Experiments on various ASR tasks show that, with the proposed framework, starting with an initial lexicon of several thousand words, we are able to learn a lexicon which performs close to a full expert lexicon in terms of WER performance on test data, and is better than lexicons built using G2P alone or with a pruning criterion based on pronunciation probability

    Letter to Sound Rules for Accented Lexicon Compression

    Get PDF
    This paper presents trainable methods for generating letter to sound rules from a given lexicon for use in pronouncing out-of-vocabulary words and as a method for lexicon compression. As the relationship between a string of letters and a string of phonemes representing its pronunciation for many languages is not trivial, we discuss two alignment procedures, one fully automatic and one hand-seeded which produce reasonable alignments of letters to phones. Top Down Induction Tree models are trained on the aligned entries. We show how combined phoneme/stress prediction is better than separate prediction processes, and still better when including in the model the last phonemes transcribed and part of speech information. For the lexicons we have tested, our models have a word accuracy (including stress) of 78% for OALD, 62% for CMU and 94% for BRULEX. The extremely high scores on the training sets allow substantial size reductions (more than 1/20). WWW site: http://tcts.fpms.ac.be/synthesis/mbrdicoComment: 4 pages 1 figur

    Beyond English text: Multilingual and multimedia information retrieval.

    Get PDF
    Non

    Statistical Parsing by Machine Learning from a Classical Arabic Treebank

    Get PDF
    Research into statistical parsing for English has enjoyed over a decade of successful results. However, adapting these models to other languages has met with difficulties. Previous comparative work has shown that Modern Arabic is one of the most difficult languages to parse due to rich morphology and free word order. Classical Arabic is the ancient form of Arabic, and is understudied in computational linguistics, relative to its worldwide reach as the language of the Quran. The thesis is based on seven publications that make significant contributions to knowledge relating to annotating and parsing Classical Arabic. Classical Arabic has been studied in depth by grammarians for over a thousand years using a traditional grammar known as i’rāb (إعغاة ). Using this grammar to develop a representation for parsing is challenging, as it describes syntax using a hybrid of phrase-structure and dependency relations. This work aims to advance the state-of-the-art for hybrid parsing by introducing a formal representation for annotation and a resource for machine learning. The main contributions are the first treebank for Classical Arabic and the first statistical dependency-based parser in any language for ellipsis, dropped pronouns and hybrid representations. A central argument of this thesis is that using a hybrid representation closely aligned to traditional grammar leads to improved parsing for Arabic. To test this hypothesis, two approaches are compared. As a reference, a pure dependency parser is adapted using graph transformations, resulting in an 87.47% F1-score. This is compared to an integrated parsing model with an F1-score of 89.03%, demonstrating that joint dependency-constituency parsing is better suited to Classical Arabic. The Quran was chosen for annotation as a large body of work exists providing detailed syntactic analysis. Volunteer crowdsourcing is used for annotation in combination with expert supervision. A practical result of the annotation effort is the corpus website: http://corpus.quran.com, an educational resource with over two million users per year
    corecore