12 research outputs found

    Non-crossing frameworks with non-crossing reciprocals

    Full text link
    We study non-crossing frameworks in the plane for which the classical reciprocal on the dual graph is also non-crossing. We give a complete description of the self-stresses on non-crossing frameworks whose reciprocals are non-crossing, in terms of: the types of faces (only pseudo-triangles and pseudo-quadrangles are allowed); the sign patterns in the self-stress; and a geometric condition on the stress vectors at some of the vertices. As in other recent papers where the interplay of non-crossingness and rigidity of straight-line plane graphs is studied, pseudo-triangulations show up as objects of special interest. For example, it is known that all planar Laman circuits can be embedded as a pseudo-triangulation with one non-pointed vertex. We show that if such an embedding is sufficiently generic, then the reciprocal is non-crossing and again a pseudo-triangulation embedding of a planar Laman circuit. For a singular (i.e., non-generic) pseudo-triangulation embedding of a planar Laman circuit, the reciprocal is still non-crossing and a pseudo-triangulation, but its underlying graph may not be a Laman circuit. Moreover, all the pseudo-triangulations which admit a non-crossing reciprocal arise as the reciprocals of such, possibly singular, stresses on pseudo-triangulation embeddings of Laman circuits. All self-stresses on a planar graph correspond to liftings to piece-wise linear surfaces in 3-space. We prove characteristic geometric properties of the lifts of such non-crossing reciprocal pairs.Comment: 32 pages, 23 figure

    Flips in combinatorial pointed pseudo-triangulations with face degree at most four

    Get PDF
    In this paper we consider the flip operation for combinatorial pointed pseudo-triangulations where faces have size 3 or 4, so-called combinatorial 4-PPTs. We show that every combinatorial 4-PPT is stretchable to a geometric pseudo-triangulation, which in general is not the case if faces may have size larger than 4. Moreover, we prove that the flip graph of combinatorial 4-PPTs with triangular outer face is connected and has diameter O(n2).European Science FoundationAustrian Science FundMinisterio de Ciencia e InnovaciónJunta de Castilla y Leó

    On the Number of Pseudo-Triangulations of Certain Point Sets

    Get PDF
    We pose a monotonicity conjecture on the number of pseudo-triangulations of any planar point set, and check it on two prominent families of point sets, namely the so-called double circle and double chain. The latter has asymptotically 12nnΘ(1)12^n n^{\Theta(1)} pointed pseudo-triangulations, which lies significantly above the maximum number of triangulations in a planar point set known so far.Comment: 31 pages, 11 figures, 4 tables. Not much technical changes with respect to v1, except some proofs and statements are slightly more precise and some expositions more clear. This version has been accepted in J. Combin. Th. A. The increase in number of pages from v1 is mostly due to formatting the paper with "elsart.cls" for Elsevie

    3-colorability of pseudo-triangulations

    Get PDF
    Electronic version of an article published as International Journal of Computational Geometry & Applications, Vol. 25, No. 4 (2015) 283–298 DOI: 10.1142/S0218195915500168 © 2015 World Scientific Publishing Company. http://www.worldscientific.com/worldscinet/ijcgaDeciding 3-colorability for general plane graphs is known to be an NP-complete problem. However, for certain families of graphs, like triangulations, polynomial time algorithms exist. We consider the family of pseudo-triangulations, which are a generalization of triangulations, and prove NP-completeness for this class. This result also holds if we bound their face degree to four, or exclusively consider pointed pseudo-triangulations with maximum face degree five. In contrast to these completeness results, we show that pointed pseudo-triangulations with maximum face degree four are always 3-colorable. An according 3-coloring can be found in linear time. Some complexity results relating to the rank of pseudo-triangulations are also given.Postprint (author's final draft

    Pseudo-Triangulations, Rigidity and Motion Planning

    Get PDF
    This paper proposes a combinatorial approach to planning non-colliding trajectories for a polygonal bar-and-joint framework with n vertices. It is based on a new class of simple motions induced by expansive one-degree-of-freedom mechanisms, which guarantee noncollisions by moving all points away from each other. Their combinatorial structure is captured by pointed pseudo-triangulations, a class of embedded planar graphs for which we give several equivalent characterizations and exhibit rich rigidity theoretic properties. The main application is an efficient algorithm for the Carpenter\u27s Rule Problem: convexify a simple bar-and-joint planar polygonal linkage using only non-self-intersecting planar motions. A step of the algorithm consists in moving a pseudo-triangulation-based mechanism along its unique trajectory in configuration space until two adjacent edges align. At the alignment event, a local alteration restores the pseudo-triangulation. The motion continues for O(n3) steps until all the points are in convex position. © 2005 Springer Science+Business Media, Inc

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF
    corecore