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Abstract 
Akkadian is a fairly well resourced extinct language that does not yet have a comprehensive morphological analyzer available. In this                    
paper we describe a general finite-state based morphological model for Babylonian, a southern dialect of the Akkadian language, that                   
can achieve a coverage up to 97.3% and recall up to 93.7% on lemmatization and POS-tagging task on token level from a transcribed                       
input. Since Akkadian word forms exhibit a high degree of morphological ambiguity, in that only 20.1% of running word tokens                    
receive a single unambiguous analysis, we attempt a first pass at weighting our finite-state transducer, using existing extensive                  
Akkadian corpora which have been partially validated for their lemmas and parts-of-speech but not the entire morphological analyses.                  
The resultant weighted finite-state transducer yields a moderate improvement so that for 57.4% of the word tokens the highest ranked                    
analysis is the correct one. We conclude with a short discussion on how morphological ambiguity in the analysis of Akkadian could be                      
further reduced with improvements in the training data used in weighting the finite-state transducer as well as through other,                   
context-based techniques. 
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1. Introduction 
In this paper, we present a finite-state based general         
model for Babylonian morphology. At first we give a         
brief description of the Babylonian and its morphological        
features. Then we present the modeling principles of our         
FST approach and measure its performance against a        
manually tagged corpus. At last, we will discuss potential         
ways to improve, expand and use the analyzer. 
 

2. Brief Description of the Babylonian 
Language 

 
Akkadian, the language of ancient Babylonians and       
Assyrians, is known to us by several hundreds of         
thousands of clay tablets, their fragments and other        
inscriptions written on various media in cuneiform script.        
This text material covers a timespan of over two         
millennia (2400 BCE to 100 CE), making Akkadian one         
of the world’s earliest written languages, clearly predated        
only by Sumerian, Elamite and Egyptian (all written        
already in the fourth millennium BCE). Although a vast         
majority of the excavated material consists of       
administrative documents, the Akkadians also left behind       
a vivid selection of cultural historically significant literary        
works and inscriptions, including the Epic of Gilgameš        
and the Code of law of Hammurāpi. Alongside Eblaite,         
Akkadian is the only known, and the longest surviving         
member of the now-extinct East-Semitic branch of       
languages. As a spoken language, Akkadian was gradually        
replaced by Aramaic after the Persian conquest of        
Babylonia in 539 BCE, but its prestigious status kept it          
alive as a literary language until the first century CE.          

Unlike Sumerian, of which the grammatical description is        
still widely debated, the understanding of Akkadian       
morphology and grammar is well-established (cf.      
grammatical analyses by Reiner 1966, von Soden 1995        
and Kouwenberg 2010). 
 

2.1 Historical development 
Babylonian, a dialect of the Akkadian language, is divided         
into several stages connected with the South       
Mesopotamian historical events: Old Babylonian (OB:      
1900–1600 BCE), Middle Babylonian (MB: 1500–1100      1

BCE), Neo-Babylonian (NB: 1000–600 BCE) and Late       
Babylonian (LB: 600–100 CE) (Kouwenberg 2011: 332).       
Additionally, there was an artificial literary language       
known as Standard Babylonian (SB), which was used by         
the Babylonians and Assyrians from the middle of the         
second millennium onwards. Standard Babylonian had its       
roots in Old Babylonian, but it was later affected by some           
lexical, phonological and morphophonemic features of the       
contemporary spoken Babylonian (especially MB and      
NB) and Neo-Assyrian dialects (Kouwenberg 2011: 332).  

Different stages of Babylonian are distinguished      
from each other mostly by morphophonemic alternation       
and phonological changes. During the Old Babylonian       
period, vocalic clusters became generally contracted:      
rabīum → rabûm ‘great’, iqīaš → iqâš ‘to bestow’         
(Buccellati 1996: 37). Mimation, an archaic Semitic       
word-final morpheme {m} was gradually lost and it        
disappeared regularly by the Middle Babylonian period:       
rabûm → rabû (Streck 2011: 374). From this period         
onwards, Babylonian was affected by an increasing       

1 MB was used as a diplomatic lingua franca in the Middle-East            
and the surrounding regions. 
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number of assimilations (imtagar → indagar ‘it was        
expensive’), dissimilations (ibbi → imbi ‘he named’), as        
well as other sound changes (issi → ilsi ‘he shouted’,          
wabālu → abālu ‘to carry’) (Buccellati 1996: 37). In the          
course of the Neo- and Late Babylonian periods, the case          
system was reduced and the distinction especially between        
nominative {u} and accusative {a} was lost. Additionally,        
many short vowels were omitted in word-final positions:        
abbēšunu ‘their (masc.) fathers’ → abbēšun, šarrātu       
‘queens’ → šarrāt (Streck 2011: 385). 

BabyFST is mainly designed to model Standard       
Babylonian, which means that it covers most of the         
synchronic and diachronic variation within different      
stages of the Babylonian dialect, as well as some common          
Assyrian features found in Standard Babylonian texts       
known as Assyrianisms. 

 

2.2 Akkadian morphology 
Akkadian features a typical Semitic non-linear      
morphology particularly in its verbal system. Verbal roots        
consist of three or four radical consonants (referred        
henceforth as radicals) and a vowel class, which are         
interdigitated into templates in order to produce verbal        
stems and their derivations. Some of the most common         
derivations include the G-stem (basic stem), D-stem       
(factitive, transitive), Š-stem (causative) and N-stem      
(mostly passive) derivations, which all occur in different        
tenses (present, preterite, perfect), moods (indicative,      
imperative) and nominal forms (infinitive, active      
participle, verbal adjective, stative), and can be modified        
with additional -t- and -tan- infixes to produce more         
nuanced meanings: iterative, intensive, reciprocal,     
causative passive etc. (von Soden 1995). Verbal stems are         
conjugated by applying prefixes, suffixes and circumfixes,       
which are used to mark subject, object, indirect object,         
direction of movement (ventive), certain modal aspects,       
subjunction, and conjunction with other verbs (Table 1).  
 

SLOT 1 vetitive marker 
SLOT 2 personal prefix 
SLOT 3 N/Š/ŠD-stem preformative 
SLOT 4 verbal stem 
SLOT 5 personal suffix or subjunctive 
SLOT 6 ventive (direction) 
SLOT 7 dative (indirect object) 
SLOT 8 accusative (direct object) 
SLOT 9 enclitic conjunction -ma 

 

Table 1: Morphotactics of the Akkadian verb. 

Personal conjugation distinguishes between two genders:      
masculine and feminine, and three numbers: singular, dual        
and plural, although the use of dual is very restricted.          
There are distinct personal affixes for indicative,       
precative, imperative and stative moods, of which prefixal        

parts have illabial /i, a/ and labial /u/ variants used in           
conjunction with different stems: G: i-prus, N: i-pparis,        
D: u-parris, Š: u-šapris (all 3rd person singular masc.). 

Non-derivative nominal morphology is linear     
with a few archaic exceptions. Thus, Akkadian nouns do         
not form plurals by interdigitation as some other Semitic         
languages like Arabic or Maltese do. Nouns may take a          
feminine marker, an abstract or particularizing suffix, a        
dual or plural marker, a case ending and a possessive          
suffix, as well as a few archaic local case suffixes. They           
may also be used as statives to form predicative clauses:          
šarru ‘king’ → šarrāku ‘I am king’. 

The most complicated part of the Akkadian       
grammar is its verbal morphology. Radicals can be either         
strong or weak, of which the latter, /ˀ w j/, are subject to             
several (morpho)phonemic alternations that make surface      
forms fairly opaque. Most weak verbs contain only one         
weak radical, but there are also several verbs that consist          
of two or even three weak radicals. In typical cases, a           
weak radical is lost completely or assimilated into an         
adjacent consonant, and the surrounding vowels are       
contracted together, lengthened and/or colored. Consider      
the following G-stem preterites in 3rd person plural        
masculine: {i-bniˀ-ū} → ibnû ‘they built’, {i-wšib-ū} →        
ūšibū/ušbū ‘they sat down’, {i-wṣiˀ-ū} → ūṣû ‘they set         
forth’. Additional assimilations occur at morpheme      
boundaries: {ta-ˀrub-ma} → tērumma ‘you entered’;      
{i-ndin-kim-šu} → OB iddikkiššu, MB+ imdikkiššu ‘he       
gave it (masc.) to you (fem.)’ (Buccellati 1996). 
 

2.3 Graphemic and phonemic representation 
As Akkadian was written in logosyllabic cuneiform script,        
it is represented in Latin characters as a graphemic         
transliteration. The basic guidelines for transliteration      
are quite uniform and standardized. For instance, E₂        
ra-bu-um ‘big house’ consists of a logogram written in         
capitals, followed by a subscript that distinguishes the        
sign from homophonous signs E and E₃. The three signs          
in italics represent syllabic values, and square brackets        
indicate that the cuneiform sign representing bu has been         
destroyed and reconstructed by the editor. In phonological        
transcription, this is read bītum rabûm. Long vowels        
(and occasionally even geminates) are not consistently       
spelled out in cuneiform, and thus the transcriber has to          
have knowledge of the Akkadian language in order to         
produce valid transcriptions. Yet, there are some       
differences in how words are transcribed. Some scholars        
do not distinguish between long /ā ī ū ē/ and contracted /â            
î û ê/ vowels (e.g. Buccellati 1996), and there are          
inconsistencies between transcribing the vowels /i/ and       
/e/, mostly because cuneiform writing did not always        
make a distinction between them: BI is read bi or be₂; RI            
= ri, re; NI = ni, ne₂; KI = qi₂, qe₂ just to mention a few. 
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At this stage, BabyFST operates only on the        
transcription. This is adequate, as there are several        
thousands of transcribed texts in Oracc (the Open Richly         
Annotated Cuneiform Corpus, see 2.4.) available. 

2.4 Resources  2

Considering the fact that Akkadian is an extinct language         
studied by a small research community, it is fairly well          
resourced. Currently the largest digital resources for       
Akkadian are ARCHIBAB (30k Babylonian texts), CDLI       
- Cuneiform Digital Library Initiative (320k texts of        
which 76k are labeled as Akkadian), SEAL - Sources of          
Early Akkadian Literature (550 compositions), and Oracc,       
which is a collection of texts from dozens of different          
projects. Oracc comprises 1.98M tokens (17k texts) in        3

various cuneiform languages. Of these, 1.67M tokens are        
labeled as various dialects or stages of Akkadian and 783k          
as different stages of Babylonian. In total, 1.42M        
Akkadian and 614k Babylonian tokens have been       
lemmatized and POS-tagged. For Neo-Assyrian, the most       4

notable collection of texts is the State Archives of Assyria          
online (504k tokens), initiated already in 1986 by Simo         
Parpola in Helsinki and later lemmatized and added to         
Oracc by Karen Radner and her team. Currently, none of          
the afore-mentioned corpora contain a morphological      
analysis of Akkadian beyond lemmatization and      
POS-tagging. 
 

3. Description of the FST-based 
Computational Model of Babylonian 

 

3.1 Previous and other relevant attempts 
 

Kataja and Koskenniemi (1988) created the first       
computational description of the Akkadian morphology      
using the two-level formalism. They handled      
interdigitation of verbs by intersecting two regular       
lexicons, of which one described the root and its         
affixation, and the other the pattern formalisms. As the         
intersection approach was highly overgenerating, Kataja      
and Koskenniemi experimented with constraining the      
morpheme combinatorics by using unification-based     
features. This work was, however, stated to be still in          
progress when their paper was published. 

Bamman and Andersson (2012) is a finite-state       5

description of Old Assyrian grammar purely implemented       
using lexc and xfscript formalisms (Beesley and       

2 Unfortunately, the resources do not give a transparent description of           
their content in terms of token counts or language distribution. 
3 http://oracc.org/projectlist.html 
4 Counts are based on the Korp version of Oracc at http://korp.csc.fi/.            
The latest snapshot corresponds to Oracc as of May 2019. 
5 This report is authored by Bamman alone. 

Karttunen, 2003) and the Foma compiler (Hulden 2009).        
It is capable of analyzing several different parts of speech          
(with a lexicon comprising 255 verbal roots, 1918 nouns,         
235 adjectives, 625 names, and 40 prepositions and        
adverbs) and it operates on transliteration. Automatic       
transcription works by duplicating or de-duplicating all       
vowels and consonants in the input string, and then by          
constraining the given options with the morphological       
analyzer. Some common logograms are treated by       
mapping them on their corresponding lemmas. The       
analyzer also has a guesser for unseen lexical items,         
which tries to give a correct POS-tag to unknown words.          
In this model, interdigitation is handled by describing        
verbs as sequences of morpheme slots, radicals and vowel         
classes; e.g. _š_r_q_i/i, and then by filling in the slots          
with morphemes; e.g. i_ta_0_ā → ištarqā ‘they (f.)        
have stolen’. The analyzer was evaluated with a test         
corpus of 10,000 tokens. It returned a non-guessed        
analysis for 67.6% of the word form tokens (41.7% of          
unique word form types). Manual analysis of the 50 most          
frequent words in the corpus revealed that a correct         
morphological analysis was among the generated      
possibilities in 93.6% of the cases. 

Contributions specifically to automatic analysis     
of Akkadian verb morphology are Barthélemy (1998),       
Macks (2002) and Sahala (2014). Barthélemy’s      
analyzer/generator is based on Prolog Definite Clause       
Grammar (DCG) rules. The verb morphology is described        
in two levels. The first describes the paradigm for strong          
verbs and the second describes phonetic transformations.       
In the strong verb paradigm, verbal forms are split into          
nine smaller slices, of which each is described using a          
proper non-terminal (1. personal prefix, 2. stem prefix, 3.         
derivative infix, 4. R₁, 5. t-infix, 6. R₂ reduplication, 7.          
R₂ and its vocalization, 8. R₃, 9. personal suffix). The          
phonetic transformation level contains rewrite rules that       
produce, for instance, weak surface forms based on the         
strong verb paradigm, as well as phonological       
alternations. The system is abstract and does not include a          
dictionary of Akkadian roots. Macks’ analyzer/generator      
is also written in Prolog by using DCG rules. The system           
is able to recognize and generate strong and singly weak          
verbs (in transcription) in G-, N-, Š- and D-stems, but          
does not handle morphophonemic alternation in the       
affixation. Similarly to Barthélemy 1998, Macks’      
description operates without any knowledge of the       
Akkadian lexicon. Thus, it does not contain information        
about valid roots or their vowel classes, which makes it          
highly overgenerating.  

Sahala's approach to Akkadian verb morphology,      
Babyparser, is implemented in Python. The system       
analyses Akkadian (especially OB and SB) verbs from the         
transcription and syllabic transliteration by a reductive       

http://oracc.museum.upenn.edu/projectlist.html
http://korp.csc.fi/
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process, that first recursively strips out affixation and then         
compares the remainder with a series of regular        
expressions automatically generated from a root      
dictionary and a set of verbal stem templates. Mapping         
between transliteration and transcription is done by       
removing all non-alphabetic symbols, ignoring vowel      
lengths, and by simple heuristic rules (e.g. *Ca-a(-a)-aC*        
→ *CajjaC*). The analyzer covers all stem derivations        
and verbal affixes for every verb class except for doubly          
weak verbs, of which description by using a reductive         
process was discovered to be too difficult and ambiguous         
due to the high degree of vowel contractions. Evaluation         
of 347 unique verbal forms in SB yielded a coverage of           
86.1% (transliteration) and 89.0% (transcription). The      
wanted morphological analysis was among the results in        
93.3% (transliteration) and 96.5% (transcription) of the       
cases. Our current FST implementation is based in many         
aspects on ideas in the Babyparser. 

Currently, the most widely used analysis tool for        
Akkadian is a lemmatizer known as L2 by Steve Tinney          
(2018), which has been the main component for        
POS-tagging and lemmatizing Oracc. This tool is       
essentially an Emacs macro that works by mapping        
transliterated words with their corresponding lemmas, of       
which the annotator is supposed to pick the relevant one,          
or to add a new lemma manually if the word form is            
previously unseen. 
 

3.2 Modeling Principles 
Instead of modeling the interdigitation of the verbal stems         
dynamically, we chose to pre-generate the lexicon of the         
Akkadian verbal stems by using Python. In total the         
enumerated lexicon consists of 352k verbal stems (178k if         
vowel variation like parris ~ parres is excluded) for 1410          
Babylonian lemmas. Such an enumeration was feasible, as        
we had already collected and classified Akkadian verbal        
roots and stems in our previous work (cf. Sahala 2014),          
and practical, as the minimization algorithms in       
finite-state compilers are quite efficient in identifying       
recurrent character strings, thus substantially reducing the       
final size of the transducer. This approach, chunking        
together a complex sequence several theoretical      
morphemic elements into a single unit, as well as having          
multiple stems associated with a single lemma, has        
previously been used successfully in the computational       
modeling of typologically comparable Dene languages,      
such as Tsuut’ina (Arppe et al., 2017).  

The lemma-stem generator script combines root      
and template information stored in two files. First, an         
XML file that contains verbal roots, their conjugation        
class, vowel classes, vowel color, attestations in different        

dialects and time periods, and basic translations. Second,        6

it reads a description of verbal templates for different         
conjugation classes (1341 patterns in total for 42        
conjugation classes, including irregular verbs). Following      
Akkadian text books, templates are represented by using        
symbols P-R-S for radicals R₁, R₂ and R₃. Positions for          
vowel-class dependent vowels are marked as V1 and V2         
(e.g., P R V2 S represents strong G-preterite: -prus-,         
-šbir-, -ndin- etc.). Additional symbols are used when        
necessary. For instance, the position of the disappearing        
weak radical aleph is marked with a symbol X. This is           
useful for providing unambiguous contexts for rewrite       
rules that handle allomorphy, vowel contraction or       
lengthening and gemination at morpheme boundaries.      
Also, temporary symbols ♂ and ♀ are used to constrain          
suffixation of the middle weak verbs. Stems that may be          
followed by only a vocalic suffix are marked with the          
former (i-dukk-ū ‘they kill’) and the others with the latter          
(i-dâk-ma, i-dâk-Ø ‘he kills’). This solution was more        
convenient than splitting the middle weak stems and all         
verbal suffixes into two groups in the lexicon (Table 2). 

iialef-a-indicative ;   P V: a S ♀  ; G-Present 

iialef-a-indicative ;   P â S ♀     ; G-Present 

iialef-a-indicative ;   P V2 S S ♂  ; G-Present 

 

Table 2: Patterns for middle-weak indicative G-present 
stems, e.g. /qīaš, qâš, qišš/, /dūak, dâk, dukk/. 

 
We extracted lexicons of lemma-stem pairings for nouns        
and adjectives from Oracc. The starting point are the         7

Oracc lemmas, which we stemmed automatically by       
removing the nominative ending {u}. For final weak        
words, we replaced the contracted nominative ending with        
the symbol X to preserve the position of the weak radical.           
If the stem contained a final consonant cluster, we added          
an epenthetic vowel between them to produce construct        
forms: parsu → par(a|i|u|e)s-. This solution causes       
overgeneration, but it was the simplest one as the         
epenthetic vowel is often determined lexically and cannot        
be guessed. The first version of the noun and adjective          
lexicon, combined with morphology and rewrite rules,       
could recognize about 70% of the relevant word forms in          
Oracc. The remainder consisted of different lexically       
restricted spelling irregularities (e.g. gikkigu ~ gigakku ~        
giggigu) and the syllabic alternation in the stems. In these,          
about 2000 cases, we extracted the transcriptions from        
Oracc and stemmed them by hand. For other parts of          
speech, stemming was done manually as the number of         
lexical entries was reasonably small (Table 3). Compound        
words are currently not supported due to their rarity. 
 

6 This root dictionary was originally manually composed by Sahala          
(2014) from Black et al. (2000) and Parpola & Whiting (2007). 
7 This data corresponds to Oracc’s content in August 2018. 
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Lexicon Entries Transducer size 
Nouns 35,354 380.9 kB 
Adjectives 2755 
Verbs 352,115 3.8 MB 
Adverbs 518 55.2 kB 
Numerals 202 
Pronouns 289 
Particles 29 
Conjunctions 30 
Adpositions 293 
Interjections 23 
Proper nouns 12,230 443.4 kB 
Total 403,873 4.68 MB 

 

Table 3: Overview of the lexicon and POS coverage. 
 
The relevant morphology and morphotactics for each part        
of speech is described in the corresponding lexicon. For         
example, labial personal prefixes are only permitted in        
front of D-, Š-, ŠD- and R-stems (and their -t- and -tan-            
derivations) by dividing the stems into labial and illabial         
groups. Circumfixes, which consist of prefixal person and        
suffixal number/gender parts, such as the third person        
plural {i...ū} (masc.) and {ī...ā} (fem.), are constrained by         
using flag diacritics. Interestingly, this morphological      
phenomenon as well as its practical computational       
implementation is very similar to that applied to the         
Algonquian languages, e.g. Plains Cree (Harrigan et al.,        
2017). The flag-diacritics present the manifested person       
prefix component of the circumfix, rather than the        
associated feature, which then determines which matching       
suffix components are allowable, and the morphological       
feature represented by the circumfix is determined upon        
encountering the suffix component. 

Allomorphy, such as ventive /nim, am, m/,       
vetitive /ajj, ē/ and first person singular possessive /ja, ī,          
a/, which all have different realizations depending on the         
context, are described as special morphophonemic      
symbols. We use rewrite rules to change these symbols         
into correct surface representations; e.g. [ AJJ ] -> ē          

|| _ %< C , which maps vetitive {ajj} to /ē/ before a            
consonant at the prefixal morpheme boundary marked       
with <. 

Phonemic and morphophonemic alternation, as     
well as changes in orthography are expressed by using a          
composition of 26 rewrite rules (of which most are         
compositions of several rules). This handles previously       
mentioned morphophonemics, typical assimilations and     
dissimilations (ibbi → imbi, inbi), metatheses (zitkar →        
tizkar), variation in transcription conventions (iprusma ~       
iprus-ma), spelling variation (awīlu ~ amēlu), aleph       
preservation/omittance (ibanniū ~ ibannû ~ ibanniˀū),      
morphotactic constraints in middle weak verbs (idâk ~        
idukkū) and syncope (*taptarasī → taptarsī). In the        
current version, these rules govern features attested in all         

stages of Babylonian and most of them are defined as          
optional. This makes it possible to analyze several stages         
of Babylonian with a single model, as well as Standard          
Babylonian, which often contains both, archaisms, and       
features from the contemporary spoken dialects. 

In total, the compiled and minimized transducer       
is 6.2MB in size and consists of 143,244 states, 405,597          
arcs and 1,867,800,170,342 paths. 

4. Evaluation of the Model 
 
We evaluated the morphological analyzer with all       
available transcribed Babylonian texts from Oracc, which       
we split into five sub-corpora based on their dialect. As          
we did not have a gold standard with complete         
morphological feature tagging, our goal was to produce        
the lemma and POS-tag that matched the corresponding        
annotation given in Oracc. Our hypothesis was that due to          
the complexity of Akkadian morphology, the analyzer is        
unlikely to produce a correct lemma and POS-tag without         
also producing a valid morphological analysis. We tested        
the hypothesis on a small scale by comparing 100         
manually produced annotations with the BabyFST results.       
Of these, BabyFST did not give the wanted annotation         
only in five cases: three times due to Assyrianisms, once          
due to a missing feminine stem in the lexicon and once           
due to undefined spelling of the locative marker.  

We measure the performance with three metrics       
for tokens and types in running text (Table 5 and 6).           
Coverage indicates the percentage of word forms that        
were accepted and analyzed by the transducer regardless        
of the analysis. Recall indicates the percentage of word         
forms that were given an annotation matching the analysis         
in Oracc. Precision measures the ratio of correct analyses         
(matches with Oracc) to the number of total analyses. 
 
 

Dialect OB MB SB NB LB 

Word count 170,339 145,805 333,559 184,439 249,263 

Coverage 95.97 95.82 97.37 95.97 97.06 

Recall 91.01 90.33 93.65 91.02 93.11 

Precision 41.89 40.62 41.15 40.26 41.87 
 

Table 5: Evaluation by dialect (tokens). 
 
Dialect OB MB SB NB LB 

Word count 22,132 17,861 39,950 23,226 20,667 

Coverage 90.02 89.12 92.61 88.33 88.50 

Recall 80.50 78.23 83.64 77.43 78.56 

Precision 46.59 44.67 45.03 44.61 47.39 
 

Table 6: Evaluation by dialect (types). 
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Dialect OB MB SB NB LB 

ADJ 77.84 76.99 66.21 76.24 79.14 

ADV 75.29 73.90 85.28 78.33 76.94 

N 93.00 92.08 95.45 93.14 94.04 

PN 83.37 83.13 88.97 84.06 84.31 

PRON 89.71 86.35 94.08 90.35 91.66 

V 89.74 88.56 91.05 87.50 87.00 

MISC 91.20 88.27 89.51 89.26 90.77 
 

Table 7: Recall by POS (tokens). Rare POS are collapsed 
under MISC. 

Low recall (Tables 5, 6, 7) is partly explained by differing           
lemmatization conventions, spelling variation, Oracc     
lemmatization errors and over-analysis of certain word       
forms. We examined 150 random unique mismatches with        
Oracc’s annotation, of which 68 were true errors. Of these          
errors, 44 were caused by missing lexical items in our          
lexicon, or otherwise incorrect analyses, such as errors in         
verbal stems. The rest of the errors were caused by          
undefined Assyrianisms, incorrectly defined infinitives,     
and undefined loss of weak radicals. 

The remaining 82 mismatches actually contained      
correct analyses that did not match the Oracc lemma due          
to lack of normalization. Of these mismatches, 41 were a          
result of over-analysis. For example, where Oracc has a         
lemma kullu+V, the analyzer returns kâlu+V+D+Inf,      
which is essentially the same form, but it is just          
represented in a more atomistic way. Similarly, several        
adverbs formed with {iš} and feminine nouns formed with         
{at} are broken up into smaller components, while the         
Oracc lemmatization displays them as lexicalized units       
(ūmu+N+Adv ~ ūmiš+AV; qerbu+N=Fem ~ qerbetu+N).      
In 29 of the cases a correct analysis mismatched due to           
spelling variation in the lemma (melammu+N ~       
melemmu+N), or because the lemma was represented in        
Oracc in its Assyrian form (walādu+V ~ ulādu+V). The         
rest of the mismatches were caused by lemmatization        
errors in Oracc (e.g. gašri+N instead of gašru+N). In         
these cases, BabyFST returned the correct lemma. Taking        
this into account, up to half of the missing recall is caused            
by a lack of normalization between BabyFST and Oracc. 
 

4.1 Ambiguity 
Considering the whole corpus on the token level, the         
average number of given analyses (correct or not) for each          
POS is as follows: adjectives (6.38), adpositions (3.44),        
adverbs (5.75), conjunctions (1.52), interjections (3.72),      
proper nouns (4.42), nouns (4.12), numerals (4.40),       
pronouns (3.89) and verbs (3.28). 

The confusion matrix (Table 8) represents the       
distribution of POS tags (horizontal) given to an input         

(vertical). For example, nouns receive on average 4.12        
analyses. Of these analyses on average 56.66% are tagged         
as nouns, 34.89% as verbs, 5.57% as adjectives and         
2.88% as proper nouns or something else. 

 
I/O ADJ ADV N PN PRON V MISC Σ 

ADJ 21.89 0.04 37.68 0.11 0.01 39.07 1.20 100.00 

ADV 17.09 17.68 31.06 0.37 0.14 26.8 6.87 100.00 

N 5.57 0.10 56.66 0.91 0.26 34.89 1.60 100.00 

PN 0.24 0.00 1.10 96.16 0.00 1.49 1.00 100.00 

PRON 0.20 0.12 30.35 0.56 26.75 10.77 31.25 100.00 

V 3.49 0.01 12.44 0.50 0.15 82.05 1.36 100.00 

MISC 1.78 0.40 42.09 1.07 5.34 11.13 38.18 100.00 
 

Table 8: POS confusion matrix. 

 

4.2 Unweighted Model 
We set the baseline for disambiguation by analyzing the         
Standard Babylonian corpus and sorting the results by        
lemma frequency. We calculate recall in three settings:        
taking into account the morphological analyses with only        
(1) the most frequent, (2) two most frequent, and (3) three           
most frequent lemmas (Table 9). 
 
 Recall @ 1 Recall @ 2 Recall @ 3 

Tokens 78.12 90.19 92.65 

Types 63.89 77.87 81.70 
 

Table 9: Baseline recall for tokens/types. 
 

4.3 Weighted Model 
As stated in Section 4.1, the average number of possible          
morphological analyses for Akkadian words is relatively       
high (Fig. 1). In this section, we present a simple         
weighting algorithm for finite-state analyzers. The      
algorithm utilizes a manually disambiguated list of       
training examples consisting of input word forms and        
morphological analyses. The aim is that each analysis in         
the training data receives a higher likelihood than other         
plausible analyses for the relevant input word forms.        
Because of shared states and transitions in finite-state        
networks, this behavior is expected to generalize to other         
word forms as well. We provide no theoretical guarantees         
for the weighting algorithm, since success depends on        
network topology, and the experimental results presented       
in Section 4.3.2 show that having only hand-validated        
lemma and POS information but not validated complete        
morphological analyses in the training of a weighted        
finite-state transducer provides moderate success in      
ranking the most likely analyses highest. 
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Figure 1. Token/type ambiguity of BabyFST analyses. 

 

4.3.1 Weighting Algorithm 
Our weighting algorithm is based on traversing       

the states and transitions in a deterministic finite-state        
transducer using aligned string pairs given as training        
examples. The algorithm loops through all examples in        
the training set and adds counts of state-to-state transitions         
in the unweighted finite-state transducer. It then       
normalizes these counts into probability distributions in       
each state. Below, we give a more formal explanation of          
the algorithm. 

Following Allauzen et al. (2007), we view       
finite-state transducers as finite-state acceptors of strings       
consisting of symbol-pairs x:y, where x and y belong to          
finite input and output alphabets, respectively. As a        
special case, either x or y can be the empty symbol ε. We             8

denote transitions in T as 5-tuples (s, t, x, y, w), where s             
and t denote the source and target state, respectively; x:y          
is a symbol pair and wt is a real-valued weight. A subset            
of the states in T are final states. Each final state s has a              
real-valued final weight ws . If T is a transducer, it can be            
determinized as a finite-state acceptor. Below, we will        
assume that all transducers are deterministic in this sense. 

In order to assign weights to the transitions of         
transducer T, we need a set P = {p1,...,pm} or strings p =             
x1:y1, …, xn :yn , where each string p is accepted by          
transducer T. We start by associating each state Q of          
transducer T with a transition counter CQ , which maps          
symbol-pairs x:y to counts CQ (x:y), and a finality count fQ .           
If string p=x1:y1, …, xn :yn is accepted by transducer T,          
then each symbol-pair xi:yi corresponds to a unique        
accepting state Qi because transducer T is deterministic.        
Moreover, each string p is associated with a unique final          
state Fp.  

Let 

 

8 Note that ε:ε is not a valid pair. 

Here indicator [a = b] evaluates to 1, if a = b, and 0,              
otherwise. In the equations above, α is a smoothing term          
which we set to 1 in all experiments.  

For a transition (s, t, x, y, w) in T, we now define             
the transition weight w as:  

 
We define the final weight wS   of a final states S as: 

  
  

4.3.2 Experiments 
Currently, the human-validated corpora available for      
Akkadian, while substantial, only indicate the lemma and        
POS tag of each word form token, rather than a full           
morphological feature analysis disambiguated in context,      
which would normally be necessary for training a        
weighted finite-state transducer. Thus, we set forth to        
explore whether we could nevertheless make use of such         
validated data in combination with our unweighted       
finite-state transducer to prune the extent of ambiguous        
analyses. Therefore, we first ran through the 333,560        
tokens in the Standard Babylonian subcorpus of Oracc        
through our finite-state transducer to retrieve full       
morphological analyses, which are potentially ambiguous      
as noted above in Section 4.1. Second, we used the          
validated lemmas and part-of-speech tags provided in the        
Oracc subcorpus per each token to select only those full          
morphological analyses which matched the validated      
coding. As a result, the remaining ambiguity amounted on         
average to 1.57 morphological analyses per token, as a         
majority (57.4%) of the tokens had a single, unambiguous         
full morphological analysis (Table 10). 
 
% Cumul. % Tokens No. of analyses 

57.4 57.4 191,502 1 

20.1 77.5 66,889 2 

12.2 89.7 40,799 3 

1.0 90.7 3,230 4 

0.3 90.9 886 5 

9.1 100 30,254 6-93 
 

Table 10: Ambiguity of morphological analysis remaining 
after pruning with validated lemma and POS tags, which 

is used as the training data in weighting. 
 
Third, we used these pairings of tokens and their         
lemma-disambiguated full morphological analyses to     
weight our Akkadian finite-state transducer according to       
the algorithm described in Section 4.3.1. Throughout this,        
we used HFST - Helsinki Finite-State Technology     
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compiler (Lindén & al., 2011) which is capable of         
compiling and running weighted transducers. 

Fourth, we re-analyzed all the tokens from the        
training corpus with the weighted finite-state transducer in        
order to evaluate its baseline performance. Since the only         
validated linguistic information we had for these tokens        
were their lemma and part-of-speech, we focused on the         
rank of the best-weighted full morphological analysis that        
corresponded to the validated POS tag. 

The results in Table 11 should be compared with        
Fig. 1 which shows that in the not yet disambiguated data          
only 20% of the tokens had a single reading. After          
weighting all the readings, 55% of the tokens had the          
correct analysis (in terms of matching a validated lemma         
and part-of-speech tag) ranked as the first analysis , while         9

the average rank of the (highest) ranked “correct” analysis         
was 2.03, and when considering the three top-most ranked         
analyses together we exceeded (80.9% match with the        
validated lemma and part-of-speech coding) what could       
be achieved with a baseline heuristic of using        
lemma-frequency alone for selecting the most likely       
analysis (with a recall of 78.12%).  10

 
% Cumul. % Tokens Rank 

55 55 183,310 1 

16.6 71.6 55,487 2 

9.4 80.9 31,204 3 

5.5 86.4 18,353 4 

2.4 88.8 7,903 5 

4.9 93.7 16,242 6+ 

6.3 100 21061 N/A 
 

 Table 11: Rank of morphological analysis matching with 
validated lemma and POS tags. 

 
Nevertheless, we may conclude that due to the inherent         
ambiguity of Akkadian, validated lemma+POS     
information simply is neither enough for selecting the        
correct complete morphological analyses, nor for      
adequately weighting a finite-state transducer for      
Akkadian. 

9 The results did not essentially improve if we used as training            
data in the weighting of the finite-state transducer only those          
tokens for which the Oracc lemma and POS tag accepted a           
single, unambiguous complete morphological analysis. 
10 Note that the discrepancy between the 55.0% proportion of          
first-ranked analyses for tokens with the weighted finite-state        
transducer vs. the 57.4% proportion for tokens receiving a single          
morphological analysis using the Oracc lemma and POS tags, as          
post hoc disambiguation after the application of the unweighted         
finite-state transducer, is due to the fact that the hand-validated          
information may prune some unweighted analyses that the        
weighted finite-state transducer may still output and assign a         
better weight than other analyses matching the Oracc tags. 

5. Further Work and Future Directions 
 

In order to properly evaluate the morphological tagging, a         
completely morphologically analyzed and disambiguated     
gold standard is required. Fortunately, a manually       
analyzed corpus of royal inscriptions written in Standard        
Babylonian is currently being annotated by the Akkadian        
Treebanking project at the University of Helsinki. The        11

gold standard will provide accurate data for weighting the         
transducer and will also allow us to evaluate methods for          
disambiguating the morphological analyses in context. 

We aim to include support for analyzing       
transliterated input. The support for transliterated text will        
make it possible to lemmatize, POS-tag and       
morphologically analyze transliterated but not yet      
transcribed large text corpora such as CDLI. Being able to          
operate directly on transliterated input can later be        
combined with OCR in order to process scanned pictures         
of cuneiform tablets. 

6. Conclusions 
BabyFST is a unified morphological model for different        
stages of Babylonian dialects (1900 BCE – 100 CE), and          
currently the most comprehensive morphological analyzer      
for Akkadian. It operates on transcriptions and is able to          
achieve a coverage up to 95.82–97.37% with a recall of          
90.33–93.65% (on tokens) depending on the dialect. Up to         
half of the missing recall is caused by normalization         
issues rather than an incomplete definition of the lexicon         
or lacking morphotactic descriptions. We still do not have         
a robust way to disambiguate the results due to the lack of            
a morphologically tagged gold standard. Nevertheless, in       
combination with post hoc disambiguation using the       
lemma and POS tags in Oracc, BabyFST can already now          
be used to provide complete, unambiguous morphological       
analyses for 57.4% (191,502) of the tokens in the         
Standard Babylonian subcorpus and, using only a       
weighted transducer, the correct analysis can be provided        
among the top-3 for 80.9% of the input tokens. Our next           
goal is to tackle morphological disambiguation and       
transliteration in context applying the analyzer to       
available text corpora. 
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