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Pseudo-Triangulations, Rigidity and Motion Planning

Ileana Streinu
∗

Abstract

We propose a combinatorial approach to planning non-colliding trajectories for a polyg-
onal bar-and-joint framework with n vertices. It is based on a new class of simple motions
induced by expansive one-degree-of-freedom mechanisms, which guarantee non-collisions by
moving all points away from each other. Their combinatorial structure is captured by pointed
pseudo-triangulations, a class of embedded planar graphs for which we give several equivalent
characterizations and exhibit rich rigidity theoretic properties.

The main application is an efficient algorithm for the Carpenter’s Rule Problem: convex-
ify a simple bar-and-joint planar polygonal linkage using only non-self-intersecting planar
motions. A step of the algorithm consists in moving a pseudo-triangulation-based mecha-
nism along its unique trajectory in configuration space until two adjacent edges align. At the
alignment event, a local alteration restores the pseudo-triangulation. The motion continues
for O(n3) steps until all the points are in convex position.

1 Introduction

We present a combinatorial solution to the Carpenter’s Rule Problem: how to plan non-colliding
reconfigurations of a planar robot arm. The main result is an efficient algorithm for the problem
of continuously moving a simple planar polygon to any other configuration with the same edge-
lengths and orientation, while remaining in the plane and never creating self-intersections along
the way. This is done by first finding motions that convexify both configurations with expansive
motions (which never bring two points closer together) and then taking one path in reverse.

All of the constructions are elementary and are based on a novel class of planar embedded
graphs called pointed pseudo-triangulations, for which we prove a variety of combinatorial and
rigidity theoretical properties. More prominently, a pointed pseudo-triangulation with a removed
convex hull edge is a one-degree-of-freedom expansive mechanism. If its edges are seen as rigid
bars (maintaining their lengths) and are allowed to rotate freely around the vertices (joints), the
mechanism follows (for a well defined, finite time interval) a continuous trajectory along which
no distance between a pair of points ever decreases. The expansive motion induced by these
mechanisms provide the building blocks of our algorithm.

Historical remark. This paper is a systematic, detailed and self-contained presentation of a
10-page conference version [73] which appeared in 2000. In the same conference appeared the
independent solution of [30] for the Carpenter’s Rule problem, which has since been published as
a full paper. Therefore, all the references we give to previous work refer to the state of affairs in
2000. The pointed pseudo-triangulations and their special combinatorial and rigidity-theoretical
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properties, which are the highlight of our solution, found a life of their own since 2000, and a
flurry of papers (some extending the results presented here) emerged. For completeness, we also
include in the Conclusions a list of references to these recent results.

In the remaining of the introduction, we give an informal high-level preview of the results and
their connection with previous work. Precise definitions and complete proofs are given in the
rest of the paper. Section 2 contains the definition of pointed pseudo-triangulations and several
of their combinatorial characterizations. Sections 3 and 4 prove the rigidity theoretic properties
of pointed pseudo-triangulations on which the whole approach relies. Section 5 describes a few
simple algorithms for computing pointed pseudo-triangulations of planar point sets and polygons.
Section 6 gives the description of the global convexification motion and the complexity analysis
of the combinatorial, non-algebraic part of the algorithm. We conclude with some suggestions
for further research.

Frameworks and Robot arms. A bar-and-joint framework is a graph G = (V, E) embedded
in the plane with rigid bars corresponding to the edges (the edge lengths are considered given
and fixed). The bars are free to move in the plane around their adjacent joints (vertices), as
long as their lengths are preserved. The motions impose no restriction on the non-edges, which
may increase or decrease freely. In this general model, edges may cross and slide over each other
during the motion, but in this paper we are interested in avoiding collisions and will not allow
this. Of particular interest are the expansive motions, where no pairwise interdistance between
vertices ever decreases during the motion, thus guaranteeing non-collision.

A chain, linkage or robot arm is a planar framework whose underlying graph is a simple
(non-self-intersecting) path, and a closed chain is a simple planar polygon. Throughout, n will
denote the number of its vertices. Straightening a chain refers to moving it continuously until
all its vertices lie on one line with non-overlapping edges. Convexifying a closed chain means
moving it to a position where it forms a simple convex polygon. Other types of frameworks
of interest in this paper include Laman graphs and pointed pseudo-triangulations, defined in
Section 2.1.

The Carpenter’s Rule Problem: Given a closed chain, orient it so that the interior lies to
the left when walking along the polygon in the positive direction. While avoiding self-collisions
and staying in the plane, we want to continuously reconfigure the chain from an initial to a final
configuration with the same orientation. It suffices to show that we can convexify the chain.
Then, to move between any two similarly oriented configurations, we will take one path in reverse.
Indeed, it is easy to move between two distinct convex positions, see [9]. The Carpenter’s Rule
Problem asks: Is it always possible to straighten a planar linkage, or to convexify a planar chain?

This question has been open since the 1970’s. Recently, Connelly, Demaine and Rote [30] have
answered it in the affirmative. Their solution still left open the problem: Find, algorithmically,
a finite sequence of simple (finitely described) motions to straighten a linkage, or to convexify a
polygon.

Previous Results on Reconfiguring Linkages. The general techniques for solving motion
planning problems based on roadmaps [70, 27, 16, 17] work well on problems with constant
number of degrees of freedom, but would yield exponential algorithms in our case. Under various
conditions, problems about reconfiguration of linkages range in complexity from polynomial [52]
to NP- and even PSPACE-hard, see [43, 84, 44].

The particular problem of straightening bar-and-joint linkages and convexifying polygons has
accumulated a distinguished history, with some approaches going back to a question of Erdös
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[34]. See Toussaint [79] for a fascinating account. There are abundant connections with work
done in the computational biology, chemistry and physics literature and motivated by topics such
as protein folding or molecular modeling. When crossings are allowed, Lenhart and Whitesides
[52] have shown that the configuration space has at most two connected components and gave
a linear algorithm for convexification based on simple motions which displace (relatively) only
a constant number of joints at a time. Recent results in the mathematics literature [45, 58, 80]
aim at understanding the topology of the configuration space of closed chains, but they allow
crossings.

Studying reconfigurations of linkages with non crossing motions has received a recent impetus
in [54], and results on planar linkages using spatial motions [19, 11], trees, three- and higher-
dimensional linkages [20, 29] have followed. The Carpenter’s Rule question, raised in the 1970’s in
the Topology community by G. Bergman, U. Grenander, S. Schanuel (cf. [48]) and independently
in the early 1990’s in the Computer Science community by two groups (W. Lenhart and S.
Whitesides, resp. J. Mitchell), seems to have first appeared in print in [52] and [48]. It was
recently settled by Connelly, Demaine and Rote [30]: all chains can be convexified, all linkages
can be straightened. Their approach is based on Rote’s seminal idea of using expansive motions
to guarantee non-collisions. They first prove (using linear programming duality and Maxwell’s
theorem, specifically a technique originating in Crapo and Whiteley [33] and Whiteley [81])
that there always exists an infinitesimal expansive motion, i.e. one which never decreases any
distances. The actual velocities can be found using linear programming. Then they provide a
global argument, showing the existence of a continuous deformation obtained by integrating the
resulting vector field.

The Main Results. We strengthen and provide an algorithmic extension of the above men-
tioned Carpenter’s Rule result of [30]. We show how to compute a path in configuration space,
consisting in at most O(n3) simple motions along algebraic curve segments, between any two
polygon configurations. Along the way, we obtain a result of independent interest in Rigidity
Theory. Namely, we characterize a family of planar infinitesimally rigid, self-stress-free frame-
works called pointed pseudo-triangulations, which yield one-degree-of-freedom (1dof) expansive
mechanisms when a convex hull edge is removed.

Overview of the Convexification Algorithm. The convexifying path, seen as the collection
of the 2n trajectories of the 2n coordinates (xi, yi), i = 1, · · · , n of the vertices of the polygon, is
a finite sequence of algebraic curve segments (arcs) connecting continuously at their endpoints.

Figure 1: Left: A simple polygon. Middle: one of its pointed pseudo-triangulations. Right: the
pointed pseudo-triangulation mechanism obtained by removing a convex hull edge.
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Each arc corresponds to the unique free motion of the expansive, one-degree-of-freeedom
(1dof) mechanism induced by a planar pointed pseudo-triangulation of the given polygon, where
a convex hull edge has been removed and a remaining edge has been pinned down. The mecha-
nism is constructed by adding n− 4 bars to the original polygon in such a way that there are no
crossings, each vertex is incident to an angle larger than π and exactly one convex hull edge is
missing. See Fig. 1. We show that this can be done algorithmically in O(n) time. The mecha-
nism is then set in motion by pinning down one edge and rotating another edge around one of its
joints. The framework now moves expansively, thus guaranteeing a collision-free trajectory. One
step of the convexification algorithm consists in moving this mechanism until two incident edges
align, at which moment it ceases to be a pointed pseudo-triangulation. We either freeze a joint
(if the aligned edges belong to the polygon) and locally patch a pointed pseudo-triangulation
for a polygon with one less vertex, or otherwise perform a local flip of the added diagonals. See
Fig. 2.

(a) (b) (c) (d)

Figure 2: (a) A pointed pseudo-triangulation mechanism just before an alignment event and (b)
after the event, when a flip was performed. (c) Continuing the motion, the next event aligns
two polygon edges. (d) The aligned vertex (black) is frozen, the pseudo-triangulation is locally
restructured and the motion can continue.

There are many ways to construct the initial pointed pseudo-triangulation or to readjust it
at an alignment event. For the sake of the analysis, we use a canonical pseudo-triangulation
based on shortest-path trees inside the polygon and its pockets. During the convexification
process, the total number of bends in the shortest paths, which is bounded by O(n2) for n

active (not frozen) vertices, decreases by at least one at each flip event. There are at most O(n)
freeze-events (more precisely, as many as there are reflex vertices). The total number of events,
and thus the number of steps induced by simple pseudo-triangulation mechanism motions, is
therefore O(n3).

Formally stating and proving these results will take the rest of the paper. It will require
background material in Rigidity Theory and some intuitions from Oriented Matroids and Visi-
bility. In the context of these fields, we offer next an overview of the theoretical contributions
of this paper.

Pointed pseudo-triangulations in the context of Oriented Matroids and Rigidity
Theory. Our approach is based on the idea of abstracting (partial) oriented-matroidal prop-
erties that hold throughout a portion of a continuous motion. To the best of our knowledge,
this idea has not been used before in any other context. This leads to our introduction of
the pointed pseudo-triangulations of planar point sets (and their further generalization in the
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Figure 3: Left: The pockets of the polygon from Fig. 1. Middle: the shortest-path-tree pseudo-
triangulation of the interior of the polygon. The source vertex of the tree is black. Right: a
complete pointed pseudo-triangulation obtained by taking shortest path trees in all the pockets,
and in the interior of the polygon.

companion paper [74] to rank 3 affine oriented matroids, via planar pseudo-point configura-
tions). We emphasize that for these objects, the focus is on pointedness (incidence with an angle
larger than π), rather than on the partitioning into pseudo-triangular faces (which appears as
a consequence), and that they have special properties not shared (and not considered) by other
types of pseudo-triangulations previously defined in the literature. Indeed, the combinatorial
and rigidity theoretic properties of pointed pseudo-triangulations, as well as their application to
expansive mechanisms for finding non-colliding paths in configuration spaces, were discovered
by the author and have first appeared in the original conference paper [73], of which the current
paper is a comprehensive development.

At the technical, rigidity theoretic level, we prove a new result on the non-existence of
self-stresses in bar-and-strut pointed and non-crossing frameworks, which are more complex
structures than those arising from polygons. We also prove that pointed pseudo-triangulations
are always self-stress-free, and therefore (because of having the right number 2n − 3 of edges)
infinitesimally rigid. To the best of our knowledge, no other combinatorially-defined class of
frameworks was previously shown to possess such strong rigidity theoretical properties. As
a consequence, we obtain a generalization of a key lemma in [30] regarding the existence of
expansive motions of certain families of linkages, in the strongest way in which this can be done
combinatorially.

All these preliminary results imply that the configuration space of 1dof pseudo-triangulation
frameworks is smooth in the neighborhood of a given realization, as long as the combinato-
rial structure of the embedding (what we call the combinatorial pseudo-triangulation) doesn’t
change. In particular, a generic planar one-degree-of-freedom mechanism (Laman graph with
a convex hull removed edge), when embedded as a pointed pseudo-triangulation, always moves
along a unique, well-defined, one-dimensional trajectory. To the best of our knowledge, this is
the first result in the Rigidity Theory literature where the smooth nature of the configuration
space is characterized combinatorially: in this case, the combinatorics consists not only in the
underlying graph structure (a planar Laman graph), but also in the oriented matroid properties
of the underlying point set on which the Laman graph is embedded (the pointedness of the
embedding). Indeed, to contrast the general situation to what we exhibit here and help the
reader understand this point, one can easily exhibit examples of infinitesimally flexible frame-
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works which are rigid. In these cases, the infinitesimal motion doesn’t extend to a finite motion,
and locally the configuration space is an isolated point. Or, one can exhibit examples where
the framework is flexible, but lies at a singular point in its configuration space, which compli-
cates the design of which trajectory to follow. Our results imply that this can never happen for
pointed pseudo-triangulation mechanisms.

Expansive Motions and Pseudo-triangulations in the context of previous work. Our
pointed pseudo-triangulations are slight specializations (from smooth obstacles to simple point
sets, from emphasis on pseudo-triangular faces to emphasis on pointedness of vertices) of those
introduced by Pocchiola and Vegter [62, 63] in their study of the visibility complex and recently
applied to kinetic geometric algorithms [1, 15].

A 1dof infinitesimally expansive mechanism obtained from a pointed pseudo-triangulation
is a combinatorial abstraction and a canonical representation of one of the many basic feasible
solutions of infinitesimally expansive motions, that the linear programming approach of [30]
would find for a certain position of the polygon in its configuration space. This idea is further
developed in [68].

We characterize pointed pseudo-triangulations in several equivalent ways. Some of these are
specialized versions of Laman’s 2n − 3 count and Henneberg constructions from combinatorial
rigidity [82, 38]. The proof of correctness of our approach derives from these properties, as well
as from a generalization, from simple polygons to the wider class of pointed pseudo-triangulation
frameworks, of the approach used in [30] based on Linear Programming duality and Maxwell’s
theorem. This generalization also simplifies the argument needed to guarantee the existence
of a global motion, which is now a simple consequence of a basic, fundamental theorem in
Calculus, or, alternatively, of the most fundamental theorem in the theory of ordinary differential
equations.

References. For background terminology and basic results in rigidity theory, we refer the
reader to [66, 82, 83, 38]. In particular, rigidity, infinitesimal (first-order) and generic rigidity,
as well as classical results on 2-dimensional rigidity such as Laman’s theorem, the Henneberg
constructions and Maxwell’s Theorem are to be found there. For oriented matroids, see [21],
although we won’t need more than the intuitions gained through familiarity with the local
sequences of [37] (known also as hyperline sequences in [22]), see also [72, 23].

Notation, abbreviations and terminology. Our setting is the Euclidian plane. We abbre-
viate “counter-clockwise” as ccw and “one-degree-of-freedom mechanism” as 1dof mechanism.

For self-containment, we introduce all the basic terminology and definitions from rigidity the-
ory, graph theory and oriented matroids. Other concepts used in this paper, such as pointed and
minimum pseudo-triangulations, combinatorial frameworks, semi-simplicity and expansive 1dof
mechanisms are (to the best of our knowledge) new and have not been defined elsewhere. In con-
trast with the preliminary version of this paper [73], we have settled for a friendlier terminology,
and use pointed instead of acyclic set of vectors, pointed pseudo-triangulation instead of acyclic
or minimum pseudo-triangulation and expansive instead of monotone motion or mechanism. See
the Notes in the Conclusion section for further remarks on the choice of terminology.
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2 Combinatorial Properties of Pointed Pseudo-Triangulations

We start by defining pointed pseudo-triangulations and derive their main combinatorial proper-
ties. At the end of this section, we would have acquired the first piece of evidence that pointed
pseudo-triangulations have relevant rigidity theoretic properties: their underlying graphs are
minimally generically rigid (Laman) graphs. For this to become an useful algorithmic tool, we’ll
have to prove later that the rigidity property holds for any pseudo-triangular embedding, not
just generically.

2.1 Definitions: Pointed Pseudo-Triangulations

Throughout the paper, G = (V, E) will denote a graph with n = |V | vertices and m = |E| edges.
The vertex set will be taken as V = [n] := {1, 2, · · · , n}.

(a) (b) (c)

(d) (e) (f)

Figure 4: (a), (b) and (c) Pointed (acyclic) and (d), (e) and (f) non-pointed (cyclic) sets of
vectors.

Graph Embedding and Planarity. An embedding or drawing G(P) of the graph G on a set
of points P = {p1, · · · , pn} ⊂ R2 is a mapping of the vertices V to points in the Euclidean plane
i 7→ pi ∈ P. The edges ij ∈ E are mapped to straight line segments pipj . The embedding G(P)
is planar if distinct endpoints of edges are mapped to distinct points and edges are mapped to
disjoint line segments, except when the edges are incident (in which case, their corresponding
segments are allowed to have only one point in common): pipj ∩ pkpl = ∅, for any pair of non-
adjacent edges ij, kl ∈ E, i, j 6∈ {k, l}, and pipj ∩ pipk = {pi}, for j 6= k. A graph G is planar if
it has a planar embedding.

Pointed Graph Embedding. A set of vectors in R2 (with a common origin) is pointed if it
is strictly contained in a half-plane, and non-pointed otherwise. Equivalently, some consecutive
pair of vectors (in the circular ccw order around the common vertex) spans a reflex angle (larger
than π). See Fig. 4. Algebraically, this is expressed as the non-existence of a linear combination
with all positive coefficients, summing them to zero. A pointed graph is an embedded graph such
that the edge vectors around each vertex are a pointed set. See Fig. 5.

Simple Polygon. A simple polygon is a planar embedding of a cycle graph. In this case, there
is a well-defined and connected interior and exterior of the polygon. We will assume that the
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(a) (b) (c)

Figure 5: (a) A pointed graph embedding. (b) A non-pointed graph, due to the black non-
pointed vertex. (c) A pointed and planar graph.

(a) (b)

Figure 6: (a) A pseudo-triangle. (b) A semi-simple pseudo-triangle.

labelling of the vertices as {1, · · · , n} is in ccw order, i.e. such that the interior lies to the left
when the boundary of the polygon is traversed in increasing order of its labels. We will work
only with simple polygons having no angle equal to π, which are therefore pointed. The case
when a vertex i is aligned (incident to an angle of π) is reduced to the pointed case by the
operation of freezing the aligned vertex: i is eliminated and its two incident edges (i − 1)i and
i(i + 1) are replaced by a single edge joining the vertices i − 1 and i + 1. Throughout, index
arithmetic is done mod n in the set [n] := {1, · · · , n}.

Pseudo-triangle. A pseudo-triangle is a simple (pointed) polygon with exactly three convex
vertices, called corners. The three corners are on the convex hull of the pseudo-triangle and are
joined by three inward convex polygonal chains. In particular, a triangle is a pseudo-triangle.
See Fig. 6(a). We also introduce semi-simple pseudo-triangles as a special case which allows
for some degeneracies: some of the inner convex angles (the corners) may be zero, but none of
the inner reflex angles is allowed to be π or 2π. Moreover, we do not allow the two overlapping
edges of a zero-angle corner to completely coincide: their other endpoints must be different. See
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(a) (b) (c)

Figure 7: (a) A minimum, pointed pseudo-triangulation. (b) A non-minimum non-pointed
pseudo-triangulation which contains a minimum one. (c) A non-minimum non-pointed pseudo-
triangulation which does not contain a minimum pseudo-triangulation.

Fig. 6(b).

Pseudo-Triangulation. A pseudo-triangulation is a planar graph embedding whose outer
face is convex and all interior faces are pseudo-triangles. A minimum pseudo-triangulation has
the least number of edges among all pseudo-triangulations on the same point set. A pointed
pseudo-triangulation is pointed, as an embedded graph. These two definitions will turn out to
be equivalent (Theorem 2.3). See Fig. 7.

Figure 8: (a) A pseudo-quadrilateral and its two possible subdivisions into two pseudo-triangles,
illustrating a diagonal flip. (b) A degenerate pseudo-quadrilateral and the associated flip.

Diagonal Flips in Pseudo-Quadrilaterals. More generally, if we focus on the convex vertices
of a simple polygon (and call them, for consistency, corners) and on the inner convex chains
between them, we may refer to the polygon as being a pseudo-k-gon if it has exactly k corners.
Fig. 8 shows examples of pseudo-quadrilaterals (k = 4).

A tangent to a convex chain is a line segment with one endpoint on the chain, and whose
supporting line contains the chain on one side (doesn’t cut through it). A bitangent to two
convex chains is a line segment whose endpoints are each tangent to one of the chains. Two
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pseudo-triangles sharing an edge are merged into a pseudo-quadrilateral when the common edge
is removed. If the removed edge was incident to a vertex of degree two, the resulting face will
have a dangling edge (incident to a vertex of degree one). We still can treat it as if it was a sort of
degenerate pseudo-quadrilateral: indeed, seen from inside the face, it has exactly four corners.
The dangling edge is doubled (traversed twice) as we walk around the boundary of the face.
Notice that in this case the pseudo-quadrilateral face has an interior angle equal to 2π (at the
degree-one vertex): this is an acceptable special situation. In all cases, a different diagonal can
be added to produce another partitioning of the pseudo-quadrilateral into two pseudo-triangles.
See Fig. 8. The following simple lemma shows that this is always possible.

Lemma 2.1 A pseudo-quadrilateral can be subdivided by bitangents into two pseudo-triangles
in exactly two ways.

Proof: If we label in ccw order the four corners (convex vertices) as 1, 2, 3 and 4, there are
exactly two geodesic paths inside the polygon joining opposite pairs of these corners (1 and 3,
resp. 2 and 4). Each geodesic follows the boundaries of the convex chains except for one line
segment, which is a bitangent. 2

More rigorous proofs of this and other similar simple properties needed later in the paper
can be done using facts about point sets (and graphs embedded on them) that derive from the
oriented matroid nature of a point set. These are the subject of the future companion paper
[74].

The operation of replacing one of these two bitangents by the other is called a (diagonal) flip
in a pseudo-quadrilateral. More generally, if any interior (non convex hull) diagonal is removed
from a pointed pseudo-triangulation, it always induces a pseudo-quadrilateral and a unique flip.

2.2 Definitions: Laman Graphs and Combinatorial Rigidity

The definitions and results in this section are well known in Rigidity Theory. They are included
here for a self-contained presentation of the proofs given in the next section.

Laman graphs. A graph G with n vertices and m edges is a Laman graph if m = 2n − 3 and
every subset of k vertices spans at most 2k− 3 edges. This is called the definition by counts and
is one of the many equivalent ways in which Laman graphs can be defined.

Laman graphs are the fundamental objects in 2-dimensional Rigidity Theory. Also known as
isostatic or generically minimally rigid graphs, they characterize combinatorially the property
that a graph, embedded on a generic set of points in the plane, is infinitesimally rigid (with
respect to the induced edge lengths). See Section 3.1 for rigidity theoretic definitions, and
[51, 38, 82].

Henneberg constructions for Laman graphs. A Laman graph on n vertices has an inductive
construction as follows (see [42, 78]). Start with an edge for n = 2. At each step, add a new
vertex in one of the following two ways:

• Henneberg I (vertex addition): the new vertex is connected via two new edges to two
old vertices.

10



(a) (b)

2

4

3

 3

 1

 4
 2

 51 5

 6

Figure 9: Illustration of the two types of steps in a Henneberg sequence, with vertices labelled
in the construction order. The shaded part is the old graph, to which the black vertex is added.
(a) Henneberg I for vertex 5, connected to old vertices 3 and 4. (b) Henneberg II for vertex 6,
connected to old vertices 3, 4 and 5.

• Henneberg II (edge splitting): a new vertex is added on some edge (thus splitting the
edge into two new edges) and then connected to a third vertex. Equivalently, this can be
seen as removing an edge, then adding a new vertex connected to its two endpoints and
to some other vertex.

See Figure 9, where we show drawings with crossing edges, to emphasize that the Henneberg
constructions work for general, not necessarily planar Laman graphs.

The following result is stated by Henneberg [42], and proven by Tay and Whiteley [78].

Lemma 2.2 A graph is Laman if and only if it has a Henneberg construction.

In the next section, we will use a similar inductive proof technique to obtain a related
inductive construction for pointed pseudo-triangulations (also called, for these historical reasons,
a Henneberg construction).

2.3 Pointed Pseudo-Triangulations are Laman Graphs

The following theorem exhibits the combinatorial properties of pointed pseudo-triangulations
which imply useful rigidity theoretic consequences: they are Laman graphs, and hence generically
rigid.

Theorem 2.3 (Characterization of pointed pseudo-triangulations)
Let G = (V, E) be a graph embedded on the set P = {p1, · · · , pn} of points. The following

properties are equivalent.

1. (Minimum Pseudo-Triangulation) G is a minimum pseudo-triangulation of P.

2. (Pointed Pseudo-Triangulation) G is a pointed pseudo-triangulation of P.

11



3. (2n−3 Pseudo-Triangulation) G is a pseudo-triangulation of P with 2n−3 edges (and,
equivalently, with n − 2 faces).

4. (2n − 3 Planar and Pointed) The set of edges E is planar (non-crossing), pointed and
has 2n − 3 elements.

5. (Maximal Planar and Pointed) The edges E of G form a pointed and planar set of
segments, and E is maximal (by inclusion) with this property.

6. (Planar Pointed Henneberg-type Construction) G can be constructed inductively
as follows. Start with a triangle. At each iteration, add a new vertex in one of the faces
of the already constructed embedded graph (which will be a pointed pseudo-triangulation).
Connect in one of the two ways (see Fig. 10):

(a) Type 1: (degree 2 vertex) Join the vertex by two tangents to the already constructed
part. If the new vertex is outside the convex hull, the two tangents are uniquely
defined. If it is inside an internal pseudo-triangular face, there are three different
ways of adding two tangents to the three inner convex chains of the face, out of which
two are chosen.

(b) Type 2: (degree 3 vertex) Add two tangents as before. Then choose an edge on the
boundary chain between the two tangent points and remove it. This creates a pseudo-
4-gon. Re-pseudo-triangulate by adding the unique bitangent different from the one
just removed (flip). This edge will be incident to the newly added vertex.

Moreover, if any of the above conditions is satisfied, then the subgraph induced on any subset
of k vertices has at most 2k − 3 edges (the hereditary property). Therefore G is a Laman
graph.

For the proof, we will need some basic definitions and facts, most of which are folklore in
Computational Geometry. Therefore we present them in a sketchy manner.

Facts

1. Given a convex hull and an exterior vertex, there exist exactly two tangents from the point
to the hull.

2. Given a pseudo-triangle and a vertex interior to it, there exist exactly 3 tangents, all
interior to the pseudo-triangle, from the point to the three inner convex chains.

3. Given a pseudo-quadrilateral, there exist exactly two ways of adding a bitangent between
two inner convex chains. Each one induces a partitioning of the pseudo-quadrilateral into
two pseudo-triangles. This is Lemma 2.1.

4. (Flips in pointed pseudo-triangulations) Any internal edge in a pointed pseudo-triangulation
can be flipped: the edge is deleted and this joins two pseudo-triangles into a pseudo-
quadrilateral, which can then be re-pseudo-triangulated in exactly one other way. See
Lemma 2.1 and Fig. 6(c).
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(a) (b)

Figure 10: Henneberg steps for pointed pseudo-triangulations. (a) type 1 and (b) type 2. The
newly added vertex is black. Top row, when the new vertex is added on the outside face.
Bottom row, when it is added inside a pseudo-triangular face. For the type 2 step, a diagonal
was previously removed.

We are now ready for the proof of Theorem 2.3.

Proof:
1 ⇔ 2 ⇔ 3
Let G be a pseudo-triangulation, and let v = n, e and f denote its number of vertices, edges

and interior faces. Euler’s formula gives v − e + f = 1. Denote by di the degree of vertex i and
by ci the number of convex angles (corners) incident to it. If i is a pointed vertex, ci = di − 1,
otherwise ci = di. Let A be the set of pointed vertices, B the set of non-pointed (”bad”) vertices
of G and let b = |B| be the total number of non-pointed vertices in G. Then

2e =
n

∑

i=1

di =
∑

i∈A

(ci + 1) +
∑

i∈B

ci =
n

∑

i=1

ci + (n − b)

But
∑n

i=1
ci ≥ 3f since each face has at least three corners (exactly three if it is a pseudo-

triangle). Therefore 2e ≥ 3f + (n− b). Plugging this into Euler’s formula yields e ≤ 2n− 3 + b.
When each face is a pseudo-triangle, this holds with equality e = 2n− 3 + b and is minimum iff
e = 2n − 3 iff b = 0, i.e. when G is pointed.

3 ⇔ 4
One direction is obvious. For the other direction, let G be planar, pointed and with 2n − 3

edges and hence, by Euler’s formula, with n− 2 faces. A similar argument as above shows that
the total number of corners in G is c =

∑n
i=1

(di − 1) = 2e − n = 3(n − 2). Since each interior
face in a planar graph has at least 3 inner convex angles, if follows that each must have exactly
3 convex angles, hence it is a pseudo-triangle.
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2 ⇔ 5
If G is a pointed pseudo-triangulation, each new diagonal added to it will violate either

planarity or pointedness of at least one vertex, because there are no common bitangents to the
inner convex chains of a pseudo-triangle. Hence G is maximal. To prove the other direction,
let G be a planar and pointed graph to which no edge can be added without violating one or
the other of these two properties. Obviously G must contain all the convex hull edges, because
otherwise they can be added without causing any violation of planarity or pointedness. Assume
now that at least one face is not a pseudo-triangle. It is straightforward to show that each
face must be topologically a disk, and hence a pseudo-k-gon for some k ≥ 3. This is because
otherwise a “face” would be a polygon with holes, to which we could always add another diagonal
(a tangent, say, from a point on the outer boundary to an inner hole) while keeping the graph
still pointed and planar. But if a face is a pseudo-k-gon, for some k > 3, then we can always
add a new bitangent, contradicting maximality.

To prove that G is a Laman graph, we use the fact that planarity (non-crossing) and point-
edness are hereditary properties: if they are satisfied on G, they are satisfied on any subset of G.
We must prove that every subset of k vertices spans at most 2k − 3 edges. Indeed, if that was
not the case for some induced subgraph, then the proof of the equivalences 1 ⇔ 2 ⇔ 3 would
imply that it would violate either planarity or pointedness.

4 (⇔ 3) ⇔ 6
Let G be planar, pointed and with 2n − 3 edges. We will also use the derived fact that any

subset of k vertices spans at most 2k − 3 edges. We work out the Henneberg construction in
reverse. Because the number of edges is 2n − 3, there must exist at least one vertex of degree
strictly less than 4. This cannot be 1 or 0, because then the Laman count property would be
violated on the subset of the other n − 1 vertices. If there exists a vertex of degree 2, its two
adjacent edges are tangent to the face obtained by removing them, because of pointedness. For a
vertex of degree 3, the two extreme edges adjacent to it (i.e. those adjacent to the reflex angle of
the pointed vertex) must be tangents to the object obtained by removing them (again, because
of the property of pointedness). The face obtained by removing the third edge (before removing
the two extreme ones) is a pseudo-quadrilateral (this follows from the other equivalences), and
the addition of the second bitangent recreates a pseudo-triangle. Removing the vertex, the
remaining graph satisfies the same properties (because of the hereditary property). Hence the
argument continues.

The other direction is straightforward: at each step in a Henneberg-type construction, the
number of vertices increases by 1, the number of edges by 2 and the graph remains planar and
pointed. 2

In the rest of this paper we will only be concerned with pointed pseudo-triangulations, even if
we may omit the word pointed to simply the terminology.

Corollary 2.4 The underlying graphs of pointed pseudo-triangulations are generically mini-
mally rigid graphs.

Not all generically minimally rigid graphs have embeddings as pseudo-triangulations, because
not all are planar graphs. The smallest example is K3,3. However, a recent result [41] shows
that all minimally rigid planar graphs can be embedded as pseudo-triangulations.
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Laman graphs have further nice combinatorial properties, which are inherited by pseudo-
triangulations. For completeness, we give them here (but will not make any further use of
them.)

Theorem 2.5 (Tree decompositions of pseudo-triangulations)

1. Two spanning tree decomposition. If any edge is doubled, a pseudo-triangulation can
be decomposed into two spanning trees.

2. 2T3 decomposition. A pseudo-triangulation can be decomposed into three disjoint trees,
so that each vertex is adjacent to exactly two of them.

Proof: Part 1 is a direct consequence of the result of Lovasz and Yemini [53] for generically
minimally rigid graphs (Laman graphs). Part 2 is a consequence of Crapo’s theorem [32]. 2

3 Rigidity of Pseudo-Triangulations

We have shown that (pointed) pseudo-triangulations are Laman graphs, which are rigid in almost
all embeddings (“generically”, see [36]). We prove now that pseudo-triangulations have an even
more special property: they are always infinitesimally rigid.

We start by defining the needed concepts from Rigidity Theory. Although these results are
not new, the presentation is. We emphasize the role of the number of edges on the infinitesimal
rigidity and self-stress properties of a graph embedding. This perspective, based on rank and
orthogonality relations from elementary linear algebra, is then used in the proof of infinitesimal
rigidity for pointed pseudo-triangulations.

We have chosen the sequence of facts in such a way that it is clear what properties hold for
general frameworks sharing some combinatorial properties with pseudo-triangulations (such as
edge counts or planarity). This way, it is easy to extract what is specific to pointed pseudo-
triangulations, and generalize to other situations, when needed. Indeed, in the companion paper
[74] we generalize some of these properties to the oriented matroid setting.

3.1 Frameworks and Rigidity

Convention. From now on, we will use interchangeably P = (p1, · · · , pn) ∈ (R2)n, with
pi = (xi, yi) or its flattened version p = (x1, y1, · · · , xn, yn) ∈ R2n to stand for elements of
either (R2)n or R2n.

Frameworks and Configuration Spaces. A bar-and-joint framework (or a fixed edge-length
framework, or shortly, a framework) (G, L) is a graph G = (V, E), |V | = n, together with a
set of strictly positive weights L = {le|e ∈ E}, (le ∈ R, le > 0) meant to be used as edge
lengths. A realization G(P) of (G, L) on a set of points P = {p1, · · · , pn} ⊂ R2 is a mapping
i 7→ pi of vertices to points and edges to line segments (i.e. an embedding of G in the plane)
so that the length ||pi − pj || of the segment pipj corresponding to the edge e = ij is equal to
le. Since each realization comes together with a whole set of other realizations obtained from
it by translations and rotations, it is convenient to factor out the rigid motions of the whole
plane. This can be done, for instance, by pinning down an edge, e.g. if e = 12 ∈ E we will
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set x1 = y1 = 0, x2 = l12, y2 = 0. The set of all possible realizations of a framework, with
rigid motions factored out (e.g. via an arbitrary pinned down edge) is called its configuration
space. Its topological and differential properties do not depend on the choice of the pinned down
element.

(a) (b) (c)

Figure 11: A framework with two distinct embeddings, one of which (a) is rigid and the other
(b) is flexible, with one degree-of-freedom. Notice that the symmetry of (a) allows in (b) for
some pairs of vertices to be mapped to identical points, and some pairs of edges to be drawn
one on top of the other. This allows in (b) for two identical edges, embedded on top of each
other, to move with one degree of freedom, as a single dangling edge does. (c) The same graph
for other edge lengths has only rigid embeddings.

In this paper we are not concerned with questions of realizability, as we will always start with
a given embedding, from which the edge lengths are actually computed if needed. Therefore
the actual values of the edge lengths are not relevant to our discussion: the configuration space
will always be non-empty. To simplify the terminology, from now on we will usually refer to a
realization G(P) as a framework, and when we actually mean (G, L), we will say it explicitly.

Rigid and flexible frameworks. The configuration space of a (fixed edge-length) framework
(G, L) may be disconnected and in general may have a complicated topological structure. The
dimension of the component of the configuration space in which a framework (realization) G(P)
resides is called its number of degrees of freedom. If that component is a single, isolated point,
the framework G(P) is called rigid, otherwise it is flexible. We emphasize that rigidity and
flexibility refer only to the configuration space component to which a certain realization G(P)
belongs. Indeed, there exist frameworks (G, L) for which different components may have different
dimensions, see Fig. 11.

Minimal Rigidity. A rigid framework is minimal if the removal of any edge makes it flexible.
Otherwise we say that it is overbraced. The example in Fig. 11(c) is minimally rigid. Any extra
edge overbraces it.

Generically, the minimum number of bars needed to induce a rigid framework is m =
2n − 3. Indeed, the configuration space is given by m quadratic equations in 2n variables
{x1, y1, · · · , xn, yn}, so 2n independent equations are needed to get a discrete set of solutions.
We need three equations to eliminate the rigid motions, and the other 2n−3 must be independent
bar-lengths equations of the form (xi−xj)

2+(yi−yj)
2 = l2ij . Therefore generically we expect that
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2n− 3 independent edges and edge-length values will typically produce a zero-dimensional con-
figuration space; more than 2n − 3 edges will typically produce an empty configuration space,
except for very special, dependent values for some of the edge lengths; and less than 2n − 3
edges will induce flexible frameworks, with a number of degrees of freedom equal to 2n− 3−m.
The main difficulty in analyzing rigidity properties of frameworks is due to the occurrence of
non-generic situations.

Our main rigidity theoretic results on pseudo-triangulations and pseudo-triangulation mech-
anisms (sections 3.2 and 4.5) may be interpreted as saying that planarity and pointedness (as
in pointed pseudo-triangulations and subsets of their edge set) induce generic frameworks: their
configuration spaces have the generic dimension for the corresponding number of edges.

Infinitesimal Rigidity. An equivalent way of saying that a framework G(P) is flexible is
that its vertices can be moved continuously while preserving the lengths of the edges, such that
the motion is not a trivial rigid motion (translation and rotation.) The non-trivial motion is
called a flex or reconfiguration of the framework. It is a continuous curve (one dimensional
trajectory) p(t) = {p1(t), · · · , pn(t)} in the configuration space going through the point P giving
the framework realization, such that at each moment in time:

||pi(t) − pj(t)|| = lij (1)

for all edges ij ∈ E. If we assume that the flex p(t) has other good analytic properties (e.g. is
differentiable), then taking the derivative of equation (1) we obtain the conditions:

〈pi(t) − pj(t), p
′
i(t) − p′j(t)〉 = 0, ∀ij ∈ E (2)

Here 〈, 〉 is the dot product. The first-order derivative p′(t) of the motion p(t), computed at
a given moment in time t, is called an infinitesimal or instantaneous motion at time t. These
considerations motivate the following definition.

For a given framework G(p), an infinitesimal motion v = {v1, · · · , vn} is an assignment of a
velocity vi to each point pi such that the lengths of the edges are preserved:

〈pi(t) − pj(t), vi(t) − vj(t)〉 = 0,∀ij ∈ E (3)

A framework is infinitesimally (or first-order) flexible if it has an infinitesimal motion, oth-
erwise it is infinitesimally (or first-order) rigid.

Infinitesimally rigid frameworks are rigid, but the opposite statement may not always be
true. See Fig. 12 (a). To capture the relationship between rigidity and infinitesimal rigidity,
flexibility and infinitesimal flexibility of G(P), one must investigate the differential properties
of its configuration space in a neighborhood of the particular point (realization) G(P).

The Edge Map. Given a graph G with n vertices and |E| = m edges, the edge map or rigidity
map fG : R2n 7→ Rm associates to a point set p = (p1, · · · , pn) ⊂ R2n the vector of the squared
lengths of the edges ij ∈ E, in some fixed, predefined order:

fG(p1, · · · , pn) = (||pi − pj ||
2)ij∈E (4)

We say that a point p ∈ R2n is a regular or generic point of fG if the rank of the differential
of fG is maximum at p:

rank dfG(p) = max{rank dfG(q) : q ∈ R2n} (5)
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(a) (b) (c)

Figure 12: (a) A rigid framework which is not infinitesimally rigid. (b) An infinitesimally flexible
framework which is rigid. (c) A generically rigid graph in a flexible embedding.

Otherwise, p is a singular point.

If m ≥ 2n− 3, we expect the rank to be 2n− 3 for regular (generic) points. For m < 2n− 3,
the generic rank is m. The rank drops at singular points. The following closer analysis relates
it to the infinitesimal rigidity properties of the underlying framework G(P).

The Rigidity Matrix. The rigidity matrix MG(P) (shortly M) associated to an embedded
framework G(P) is the Jacobian matrix dfG(p) of the edge map at the point p ∈ R2n corre-
sponding to the embedding P = (p1, · · · , pn). It has a row for each edge ij ∈ E and 2 columns
for each vertex. The row indexed by the edge ij ∈ E has 0 entries everywhere, except in the ith
and jth group of 2 columns, where the entries are pi − pj , resp. pj − pi.

1 · · · i · · · j · · · n

ij







· · ·
0 · · · pi − pj · · · pj − pi · · · 0

· · ·







The linear subspace of infinitesimal motions v ∈ R2n of the framework is the kernel (null
space) of M , kerM = {v ∈ R2n | Mv = 0} ⊂ R2n. A vector of velocities (v1, · · · , vn) will
be interchangeably written as a flattened vector v ∈ R2n. Any such v (not necessarily an
infinitesimal motion) yields a set of values associated with the edges of E, dij = 〈pi−pj , vi−vj〉,
∀ij ∈ E. This set is a linear subspace, the image space of M , ImM = {d | d = Mv} ⊂ R|E|. The
sign of dij has a physical interpretation: if positive, v is an infinitesimal motion which expands
the edge, i.e. increases the distance between the vertices i and j. The other two important
linear subspaces associated with M are the null space kerMT of the transposed matrix MT and
its image space Im MT . They also have physical interpretations, as follows.

Self stresses. A self-stress on a framework G(P) is an assignment of scalars wij to edges
ij ∈ E such that the forces along the edges around each vertex, scaled by the self-stresses, are
in equilibrium: ∀i ∈ V ,

∑

ij∈E wij(pi − pj) = 0. Self stresses form a linear subspace kerMT =

{w = (wij)ij∈E |MT w = 0} ⊂ R|E|, which is orthogonal to ImM :

18



kerMT ⊥ ImM (6)

A non-trivial self-stress is one with at least one non-zero component wij 6= 0 on some edge
ij ∈ E.

A vector of scalar values associated to the edges w = (wij)ij∈E , not necessarily a self-stress,
induces a vector of velocities associated with the vertices, {v |v = MT w} ⊂ R2n. Each v is
componentwise a sum of the incident edge vectors, scaled by the wij factors: vi =

∑

ij∈E wij(pi−

pj). They form a linear subspace Im MT = {v | v = MT w, w ∈ R|E|} ⊂ R2n, which is orthogonal
on the subspace of infinitesimal motions kerM :

kerM ⊥ ImMT (7)

The rank relations. The following well-known relations hold between the dimensions of the
four linear spaces associated with the 2n × m matrix M :

dim kerM + dim ImMT = 2n (8)

dim kerMT + dim ImM = m

dim ImM = dim ImMT

Minimal Infinitesimal Rigidity. The kernel of the rigidity matrix ker M always contains the
3-dimensional linear subspace of trivial infinitesimal motions, translations and rotations.

The following Lemma is a simple consequence of the rank relations, and summarizes the
main consequence of the lack of self-stress for graphs with 2n − 3 edges. This is the minimum
number of edges that allows for infinitesimal rigidity.

Lemma 3.1 If m = 2n − 3, dim ker M = 3 iff dim ker MT = 0. In this case, the framework
G(P) is infinitesimally rigid iff it has no self-stress.

Proof: Using the rank relations (8), we infer that dim ker M = 3 iff dim Im MT = 2n − 3,
but Im MT = dim Im M , and further equal to m− dim ker MT . Since m = 2n− 3, this means
dim ker MT = 0. 2

When the number of edges drops below 2n−3, non-trivial infinitesimal motions are unavoid-
able.

Lemma 3.2 If m ≤ 2n − 4 then G(P) always has a non-trivial infinitesimal motion.

When the number of edges exceeds 2n − 3, self-stress is unavoidable.

Lemma 3.3 If m ≥ 2n − 2 then G(P) always has a non-trivial self-stress.

Generic Minimal Rigidity. We focus now on graphs with exactly 2n−3 edges. If such a graph
has an infinitesimally rigid embedding G(P), then G is not only rigid at P, but also on any point
set P ′ belonging to a small neighborhood of P. Because of the edge count, this is equivalent
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to G(P ′) being self-stress-free on the same neighborhood. Moreover, G satisfies the property
minimally: the removal of any edge turns it into a graph which is no longer infinitesimally rigid.

We say that G(P) is a generic rigid embedding of a graph G with 2n − 3 edges if it is
infinitesimally rigid (or, equivalently, self-stress-free) on an open neighborhood of P. Such a
point P is a regular point of the edge map for G.

A graph G with 2n−3 edges is called a generically (minimally) rigid graph if it has a generic
infinitesimally rigid embedding.

Theorem 3.4 (Laman’s Theorem [51]) G is generically minimally rigid iff G is a Laman
graph.

Self-stresses in Planar Frameworks and Maxwell’s Theorem. The following beautiful
connection between the existence of non-trivial self-stresses and 3d-liftings of planar graphs goes
back to Maxwell [55, 56]. Some topological details, as well as the extension to signed stresses,
have been fixed later (see [33]). We present here only the simplified formulation that will be
used later in our proofs.

A 3d-lifting of a planar (non-crossing) framework G(P) is an assignment of a height zi ∈ R
to each vertex i such that when the graph G is lifted in 3d on the points (pi, zi) := (xi, yi, zi),
the vertices of each face of G are coplanar. We may assume without loss of generality that the
outer face of G stays in the original plane (zi = 0 for vertex pi on the outer face), and the other
vertices are lifted. A lifting is trivial if all zi’s are 0. We are interested only in non-trivial liftings.

Notice that such a lifting (in the particular case of a non-crossing framework embedding
presented here) is a polyhedral terrain. The outer (unbounded) face is assumed to be flat at
level z = 0.

Two faces adjacent along an edge ij span a dihedral angle which, when viewed from below,
may be convex, reflex or equal to π. Call the edge a mountain if this angle is convex, valley if
reflex and flat if equal to π.

Not all planar graph frameworks admit non-trivial 3d-liftings. Maxwell’s theorem character-
izes those which do.

Theorem 3.5 (Maxwell [55, 56], Crapo and Whiteley [33]) A planar (non-crossing) framework
has a non-trivial 3d lifting if and only if it has a non-trivial self-stress. Moreover, the corre-
spondence between self-stresses and liftings maps the edges with positive self-stress to mountain
edges, those with negative stress to valley edges and those with zero stress to flat edges.

Bow’s construction and Maxwell liftings for non-planar graphs. Maxwell’s theorem can
be extended to non-planar frameworks by applying a simple trick, called Bow’s construction, see
[57]. Let G(P) be a framework where some of the edges have proper crossings. We will introduce
a new vertex for each crossing of two edges. Then we ”split” each of the two crossing edges into
two new edges, each one having the new vertex as an endpoint. It can be easily proven that the
resulting framework inherits the self-stress properties of the original framework, including the
signs of the split edges. See [57, 33], and Figure 13(b) and (c).

3.2 Pointed Pseudo-Triangulations are Infinitesimally Rigid

We prove now the main rigidity theoretic property of pointed pseudo-triangulations: they are
always infinitesimally rigid. The main tool used in the proof is Maxwell’s theorem. The same
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(a) (b) (c)

Figure 13: (a) The smallest example of a planar self-stressed graph with no collinear vertices.
It lifts to a tetrahedron. The thick, convex hull edges support a positive self-stress, and are
valley edges in the lifting. The internal, thin grey edges, support a negative self-stress and lift
to mountain edges. (b) The same graph, in a non-planar embedding, and the corresponding
self-stresse. (c) Bow’s construction applied to the embedding in (b): a new vertex is added at
the cross-point of the two internal diagonals. The signs of the self-stresses is inherited from the
original graph. The self-stressed planar graph in (c) lifts to a pyramid.

tool will be used in the next section to prove that pseudo-triangulations with a convex hull edge
removed are expansive mechanisms.

Theorem 3.6 Pointed pseudo-triangulations are always infinitesimally rigid.

Let us reformulate the theorem, to emphasize all the properties of pointed pseudo-triangulations
that the proof will exhibit.

Theorem 3.7 (Infinitesimal Rigidity of Pointed Pseudo-Triangulations) A pointed pseudo-
triangulation G(P) is a planar Laman graph embedding which is always infinitesimally rigid and
self-stress-free.

In the proof, we will make use of the following simple fact.

Lemma 3.8 For any lifting into 3d at non-constant height of a flat polygon, all vertices of
maximum height are corners.

Proof: All vertices on the convex hull of a polygon are corners. The maximum height is
attained on the convex hull of a 3d object, which, for the flat lifting considered here, is exactly
the 2d convex hull. See Fig. 14. 2

Proof of Theorem 3.7
Because G is a Laman graph, and hence has 2n − 3 edges, we use Lemma 3.1 to prove

infinitesimal rigidity by showing that G(P) is self-stress-free.
For the sake of a contradiction assume that there exists a non-trivial self stress (we)e∈E ,

we 6= 0 for some e ∈ E. Then, by Maxwell’s Theorem, there exists a non-trivial 3d-lifting which
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Figure 14: Illustration of Lemma 3.8: the vertex of maximum z-coordinate of the lifted face
projects to a vertex on the convex hull of the flat polygon. Reflex vertices cannot lift to maxima.

is not flat on the edges with non-zero self-stress. Consider the points of local maximum height in
the lifting. If the set of these points contains only vertices of the convex hull of G(P), it means
that the whole lifting lies underneath the z = 0 plane. We can simply reverse all the signs to
make it above the plane, and assume that we have a local maximum which is not a convex hull
vertex and lies above the xy-plane. This is strictly above the xy-plane, since the self-stress is
not trivial. We will derive a contradiction by considering one of these local maxima.

Consider the convex hull of the maximum region and a vertex on this convex hull. By Lemma
3.8, this vertex must be a corner of all the faces incident to it, hence its projection is a corner
in all incident faces. This contradicts the pointedness of the pseudo-triangulation.

Since the lifting is impossible, the graph is self-stress-free and hence infinitesimally rigid. 2

Corollary 3.9 A pointed pseudo-triangulation G(P) is always infinitesimally rigid, and mini-
mally so: if any edge is removed, it becomes infinitesimally flexible.

4 Expansive 1dof mechanisms from pseudo-triangulations

In this section we turn our attention to flexible frameworks, specifically those obtained by
removing an edge from a Laman graph in a generic embedding. We show that we always obtain
a 1dof mechanism: a framework with a one-dimensional configuration space. A pointed pseudo-
triangulation with a convex hull edge removed will be called a pseudo-triangulation mechanism
or shortly a ppt-mechanism.

The main theorem of this section is that ppt-mechanisms are expansive and smooth for a
bounded open interval of their one-dimensional configuration space. This interval is charac-
terized combinatorially by all the realizations of the underlying framework having the same
combinatorial structure, more precisely, what we call the combinatorial pseudo-triangulation
(defined in this section). These pseudo-triangulation mechanisms will be used in Section 6 as
the building blocks of the expansive convexifying trajectory of our solution to the Carpenter’s
Rule problem.
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4.1 Preliminaries: Laman graphs with a removed edge

We first investigate the combinatorial structure of graphs obtained by removing an edge from a
Laman graph. We show that they have a natural decomposition into disjoint Laman subgraphs,
called rigid components.

Laman-minus-one graph. This is a graph obtained by removing an edge from a Laman graph.
It has 2n − 4 edges, and each subset of k vertices spans at most 2k − 3 edges.

(b)(a) (c)

Figure 15: (a) The decomposition of a Laman-minus-one graph into rigid components, six in
this case: the three big grey blocks, and the three remaining edges. (b) The collapsed Laman-
minus-one graph induced by (a). (c) An equivalent Laman-minus-one graph, differing from (a)
on the rigid components (the graph edges are black and thick).

Rigid components in Laman-minus-one graphs. In a Laman-minus-one graph, consider
maximal subgraphs GR = (VR, ER) spanning exactly |ER| = 2|VR| − 3 edges. Since subsets
of VR satisfy the Laman count property, such a subgraph GR is a Laman graph, called a rigid
component (r-component) of G.

Lemma 4.1 The edge set of any Laman-minus-one graph is partitioned into (disjoint) rigid
components.

Proof: A rigid component is well defined, by maximality. Two rigid components can share a
vertex, but not more. Indeed, if there is no edge between the two common vertices, the union of
the two r-components would violate the Laman count. Otherwise, if there is an edge, maximality
would be violated, as in this case the union of the two r-components would be a larger Laman
subgraph. 2

See Figure 15(a) for an example.

Collapsed Laman-minus-one graphs. Intuitively, in each rigid component all the diagonals,
present or missing, are rigid. Hence, although a Laman-minus-one graph will (generically) be
flexible, its r-components will move rigidly. If we replace each rigid component in a Laman-
minus-one graph by the complete graph, the resulting graph is called a collapsed Laman-minus-
one graph. See Figure 15(b) for an example.

23



Equivalent Laman-minus-one graphs. Two Laman-minus-one graphs are called equivalent
if they differ only in the choice of Laman subgraphs spanning certain rigid components. In other
words, the collapsed graphs of two equivalent Laman-minus-one graphs are the same. See Figure
15 (a,c).

4.2 1dof Mechanisms: infinitesimal flexibility and smooth trajectories

We now investigate the rigidity-theoretic properties of Laman-minus-one graphs. Generically,
they are flexible, with one-degree-of-freedom. We identify the properties of their smooth inter-
vals, and the unpleasant role of singularities in their configuration spaces. In the next section
4.3 we will use these considerations to justify the investigation of smoothness properties for
pseudo-triangulation mechanisms and their role in the convexification algorithm.

Minimal Infinitesimal 1dof Flexibility. Consider a Laman-minus-one graph: it has 2n − 4
edges. The kernel ker M of the rigidity matrix M always contains the 3-dimensional linear
subspace of trivial infinitesimal motions, translations and rotations.

The proof of the following Lemma follows along the same lines as the proof of Lemma 3.1,
and is a simple consequence of the rank relations (8). It shows the basic consequences of the
lack of self-stress for such graphs.

Lemma 4.2 If m = 2n − 4, dim ker M = 4 iff dim ker MT = 0. In this case, the framework
G(P) is infinitesimally flexible with one-degree-of-freedom iff it has no self-stress.

In particular, for the Lemma 4.2 to be satisfied, G must be a Laman-minus-one graph and
each of its r-components must be in generic (self-stress-free) embeddings (as Laman (sub)graphs).
But this condition is not sufficient. All the rigid components of the Laman-minus-one graph in
Figure 12 (b) are edges, which are always generic (if embedded on two distinct endpoints), but
the graph itself is not in a generic embedding, since it has a self-stress.

One-degree-of-freedom mechanisms. The above considerations proved that Laman graphs
with a missing edge, in generic embeddings, have a one-dimensional space of infinitesimal mo-
tions. Moreover, nearby embeddings are also generic. In fact, the following stronger property
holds.

Theorem 4.3 (Main Theorem of 1dof mechanisms) Let G be a Laman-minus-one graph,
and assume that it has a generic (regular, stress-free) embedding G(P). Then the component of
its configuration space containing the given generic embedding is one-dimensional, and smooth
in the neighborhood of the given generic embedding.

Proof: The statement is a direct consequence of Proposition 2, page 282 in [12], which relies
on the Inverse Function Theorem (see also [13]). Alternatively, it follows from the fundamental
theorem of Ordinary Differential Equations, which in turn is a direct consequence of the Implicit
Function Theorem. See Chapter 2 in [10], Corollaries 1 (existence) and 2 (uniqueness) on page
93 to the Fundamental Theorem 1 on page 89. 2

A framework satisfying the conditions of the previous theorem is called a 1dof mechanism.
A simple example is the Laman graph K3,3 with a missing edge from Fig.16(a). In the special
embedding of Fig.16 (b), it is the classical Peaucellier linkage, used to convert between circular
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and linear motion. This embedding is special, in the sense that the edge lengths are chosen to
have very specific relationships between them, while in Fig.16(a) they are as general as possible.
The previous theorem does not apply to the framework in Fig. 12(b), which is not flexible: the
component of its configuration space to which it belongs contains only this realization, which is
not generic.

(a) (b)

Figure 16: The classical Peaucellier linkage (b), and a general, generic embedding (a) of the
underlying graph.

Given a 1dof mechanism G(P), consider the component of its configuration space to which
it belongs. We will refer to this component as the lifetime or lifespan of the mechanism G(P),
and to any configuration in the lifetime of a mechanism as a snapshot.

Topology of the configuration space of a 1dof mechanism. The topology of the config-
uration space component of a 1dof mechanism is also relevant. If there are no singular points,
it is topologically a circle. But in general it may contain singularities. The simplest example is
the four-bar mechanism of Fig.17. Its configuration space is smooth, unless there is a position
of alignment for the four joints. This is a consequence of a general theorem of [45] regarding
singularities in configuration spaces of planar polygons.

In this case, the one-dimensional configuration space component is topologically a figure-
eight instead of being a smooth circle, so at the singular point (the crossing of the two branches
of the figure-eight, corresponding to the alignment of the joints of the mechanism), the trajectory
is not well determined. The four-bar mechanism from Fig.17 is shown in several embeddings
as a pointed pseudo-triangulation with a convex hull edge removed. Its configuration space is
smooth everywhere, except at the alignment position, where it is a degenerate pseudo-triangle
with all corner angles equal to zero.

Such singularities in the configuration spaces of 1dof mechanisms are troublesome: how do
we decide which branch to follow, and how do we enforce algorithmically such a decision? If
there are no singularities, however, there are only two directions in which such a mechanism can
move. In the next section 4.3 we will prove that pseudo-triangulation mechanisms are smooth
as long as the combinatorial structure of the embedding is maintained. This is exactly what
the algorithm in section 6 guarantees. Therefore such problems related to singularities will not
occur for the mechanisms of interest in this paper.
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(a) (b)

Figure 17: A semi-simple degenerate (collinear) 4-gon and the four possible ways in which a
motion could go from the singular aligned position.

4.3 Expansion properties of 1dof Mechanisms

We start looking at the free diagonals of a Laman-minus-one mechanism: those which do not
maintain rigidly their length, during a motion of the mechanism. They may expand or contract,
i.e. increase or decrease in length. In this section, we investigate the expansion pattern of
Laman-minus-one mechanisms.

The expansion pattern of a 1dof mechanism. Let G(P) be a generic embedding of a Laman
graph without an edge e. The space of infinitesimal motions is one-dimensional. Consider an
infinitesimal motion v which expands the edge e, i.e. de := 〈pi − pj , vi − vj〉 > 0. Such a motion
always exists: take any motion v and if it doesn’t expand, replace it with −v. The collection
s = (sij)ij∈E of the expansion signs of all the edges ij ∈ E, sij := sign〈pi − pj , vi − vj〉, is called
the expansion pattern or the expansion signature of G(P). The sign is zero on edges of G and
on edges implied by G, i.e. edges between vertices belonging to the same rigid component of G,
and non-zero elsewhere.

The following is a straightforward consequence of continuity and of Theorem 4.3.

Corollary 4.4 The expansion pattern of a generic 1dof mechanism G(P) is the same for all
the realizations in a sufficiently small neighborhood of P.

Proof: The expansion pattern depends continuously on the points and their velocities, which
in turn depend on the rigidity matrix. All these values change continuously in a sufficiently small
neighborhood of P, where the rigidity matrix has maximal rank. Hence the signs do not change
in a small neighborhood. 2

The following simple Lemma shows that the expansion pattern is the same for equivalent
Laman-minus-one graphs embedded on the same set of points (as it is for the whole collapsed
Laman-minus-one mechanism).
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Lemma 4.5 Let G(P) and G′(P) be generic realizations of equivalent Laman-minus-one graphs
on the same point set P. Then G(P) and G′(P) have the same expansion pattern.

Proof: We replace an infinitesimally rigid component by another one with the same property:
the expansion sign is zero on all the edges between vertices in the same rigid component. The
space of infinitesimal motions remains the same, and hence so does the expansion sign on all
the other edges. 2

Theorem 4.6 (Smooth interval of an expansive pattern)
A bar-and-joint framework G(P) based on a Laman-minus-one graph G in a generic embed-

ding is a flexible 1dof mechanism maintaining its expansion pattern in an open interval contain-
ing P. The interval is bounded by two special embeddings of G, each one corresponding to either
some free edge(s) acquiring a zero-expansion value, or to a singularity (in the component of the
configuration space of G containing G(P)).

Proof: The proof of Corollary 4.4 shows that the maximal interval consisting of self-stress-
free realizations of G with the same expansion pattern as G(P), and containing G(P), is well
defined. Its endpoints consist either in points where G(P) acquires a self-stress (and hence the
rank of the rigidity matrix drops, and the configuration space becomes singular), or where the
expansion sign on some free edge becomes zero. 2

Expansive 1dof mechanisms. A 1dof infinitesimal mechanism is (infinitesimally) expansive if
there exists an infinitesimal motion such that all the free edges increase infinitesimally. I.e., there
exists an assignment of velocity vectors vi to each vertex pi so that 〈pi − pj , vi − vj〉 ≥ 0, ∀i, j:
the expansion pattern consists only in 0’s and +’s.

Notice that the expansive property is defined infinitesimally. A 1dof mechanism G(P) cannot
be expansive throughout its lifetime, but only for a certain interval of time. We are interested
in generically infinitesimally expansive 1dof mechanisms. Indeed, if G(P) is expansive at P,
and this is a generic framework, then it will be expansive in a neighborhood of P. Theorem
4.6 implies in this case that the configuration space is smooth and expansive in a neighborhood
of P. An expansive mechanism is an infinitesimally expansive 1dof mechanism G(P), together
with the maximal interval I around P in which it is infinitesimally expansive. We summarize
these considerations in the following theorem, which will be used in section 6..

Theorem 4.7 Let G be a Laman graph with a missing edge and let G(P) be a generic infinitesi-
mally flexible realization. If G(P) is infinitesimally expansive, then G is an expansive mechanism
in an open interval around G(P), bounded by either a singularity or by an embedding where a
free edge acquires zero-expansion.

For example, the Peaucellier linkages in Fig.16 are not expansive, in the given realizations.
Fig. 18 illustrates several snapshots in the lifetime of a 1dof mechanism. The first one is a
semi-simple pointed pseudo-triangulation, and will be analyzed later. The second is a pointed
pseudo-triangulation and is expansive. The last one is not infinitesimally expansive. The first
and the third, Fig. 18 (a,c), lie at the boundary of the interval in which the mechanism in Fig.
18 (b) is infinitesimally expansive.
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(a) (b) (c) (d)

Figure 18: Four snapshots from the lifetime of a 1dof mechanism: (a) and (a) are the limit
situations of of (b), which is expansive. (d) is not expansive: some diagonals increase, some
decrease. Notice the change in the combinatorial structure from (b) to (d), via (c).

Farkas’ Lemma for self-stresses and infinitesimal increases. In section 3.1 we defined
the four linear spaces associated to the rigidity matrix and stated two orthogonality conditions
(6 and 7). The orthogonality condition (6) between the space of self-stresses ker MT and the
space of infinitesimal length increases Im M implies that:

∑

ij∈E

wij〈pi − pj , vi − vj〉 = 0, ∀w = (wij) ∈ kerMT , ∀v ∈ R2n (9)

Let us rewrite it in terms of the values dij = 〈pi − pj , vi − vj〉, the infinitesimal increases.

∑

ij∈E

wijdij = 0, ∀w = (wij) ∈ kerMT , ∀dij = 〈pi − pj , vi − vj〉 (10)

The sum cannot be zero if all the summands are strictly positive. In particular, this implies
that there must exist a pair of edges ij, kl ∈ E such that the signs are different: wijdij > 0 ⇔
wkldkl < 0. We will refer to the sign of wij as the self-stress sign, and to the sign of dij as the
increase sign.

Interpreting this condition for all edges proves the following Theorem. Alternatively, this
follows from Farkas’ Lemma, or Linear Programming duality, see [14].

Theorem 4.8 (Farkas’ Lemma for self-stresses) Let G(P) be a framework, w ∈ kerMT a
self-stress on it and v an infinitesimal motion vector which preserves infinitesimally the lengths
of some of the edges in G and increases or decreases the others. Denote by dij := 〈vi−vj , pi−pj〉,
for ij ∈ E, the infinitesimal increase or decrease value.

Then there exist at least two edges ij and kl which are not moved rigidly by v, and on which
exactly one of the following conditions holds:

1. Either the self-stress signs on both the edges are the same, wijwkl > 0, and the increase
signs differ dijdkl < 0

2. Or the self-stress signs differ wijwkl < 0, and the increase signs are the same dijdkl > 0
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We will use the following corollary to prove the expansiveness of pseudo-triangulation mech-
anisms.

Corollary 4.9 Let G(P) be a Laman framework with an extra edge and let v be an infinitesimal
motion v which acts rigidly on a subset of 2n − 4 edges of G and which changes infinitesimally
the lengths of the other two remaining edges. Then G(P) supports a self-stress, and the signs of
the self-stress on the two non rigid edges satisfies exactly one of the following two conditions:

1. Either both self-stresses have the same sign, and the two edge increases have different signs

2. Or the two self-stresses have different signs and the two edge increases have the same sign

4.4 Definitions: Combinatorial Equivalence of Pseudo-Triangulations

In this section we define what it means for two pseudo-triangulations or two pseudo-triangulation
mechanisms to be combinatorially equivalent. We use this concept to characterize the interval
of time when a pseudo-triangulation mechanism is expansive, and to identify the moment when
it stops being so. Along the way, we define combinatorial pointed pseudo-triangulations and
mechanisms.

Plane Graphs. A non-crossing embedding of a connected planar graph G partitions the plane
into faces (bounded or unbounded), edges and vertices. Their incidences are fully captured by
the vertex rotations: the ccw circular order of the edges incident to each vertex in the embedding.
A sphere embedding of a planar graph refers to a choice of a system of rotations (and thus of
a facial structure), and is oblivious of an outer face. A plane graph is a spherical graph with a
choice of a particular face as the outer face.

A (combinatorial) angle (incident to a vertex or a face in a plane graph) is a pair of consecutive
edges (consecutive in the order given by the rotations) incident to the vertex or face.

Combinatorial frameworks. A combinatorial framework G(M) associated to a framework
realization G(P) is obtained by retaining (in M) only some combinatorial information from the
underlying oriented matroid M of the set of points P. Since in this paper we work only with
special types of frameworks, to keep the focus on the main problem we do not give here the
general definition, but see the upcoming paper [74]. In our particular case, when the framework
is planar, the information M retained from the embedding will be, for each vertex i, the signed
circular sequence i : j1 · · · jn−1 of vertex indices j 6= i in which a directed line through pi, rotating
ccw around the vertex encounters the adjacent edge vectors −−→pipj . An index j corresponding to
the edge vector −−→pipj is recorded positively or negatively depending on whether the rotating
directed line encounters it in a way that matches its direction or the opposite one. This concept
is a specialization of the local sequences of Goodman and Pollack [37] or hyperline sequences of
Bokowski [22] (see also [72] and [23]) and retains (partial) oriented matroid structure from the
underlying set of points P. In particular, we can read off from this information the planar nature
of an embedding of the framework, the underlying plane graph (rotations) and the pointed or
non-pointed nature of the edge vectors at each vertex.

Combinatorial equivalence of planar frameworks. Two planar frameworks are combina-
torially equivalent if there is a one-to-one correspondence between their vertices preserving edges
and faces, the outer face and its orientation, and the underlying partial oriented matroid, i.e.
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the circular ccw order of directed lines through the edge vectors around each vertex. This just
means that they have the same underlying combinatorial framework (and the embeddings have
the same orientation.)

In particular, this defines combinatorially equivalent pseudo-triangulations. The underlying
combinatorial framework captures the information. We define now an alternative, equivalent
but somewhat easier to understand concept, first described and used in [41].

Combinatorial pseudo-triangulation. Let G be a plane connected graph 1. A combinatorial
pointed pseudo-triangulation (cppt) of G is an assignment of labels big (or reflex) and small (or
convex) to the angles of G such that:

(i) Every face except the outer face gets three vertices marked small. These will be called the
corners of the face.

(ii) The outer face gets only big labels (has no corners).

(iii) Each vertex is incident to exactly one angle labeled big and is called pointed.

Let G(P) be a pointed pseudo-triangulation (ppt), to which we will associate naturally a
combinatorial pointed pseudo-triangulation (cppt) G(C) by forgetting the point coordinates P
and retaining (in C) only the plane graph structure and the label (convex or reflex) of each
angle.

Two pointed pseudo-triangulations are combinatorially equivalent if they have the same un-
derlying cppt structure.

A fundamental idea of our convexification algorithm described in Section 6 will be to use
mechanisms obtained from pointed pseudo-triangulations, and to reconfigure them continuously
as long as the combinatorial pseudo-triangulation does not change (where the removed convex
hull edge is taken into account when considering the cppt structure). See Figure 18 for an
illustration.

4.5 Pointed Pseudo-Triangulation Mechanisms Move Expansively

We are now ready to prove the main rigidity-theoretic result concerning pointed pseudo-triangulation
mechanisms: they are expansive 1dof mechanisms for as long as the combinatorial pointed
pseudo-triangulation is unchanged. At one of the two endpoints of the expansiveness interval,
the configuration space of a ppt-mechanism may sometimes be singular. We show that for cer-
tain special situations (which will be the only ones relevant for the convexification algorithm
of simple planar polygons), singularities never occur. This will guarantee that the algorithm
behaves correctly at those moments.

As a corollary, we obtain that all frameworks which are Laman-minus-one equivalent to a
pointed pseudo-triangulation mechanism are also expansive.

Theorem 4.10 (Infinitesimal expansiveness of pseudo-triangulation mechanisms)
A bar-and-joint framework whose underlying graph is obtained by removing a convex hull edge
from a pseudo-triangulation is an infinitesimal 1dof expansive mechanism.

1The definition is valid in a more general setting than what we need in this paper, see [41, 61]

30



Proof: Let G be the underlying graph of the pointed pseudo-triangulation, ec be the removed
convex hull edge (so that G\{ec} is a ppt-mechanism) and e be an arbitrary edge not in G. As a
Laman-minus-one graph, G \ {ec} has a natural decomposition into rigid components. We must
prove that, when the removed convex hull edge ec is expanded, so does any other free diagonal
e (i.e. one which is not part of a rigid component). Indeed, the missing diagonals inside rigid
components are not changing in length.

Let v be an infinitesimal motion preserving the edge lengths of G \ {ec} and increasing the
length of the edge ec, dec

> 0. We want to prove that it also increases the length of the edge
e, i.e. de > 0. Consider the graph G ∪ {e}, with 2n − 2 edges. It has a non-trivial self-stress.
Corollary 4.9 implies that it is sufficient to prove that this self-stress cannot be strictly positive
on both ec and e. Assume for the sake of a contradiction that this happens, i.e. that G∪{e} has
a self-stress w with wec

> 0 and we > 0. We will interpret this in terms of the induced Maxwell
lifting to get a contradiction.

(a) (b)

2

3

4

5

6

7

1

 2

 3

 4  5

 6

 7

 1

Figure 19: The mountain/valley argument: (a) Cutting just below the vertex of maximum z-
coordinate (vertex 1), we get the image in (b). There must be at least 3 mountain edges incident
to 1, and their projections are non-pointed. In (a), the mountain edges are 12, 13, 15 and 17.

Consider the framework G ∪ {e} obtained from G by adding the extra edge e. Since it is no
longer a pointed pseudo-triangulation, either an endpoint of this new edge e is non-pointed, or
the edge e crosses some other edges of the pseudo-triangulation, or both. If new crossings have
been introduced, we will apply Bow’s construction to obtain a new planar framework G′(P ′),
which will have n′ vertices and 2n′ − 2 edges. In either case, the new framework is non-pointed
only at (one or possibly both of) the endpoints of e or at the crossings of e with other edges.
Denote by M the set of non-pointed vertices: the endpoints of e, if non-pointed, and the crossings
of e with other edges, if there are such crossings. M is non empty.

The signs of the self-stresses are preserved by Bow’s construction. Since we assumed a strictly
positive self-stress on ec and e, this means that both ec and e are valley edges, in a Maxwell
lifting of G ∪ {e} (and this extends to the split edges in case the Bow’s construction has been

31



applied). It means that the only edges which could be mountain edges are the edges of G.
We now apply the same argument as in Theorem 3.7. We look for a vertex of maximum

height and conclude that it must be non-pointed, hence only those in M are candidates.
We show first that the maximum cannot be attained (locally) on more than a vertex, i.e.

not on an edge or face or larger substructure. Indeed, if an edge would be at maximum height,
its two endpoints would have to be in M . But the edges between vertices in M are either e

or splittings of e and have negative stress, therefore lift to valleys. Valleys cannot be maxima,
obviously.

To complete the proof, let’s focus on the vertex of maximum height and call it the tip. If the
tip is a Bow vertex, then its four incident edges must all be mountain edges, because of their
collinearity. These include the split added edge e. But this contradicts the previous argument
that only edges of G may be mountain edges.

So we may now assume without loss of generality that the maximum is vertex 1 (see Fig. 19).
Because 1 is an isolated maximum (not part of a local maximum subgraph), then all its incident
faces are slanted (non-horizontal). Cutting the lifted polyhedral surface with a plane slightly
below the tip, we get in this cut plane a simple closed polygon (therefore, with at least three
vertices) containing the projection of the tip vertex 1 inside it, and therefore inside its convex
hull. The projections on the cut plane of the polyhedral surface edges incident to 1 which are
mountain edges must join the projection of the tip to the convex hull vertices of the projection
in a non-pointed manner (because the projection lies in their convex hull). See Fig. 19 for an
illustration. But these are exactly the edges incident to 1 in G, and they form a pointed edge
set, hence the contradiction. 2

Corollary 4.11 Let G(P) and G′(P) be generic realizations of equivalent Laman-minus-one
graphs. If G(P) is a pointed pseudo-triangulation mechanism, then G′(P) is also a 1dof expansive
mechanism.

Proof: We replace an infinitesimally rigid component by another one with the same property.
The space of infinitesimal motions and the expansion pattern do not change. 2

Flexible expansiveness of pointed pseudo-triangulation mechanisms. We summarize
what we have shown so far.

A bar-and-joint framework G(P) obtained by removing a convex hull edge e from a pseudo-
triangulation is a flexible 1dof expansive mechanism for as long as the combinatorial pseudo-
triangulation (of G ∪ {e}) doesn’t change. The interval of expansiveness is bounded by two
special embeddings of G ∪ {e}: one has (at least one) semi-simple pseudo-triangular face (with
at least one zero-angle corner), the other has (at least one) aligned pair of extreme edges (an
angle of π at a non-corner). A special instance of the latter case occurs when the missing convex
hull edge aligns with another convex hull edge.

The interval contains no singular points (of the configuration space), since pseudo-triangulations
are infinitesimally rigid. Hence the mechanism is smooth in this interval. It remains to prove
(in the next section) that if the semi-simple pseudo-triangular face is not collapsed to a flat
polygon, then this extreme embedding is not singular. The other extreme embedding (with an
aligned vertex) is never a singularity.
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4.6 Pseudo-triangulation mechanisms with semi-simple but not flat pseudo-

triangles are non singular

There is only one important thing left to be proven: that singularities cannot occur, for the
types of pointed pseudo-triangulation mechanisms used in this paper. More precisely, we have
to address the case of those pointed pseudo-triangulations which contain semi simple, but not
flat pseudo-triangles. A flat pseudo-triangle has all its vertices embedded on a line, and is
therefore singular. But such flat pseudo-triangles never appear in the convexification algorithm
described in Section 6. The algorithm uses, however, semi-simple pseudo-triangles: these can
have some flat corners (possibly more than one), but not be altogether flat. Moreover, even
when zero-angle corners occur, the incident edges do not overlap completely. Indeed, this is the
definition of semi-simplicity given in Section 2.1.

We show now that these semi simple pointed pseudo-triangulations satisfy the same properties
as pointed pseudo-triangulations: they are self-stress-free. With a convex hull edge is removed,
such an object will appear as the starting point of the expansion interval of the underlying
graph. By proving that they are never stressed, we guarantee that the configuration space is
smooth at that point, which implies that the motion is well defined.

Theorem 4.12 Semi simple pseudo-triangulations are infinitesimally rigid.

Proof: We need only a simple extension of the argument used in the proof of Theorem 3.7,
to handle the semi simple pseudo-triangular faces. If we assume that there exists a lifting where
the two overlapping edges are lifted to two distinct lines, then there is no way of obtaining a
lifted flat face for the semi-simple pseudo-triangle. So the two edges must overlap in the lifting.
But then, the face that must be lifted appears in the lifting as a (pure) pseudo-triangle (plus
a segment attached to it), with a new corner at the position where the endpoint of one of the
two overlapping edges lies on the other edge. Extending the argument used in Theorem 3.7, the
only possible placement of a vertex of maximal height would then be at this new corner. But
this is impossible, because it belongs to a lifted edge (the larger of the two overlapping ones).
The whole edge cannot be at maximum height, because its endpoints are pointed. Hence the
contradiction to the existence of a lifting, and of a self-stress. 2

Corollary 4.13 Semi simple pseudo-triangulations with a convex hull removed are self-stress-
free, hence non-singular.

Proof: Removing an edge from a Laman graph in a generic embedding results in a self-
stress-free Laman-minus-one graph. 2

This concludes the sequence of rigidity theoretic properties of pointed pseudo-triangulations
and allows us to use them as building blocks describing simple motions for the convexification
algorithm. We summarize their properties in the following Theorem, on which the correctness
of the Algorithm described in Section 6 relies.

Theorem 4.14 (Motion of Pointed Pseudo-Triangulation Mechanisms) A pointed pseudo-
triangulation mechanism moves expansively on a unique, well defined (one-domensional) trajec-
tory in its configuration space, from the moment when it is embedded as a semi-simple pseudo-
triangulation to the moment when two extreme edges of a vertex (or, as a special case, when one
of these is the missing convex hull edge) align.
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Proof: The statement about the beginning of the expansion interval follows from Corollary
4.13. At the other endpoint, since all distances increase, so do all the convex angles. The pointed
pseudo-triangulation remains the same, combinatorially, until two extreme edges incident to a
vertex align. Notice that one of these two aligned edges may be the missing convex hull edge. 2

5 Algorithms for Constructing Pseudo-Triangulations

In this section we investigate several algorithms for constructing pointed pseudo-triangulations
of planar point sets and polygons. They rely on the maximality property 5 from Theorem
2.3, which implies that we can extend any non-crossing and pointed edge set to a pointed
pseudo-triangulation by adding edges in an arbitrary order, as long as we do not violate these
two properties (pointedness and non-crossing). In particular, any simple polygon (which is a
pointed and non-crossing edge set) can be extended to a pointed pseudo-triangulation.

5.1 Pseudo-triangulations of planar point sets

The input to a pseudo-triangulation algorithm is a planar point set, not all collinear. The result
must be a (possibly semi-simple) pointed pseudo-triangulation. For simplicity, we will assume
general position (no three points are collinear). Some of the algorithms we will describe would
work without major modifications under less restrictive conditions.

All throughout, we will assume that the pointed pseudo-triangulation is stored as a planar
map, e.g. using the quad-edge data structure of [39].

A pseudo-triangulation is called Henneberg I, if it can be constructed inductively using only
Henneberg I steps, cf. Theorem 2.3(6).

Incremental algorithm. This algorithm assumes that the points are in general position and
adds the points one at a time. It produces Henneberg I pseudo-triangulations.

Algorithm 5.1 (Incremental Algorithm)
Input: A point set P.
Output: A pointed pseudo-triangulation of P.

1. Start with three arbitrary points, join them in a triangle.

2. Add the remaining points one at a time. Each new point falls inside a face of the previously
constructed pointed pseudo-triangulation. Take two tangents to the side chains of the
pseudo-triangular face to extend the pseudo-triangulation. Readjust the planar graph data
structure.

The complexity of this algorithm is as follows. There are n steps. Each step requires a point
location phase, to find the face containing the new point (O(log n) time), a tangent finding phase
(linear time in the size of the face) and an insertion phase, with an update of the planar map
data structure. A rough analysis gives a worst case running time of O(n2).

Sweep line algorithm. Add points in increasing order of their x-coordinates, or in any sweep
line order. It is a simpler version of the previous algorithm (the incremental one) and produces
pseudo-triangulations that are constructed using only Henneberg I steps on the outer face.
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Algorithm 5.2 (Sweep line Algorithm)
Input: A point set P.
Output: A pointed pseudo-triangulation of P

1. Sort the points by x coordinate.

2. Make a triangle from the first three points.

3. Add the remaining points in increasing order of their x-coordinates. At each step, take two
tangents to the convex hull of the already constructed pseudo-triangulation.

The complexity of this algorithm is O(n log n). The initial sorting takes that much. The rest
of the algorithm is identical to the incremental algorithm for constructing the convex hull of a
point set, except that here we retain all the intermediate tangents. The amortized analysis for
the convex hull algorithm gives linear time total for all the work after the initial sorting phase.

Greedy flip algorithm. The previous algorithms produce only Henneberg I pseudo-triangulations.
We may flip some diagonals to obtain other types of pseudo-triangulations. A well developed
algorithm is described in Pocchiola and Vegter [63].

Algorithm 5.3 (Greedy Flip Algorithm [63])
Input: A point set P.
Output: A pointed pseudo-triangulation of P.

1. Start with a sweep line pseudo-triangulation.

2. Flip some edges in a greedy manner: the smallest slope first.

Complexity. Because the convex hull is part of any pseudo-triangulation of a point set, the
well known lower bound of Ω(n log n) applies, and hence we cannot do any better than the sweep
line algorithm.

5.2 Pseudo-triangulations of simple polygons

We expect to be able to beat O(n log n) when constructing a pseudo-triangulation of a polygon.
Indeed, we show that this is possible if we rely on the linear time polygon triangulation algo-
rithm of Chazelle [28]. For a practical implementation, we also describe some other alternative
approaches (or we rely on other sub-optimal polygon triangulation algorithms).

Incremental Algorithm for polygons. The pseudo-triangulation is constructed incremen-
tally, adding one edge of the polygon at a time, in ccw order, starting with a vertex on the
convex hull. This insures that the last step of the algorithm will reuse a previously inserted edge
and won’t necessitate any additional deletions. At each step of the insertion we add a vertex,
a polygon edge and one other additional edge. However, we might have to displace or modify
several other edges, depending on whether the pointedness condition, the planarity condition,
or both are violated by the insertion of the new polygon edge.

We show how to modify some of the added pseudo-triangulation edges using an argument
which we call the rubber band argument with snapping, which locally modifies (in worst case
linear time) the edges adjacent to the new polygon edge to preserve pointedness and planarity.
The resulting worst case complexity is O(n2) time.
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Algorithm 5.4 (Incremental Algorithm for Polygons)
Input: A simple polygon P given by its point set, in ccw order around its boundary.
Output: A pointed pseudo-triangulation of P

1. Start from a vertex on the convex hull of the polygon and the first two edges to obtain a
triangle.

2. Add the vertices one at a time, together with a new polygon edge.

3. If pointedness is violated, split the existing edges incident to the last vertex into two parts,
using the new edge as a divider. Move half of them (the part containing only added edges,
not the other polygon edge incident to the vertex) to the new endpoint. Recurse, to maintain
planarity and pointedness.

4. If planarity is violated, it is because the new edge is cutting through several added edges.
Subdivide these crossed edges into two, and recurse to maintain planarity and pointedness
on each half. Some of these new edges will coincide.

See Figure 20 for an example. The correctness proof would show that at step 4, only one
new edge is inserted. We omit the details of the implementation and analysis, because we won’t
rely on this approach.

Figure 20: A typical step, violating planarity, of the incremental algorithm for computing the
pseudo-triangulation of a polygon. The first vertex is white and big, and the last inserted vertex
is black. The polygon edges are thick and the new diagonals are thin.

Shortest Path (Geodesic) Tree algorithm. The reduced shortest path tree inside a polygon,
rooted at a vertex i, computes the shortest paths from a convex hull vertex i to all the other
vertices, such that adding the edges of the path doesn’t produce (at its endpoint) a non-pointed
vertex. For this to happen, the destination of the path must be a reflex vertex of the polygon. It
suffices to compute all the paths ending at convex vertices. The collection of edges of the reduced
shortest path tree is planar and pointed. If we compute it for the polygon and all its pockets
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(determined by the complement of the polygon with respect to its convex hull), we obtain a
pointed pseudo-triangulation of the point set of the polygon, which includes the polygon edges.

All the steps of this algorithm have already been described in the literature. To compute the
convex hull of the polygon and identify its pockets takes linear time. We triangulate in linear
time using Chazelle’s [28] algorithm. Inside the polygon and in each of the pockets, a shortest
path tree from a vertex using the triangulation, is done in linear time using the algorithm in
[40]. We retain only the paths leading to convex vertices.

Figure 21: The shortest path tree pseudo-triangulation of a polygon. The polygon edges are
thick and the new diagonals are thin. The root of the tree, for the polygon and its unique
pocket, is black.

6 The Convexification Algorithm

We are now ready to present the main results of the paper, Algorithm 6.1 for convexifying a
simple planar polygon with expansive motions, and its correctness proof, Theorem 6.4.

To convexify a polygon, our approach is to first construct a pointed pseudo-triangulation,
then turn it into an expansive mechanism by removing a convex hull edge, and then move it
until the end of its expansive interval. At that point we apply a local flip to obtain another
pseudo-triangulation mechanism, and continue like this until reaching a convex position.

Reconfigurable frameworks. Two realizations G(P) and G(P ′) of the same framework (G, L)
are said to be reconfigurable into one another, if they belong to the same component of the
realization space. We want to reconfigure two simple polygonal frameworks, without producing
self-intersections along the way. For this, the two polygons must be similarly oriented.

Reconfiguring more general frameworks. The algorithm can be applied to collections
of open and closed polygons, none inside the other, or to more general collections of objects
consisting in a pointed and non-crossing collection of edges. In this last case, the expansive,
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non-colliding motion will continue only as long as planarity and pointedness are maintained by
the ability to flip an added edge (see below).

6.1 The Convexification Algorithm

The main algorithmic result of the paper can now be described.

Algorithm 6.1 (The Pseudo-Triangulation Convexification Algorithm)
Input: A simple planar polygon on the point set P.
Output: A convexification of P, and a sequence of motions, each one given by a pseudo-

triangulation mechanism, describing the convexification process.

1. Compute an initial pseudo-triangulation of P, and remove an arbitrary convex hull edge
which is not a polygon edge.

2. Repeat until a convex position is reached:

(a) Pin down an arbitrary edge. Move the pseudo-triangulation mechanism along its
unique trajectory, in the expansive direction, until an alignment event occurs.

(b) At the alignment event, perform either a flip or a freeze operation (defined below). If
necessary, reconfigure locally the pseudo-triangulation (see below how), and continue.

See the examples from Figures 1, 2 and 3.
In the rest of this section, we give the missing definitions, the correctness proof and the time

analysis.

6.2 Alignment Events

Each expansive mechanism induced by a pseudo-triangulation can be moved as long as the
framework stays pointed. Pointedness is violated when two extreme edges at a vertex align. We
now show how to reconfigure the mechanism and continue the motion after an alignment event.
The overall motion is obtained by gluing together the trajectories corresponding to the motions
happening between two events.

When two bars become collinear, we have to recompute a new pseudo-triangulation. Theorem
6.2 proves that this can be done either with local changes and keeping the same number of vertices
in the original polygon, or by decreasing by at least one the number of vertices of the polygon
and applying induction.

Theorem 6.2 (Gluing trajectories at alignment events) When two edges align, one of
the following three cases may occur:

1. Freeze event. Two adjacent edges of the polygon become collinear. In this case, we freeze
the joint, eliminating one vertex of the polygon.

2. Flip event. Two adjacent added diagonals or one diagonal and an edge of the polygon
become collinear. In this case, we perform a flip in the pseudo-triangulation to obtain a
pseudo-triangulation with a semi simple face.
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3. Convex hull false event. The missing convex hull edge and either a diagonal or a
polygonal edge align. In this case, we continue the motion and do not consider this a
proper event. Note that the missing edge will change combinatorially, as does the convex
hull.

An example is depicted in Fig. 22.

Figure 22: Patching the pseudo-triangulation by a local flip when two bars (not both of which
are polygon edges) align.

The above theorem is not stated in full generality, to avoid cluttering the overall picture
with details. In particular, several vertices may straighten simultaneously, but the same type of
flipping would work in each case.

Other problems occur when we freeze two aligned edges of the polygon. In this case we
must get rid of the other diagonals (if any) adjacent to the vertex, which can also be done by
local changes (but may involve linearly many edges). Occasionally this operation rigidifies the
framework: then we must pick up another convex hull edge to remove from the convex hull. All
these details are solved in a straightforward manner.

Theorem 6.3 (Termination and complexity analysis) The convexification of a polygon
terminates in at most O(n3) steps, where a step is the continuous motion induced by one pseudo-
triangulation mechanism, between two alignment (flip or freeze) events.

Proof: With some care in the patching strategy, it can be shown that no combinatorial
pseudo-triangulation will occur twice in the convexifying motion. Since there are finitely many
combinatorial pseudo-triangulations, the algorithm terminates.

A more careful accounting refines the analysis and gives at most O(n3) steps. We do so
by bounding the number of flip events between freeze events, which are exactly the number
r = O(n) of reflex vertices in the polygon.

Consider the number of bends in all the shortest paths forming the pseudo-triangulation,
inside the polygon and its pockets. Since there are linearly many shortest paths accounted
for (we consider maximal paths only, not subpaths), and each can have at most linearly many
bends, the crude bound on this number is O(n2). In certain situations, the bound may even
be attained, for instance when an added diagonal flips along the edges of a big O(n)-sized rigid
(and therefore convex) component. The key observation is that a local flip decreases the number
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Figure 23: When the two aligned edges are not polygon edges, there are two possible diagonal
flips. A flip reduces the number of bends in geodesic paths using the vertex involved in the
alignment.

of bends by at least one (or more, depending on how many geodesic paths go through the vertex
where the event happened). Hence the number of steps is at most O(rn2) = O(n3). 2

The main result is now a consequence of all the results proven so far:

Theorem 6.4 (Main Result: Convexification of Planar Chains with Expansive Mo-
tions) Every planar polygon can be convexified with at most O(n3) motions. Each motion is
induced by a 1dof expansive mechanism constructed from a pseudo-triangulation with a deleted
hull edge, which is continuously reconfigured expansively until two adjacent edges align. At that
point a local flip of the diagonals restores a pseudo-triangulation. The complete trajectory in
configuration space is a sequence of simple curves, each one naturally parametrized by a rotating
edge in the plane. The first pseudo-triangulation can be computed efficiently in linear time and
updated in (at most) linear time per step.

7 Conclusions

More than just giving a particular solution to the Carpenter’s Rule problem, our combinatorial
approach to planning non-colliding motions based on pseudo-triangulations has several concep-
tual consequences. We conclude with a brief discussion of further directions of research and
remaining open questions or applications to be considered, as well as related papers, resources
and recent work on pseudo-triangulations and their applications.

Note on multiple papers. While working on the full version of [73], I realized that it would
be too much material for a single self-contained paper. I decided to split it into three parts, of
which the current paper should be read first.

The second part, describing some of the numerical issues of the algorithm implementation,
has appeared in [75]. Here’s a short summary of these considerations. The algorithm we pre-
sented works in steps, but from the configuration in the beginning of a step to the one at the end,
there is no constant-time algebraic computation. Indeed, finding the coordinates of the points

40



at the alignment events involves solving a system of quadratic equations in 2n − 3 equations
with that many unknowns. Solving them exactly many lead, in the worst case, to exponentially
many real solutions (see [24]), from which the solution corresponding to the actual position
during the motion would have to be isolated based on combinatorial considerations. Moreover,
there is no simple algorithm for finding all of these solutions, as elimination-based solvers work
in exponential time. In practice, the systems are solved numerically. See also the Note below
on the model of computation and complexity.

The third part [74] (in preparation) will deal with the observation (and its consequences) that
certain geometric facts used in the current paper have natural extensions, proofs and applications
in the purely combinatorial setting of rank 3 affine oriented matroids (pseudo point sets). We
explore, in particular, to what extent is the rigidity matroid orientable in a combinatorially
recognizable way (based on the oriented matroid of the underlying point set). Indeed, pointed
pseudo-triangulation mechanisms induce instances of combinatorially recognizable signed co-
circuits. In particular, certain simple geometric facts used in the current paper can be precisely
derived in this context.

Note on terminology. In the conference version of this paper, I used acyclic instead of
pointed. The terminology of acyclic vector sets comes from oriented matroid theory (see [21]),
an approach which provided the guiding line in the search for combinatorial properties of simple
motions induced by mechanisms. More precisely, for a set of acyclic vectors there is no linear
combination with positive, not all zero coefficients that sums them to zero, while in the cyclic
case there is always one. The decision to change the terminology was motivated by the obvious
potential of confusion with the entrenched graph-theoretic concept of acyclic graph.

Note on the Model of Computation and Complexity. Computationally, our problem has
as input an ordered list of 2n real numbers, the coordinates of the n vertices of the polygon.
The desired output is a finite description of the convexifying motion, and ultimately a set of 2n
real coordinates for the polygon vertices in the final convex state.

The moving vertices follow continuous curve segments during this motion, which can be
parametrized by time. Ideally, one would like to express all the computations leading to para-
metric descriptions of these n− 2 vertex trajectories in the real RAM model, the computational
model of choice in Computational Geometry (see [64]). However, as is the case for other algo-
rithms in Real Algebraic Geometry (see [17]), not all numerical data can be computed explicitly.
The positions of the polygon vertices at the event points are given implicitly as solutions to
systems of polynomial equations. Theoretically, one may attempt to perform the costly (ex-
ponential time) exact algebraic elimination (Gröbner basis algorithms) to reduce the system
to a single one-variable polynomial equation, but then one still would have to find the roots
of this polynomial numerically (i.e. not in the RAM model). In practice, and since we must
rely on numerical methods anyway for root finding, everything is computed approximately via
numerical methods, see [75].

In [73], the number of steps in the convexification algorithm was hastily estimated as O(n2)
instead of O(n3).

Animations and web resources. A web page (constructed with the help of my students
Elif Tosun and Beenish Chaudry) containing animations and other graphical illustrations of the
approach described in this paper, can be found on the author’s web page at:

http://cs.smith.edu/∼streinu/Research/Motion/motion.html
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7.1 Open Questions on Reconfiguring Chains

Several questions directly connected to our approach remain still open at the time of this writing.

In practical implementations of our algorithm, we have observed that the number of events
is often linear. We can easily produce an example where a shortest-path pseudo-triangulation
approach would encounter a quadratic number of flip-events between two freeze events. Take
a pseudo-triangulation containing a rigid (and hence convex) component with linearly many
vertices, and design shortest paths from a vertex to linearly many other vertices, which are
obstructed by the large convex component and must bend around it. It it not hard to design a
pseudo-triangulation mechanism where all these O(n) paths would unfold one by one, for a total
of O(n2) steps, before any freeze event would happen. It is also easy to design a freeze event
which would readjust the pseudo-triangulation by introducing all these bends again. However,
neither the shortest path tree pseudo-triangulation, nor the patching strategy for the pseudo-
triangulation (at a freeze event) are the only available options. It is possible that other choices
of pseudo-triangulations would lead to faster convexification algorithms.

Open Problem 1 Is there a different strategy of choosing pseudo-triangulation mechanisms,
leading to asymptotically fewer events?

Another potential source of simplification is in the complexity of the flip operation.

Open Problem 2 Is it possible to perform a constant time flip at an alignment event, while
maintaining an overall small number of events during the convexification algorithm?

The most intriguing remaining question is whether the approach based on expansive motions
and pseudo-triangulations can be extended to non-crossing polygons which are not necessarily
simple. To define the problem, let’s introduce some additional terminology. Related problems,
and more general self-touching linkages have also been recently considered in [31].

Two edges are non-crossing if their segments do not have an interior point in common, oth-
erwise they are said to cross properly. Non-crossing edges may be touching, either overlapping,
or having an endpoint of one edge lying on another edge. We view each edge as oriented and
having two ”sides” (left or right, with respect to a given direction), so that when two edges are
touching or overlapping, we can specify on which side they meet. For example, we think of the
two edges 12 and 45 in Fig. 24 (oriented from 1 to 2, and from 4 to 5) as touching on the left
of both 12 and 45.

A non-crossing polygon has no properly crossing edges, although the edges may be touching
in complicated ways. Therefore, we also need to add to the definition of the polygon a touching
pattern, defined in such a way that would allow some simple, non-crossing unfolding reconfig-
uration (not necessarily maintaining rigidly the lengths of the edges). The touching pattern
indicates which side of each edge is in contact with which side of another edge, in a consistent
fashion. A touching pattern is consistent if there exists a (topological) simple realization of the
polygon (not necessarily with straight-line segments, but simple, i.e. non-touching), which is
consistent with the sidedness relation.

For instance, if the touching pattern of the two edges 12 and 45 in Fig. 24 was defined such
that 12 was in contact on its right side with the right side of edge 45, then that wouldn’t have
been considered a non-crossing touching pattern, as the two touching edges would have had to
slide over each other to get ”on the other side”, in order to become a simple polygon.
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Figure 24: (a) A non-crossing, but not simple polygon. (b) Two possible polygonal patterns
(given by the above/below relationships between edges) compatible with the same flat polygon.

Open Problem 3 Is it possible to convexify every non-crossing polygon (with any consistent
touching pattern)?

The special situation when all the edges are collinear is the only case when the configuration
space of a polygon has singularities, see [45]. This creates additional questions, regarding which
are the combinatorial possibilities (given by touching patterns) for an opening flat polygon. For
the simple example of a four-gon, see Fig. 17. Figure 24 (b) suggests two possible opening
patterns of a flat six-gon.

Open Problem 4 Given a flat n-gon and a consistent touching pattern, is there a configura-
tion, infinitesimally close to the the flat singular position, which opens the polygon in a manner
compatible with the given pattern?

Open Problem 5 Are all the consistent simple touching patterns of a flat polygon realizable
by infinitesimally close configurations (with the same edge lengths)?

Related questions refer to finding (possibly semi-algebraic) conditions that would distinguish
between opening motions along trajectories with distinct combinatorial patterns, when moving
away from a singularity point.

7.2 Recent work and Open Questions on Pseudo-Triangulations

Since the conference abstract was published [73], several questions regarding the combinatorial
properties of pseudo-triangulations have been addressed. Without making a claim at giving
a complete listing, we refer here to some of these developments, as well as other interesting
remaining open questions.

Open Problem 6 How many pseudo-triangulations of a point set or polygon are there?

Partial results are given in [65, 8, 6]. A related question is to enumerate efficiently all
pseudo-triangulations. Current approaches include [18, 26, 7]. A remaining questions is:

Open Problem 7 Find a simple algorithm to enumerate pseudo-triangulations with constant
amount of work per new enumerated object.
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More generally, it is natural to ask whether there is an interesting polytope whose 1-skeleton
is the graph of pseudo-triagulations. Solutions have appeared for pointed pseudo-triangulations
[68] and general (not necessarily pointed) ones, [60], [2], [4]. An interesting remaining question
is:

Open Problem 8 Is there a concept of a regular pseudo-triangulation, as it is for triangulations
([35])?

Since pseudo-triangulations can be naturally defined in the coordinate-free context of oriented
matroids, we are also interested in those combinatorial properties that would distinguish them
(as a collection) from the ones realizable in the Euclidean plane. In [41], it was shown that all
planar Laman graphs are realizable as pointed pseudo-triangulations, even when an additional
combinatorial pseudo-triangular structure was enforced. Additional properties of combinatorial
pseudo-triangulations were studied in [61].

Special types of pseudo-triangulations were studied in [47, 5] and [69]. Further applications
in visibility [71] and kinetic data structures for collision detection have appeared in [50, 49].
A recent application to single-vertex origami and unfoldings of spherical linkages is given in
[77]. Surfaces from pseudo-triangulations and reciprocal diagrams of pseudo-triangulations were
studied in [59] and [3].

One of the most intriguing remaining open question is to extend this work in higher dimen-
sions.

Open Problem 9 Extend combinatorial expansive motions and pointed pseudo-triangulations
to three and higher-dimensions.

Some partial work in the direction of combinatorial conditions for expansive motions in three
dimensions is contained in [77].

From the point of view of Rigidity Theory, pointed pseudo-triangulations are a class of planar
minimally rigid graphs. There is an analogous theory of rigidity with fixed edge-directions (rather
than fixed edge-lengths). In some recent work of the author [76], pointed pseudo-triangulation
mechanisms have been shown to possess interesting properties in this model, too.

All the pictures in this paper have been produced using the software package Cinderella
[67], which supports motions of 1dof mechanisms and even animates them. But not all pointed
pseudo-triangulation mechanisms seem to admit a Cinderella construction.

Open Problem 10 Prove that not all pointed pseudo-triangulations admit a ruler-and-compass
construction. Characterize those which do.

Lastly, two software implementations of pseudo-triangulations are freely available [25, 46].
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