393 research outputs found

    Combining Crop Models and Remote Sensing for Yield Prediction: Concepts, Applications and Challenges for Heterogeneous Smallholder Environments

    Get PDF
    JRC and CCAFS jointly organized a workshop on June 13-14, 2012 in Ispra, Italy with the aim to advance the state-of-knowledge of data assimilation for crop yield forecasting in general, to address challenges and needs for successful applications of data assimilation in forecasting crop yields in heterogeneous, smallholder environments, and to enhance collaboration and exchange of knowledge among data assimilation and crop forecasting groups. The workshop showed that advances made in crop science are widely applicable to crop forecasting. The presentations of the participants approached the challenge from many sides, leading to ideas for improvement that can be implemented in real-time, operational crop yield forecasting. When applied, this knowledge has the potential to benefit the livelihoods of smallholder farmers in the developing world.JRC.H.4-Monitoring Agricultural Resource

    Combining Crop Models and Remote Sensing for Yield Prediction: Concepts, Applications and Challenges for Heterogeneous Smallholder Environments

    No full text
    JRC, CCAFS jointly sponsored the workshop on June 13-14, 2012, at the JRC in Ispra, Italy, to identify avenues for exploiting remote sensing information to improving crop forecasting in smallholder farming environments. The workshop’s objectives were: 1) To advance the state-of-knowledge of data assimilation for crop yield forecasting; 2) To address challenges and needs for successful applications of data assimilation in forecasting crop yields in heterogeneous, smallholder environments; and, 3) To enhance collaboration and exchange of knowledge among data assimilation and crop forecasting groups. The workshop succeeded in bringing together scientists from around the world. This has enabled discussions on research and results and has greatly enhanced collaboration and exchange of knowledge, especially about data assimilation and crop forecasting

    A Global Systematic Review of Improving Crop Model Estimations by Assimilating Remote Sensing Data: Implications for Small-Scale Agricultural Systems

    Get PDF
    There is a growing effort to use access to remote sensing data (RS) in conjunction with crop model simulation capability to improve the accuracy of crop growth and yield estimates. This is critical for sustainable agricultural management and food security, especially in farming communities with limited resources and data. Therefore, the objective of this study was to provide a systematic review of research on data assimilation and summarize how its application varies by country, crop, and farming systems. In addition, we highlight the implications of using process-based crop models (PBCMs) and data assimilation in small-scale farming systems. Using a strict search term, we searched the Scopus and Web of Science databases and found 497 potential publications. After screening for relevance using predefined inclusion and exclusion criteria, 123 publications were included in the final review. Our results show increasing global interest in RS data assimilation approaches; however, 81% of the studies were from countries with relatively high levels of agricultural production, technology, and innovation. There is increasing development of crop models, availability of RS data sources, and characterization of crop parameters assimilated into PBCMs. Most studies used recalibration or updating methods to mainly incorporate remotely sensed leaf area index from MODIS or Landsat into the WOrld FOod STudies (WOFOST) model to improve yield estimates for staple crops in large-scale and irrigated farming systems. However, these methods cannot compensate for the uncertainties in RS data and crop models. We concluded that further research on data assimilation using newly available high-resolution RS datasets, such as Sentinel-2, should be conducted to significantly improve simulations of rare crops and small-scale rainfed farming systems. This is critical for informing local crop management decisions to improve policy and food security assessments

    Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection

    Get PDF
    Low resolution satellite imagery has been extensively used for crop monitoring and yield forecasting for over 30 years and plays an important role in a growing number of operational systems. The combination of their high temporal frequency with their extended geographical coverage generally associated with low costs per area unit makes these images a convenient choice at both national and regional scales. Several qualitative and quantitative approaches can be clearly distinguished, going from the use of low resolution satellite imagery as the main predictor of final crop yield to complex crop growth models where remote sensing-derived indicators play different roles, depending on the nature of the model and on the availability of data measured on the ground. Vegetation performance anomaly detection with low resolution images continues to be a fundamental component of early warning and drought monitoring systems at the regional scale. For applications at more detailed scales, the limitations created by the mixed nature of low resolution pixels are being progressively reduced by the higher resolution offered by new sensors, while the continuity of existing systems remains crucial for ensuring the availability of long time series as needed by the majority of the yield prediction methods used today.JRC.H.4-Monitoring Agricultural Resource

    Remote Sensing Based Yield Estimation in a Stochastic Framework – Case Study of Durum Wheat in Tunisia

    Get PDF
    Multitemporal optical remote sensing constitutes a useful, cost efficient method for crop status monitoring over large areas. Modelers interested in yield monitoring can rely on past and recent observations of crop reflectance to estimate aboveground biomass and infer the likely yield. Therefore, in a framework constrained by the information availability, remote sensing data to yield conversion parameters are to be estimated. Statistical models are suitable for this purpose given their ability to deal with statistical errors. This paper explores the performance in yield estimation of various remote sensing indicators based on varying degrees of bio-physical insight, in interaction with statistical methods (linear regressions) that rely on different hypotheses. Jackknifed results (leave one year out) are presented for the case of wheat yield regional estimation in Tunisia using the SPOT-VEGETATION instrument.JRC.H.4-Monitoring Agricultural Resource

    Contribution of Remote Sensing on Crop Models: A Review

    Get PDF
    Crop growth models simulate the relationship between plants and the environment to predict the expected yield for applications such as crop management and agronomic decision making, as well as to study the potential impacts of climate change on food security. A major limitation of crop growth models is the lack of spatial information on the actual conditions of each field or region. Remote sensing can provide the missing spatial information required by crop models for improved yield prediction. This paper reviews the most recent information about remote sensing data and their contribution to crop growth models. It reviews the main types, applications, limitations and advantages of remote sensing data and crop models. It examines the main methods by which remote sensing data and crop growth models can be combined. As the spatial resolution of most remote sensing data varies from sub-meter to 1 km, the issue of selecting the appropriate scale is examined in conjunction with their temporal resolution. The expected future trends are discussed, considering the new and planned remote sensing platforms, emergent applications of crop models and their expected improvement to incorporate automatically the increasingly available remotely sensed products

    Optimal Exploitation of the Sentinel-2 Spectral Capabilities for Crop Leaf Area Index Mapping

    Get PDF
    The continuously increasing demand of accurate quantitative high quality information on land surface properties will be faced by a new generation of environmental Earth observation (EO) missions. One current example, associated with a high potential to contribute to those demands, is the multi-spectral ESA Sentinel-2 (S2) system. The present study focuses on the evaluation of spectral information content needed for crop leaf area index (LAI) mapping in view of the future sensors. Data from a field campaign were used to determine the optimal spectral sampling from available S2 bands applying inversion of a radiative transfer model (PROSAIL) with look-up table (LUT) and artificial neural network (ANN) approaches. Overall LAI estimation performance of the proposed LUT approach (LUTN₅₀) was comparable in terms of retrieval performances with a tested and approved ANN method. Employing seven- and eight-band combinations, the LUTN₅₀ approach obtained LAI RMSE of 0.53 and normalized LAI RMSE of 0.12, which was comparable to the results of the ANN. However, the LUTN50 method showed a higher robustness and insensitivity to different band settings. Most frequently selected wavebands were located in near infrared and red edge spectral regions. In conclusion, our results emphasize the potential benefits of the Sentinel-2 mission for agricultural applications

    Satellite-based terrestrial production efficiency modeling

    Get PDF
    Production efficiency models (PEMs) are based on the theory of light use efficiency (LUE) which states that a relatively constant relationship exists between photosynthetic carbon uptake and radiation receipt at the canopy level. Challenges remain however in the application of the PEM methodology to global net primary productivity (NPP) monitoring. The objectives of this review are as follows: 1) to describe the general functioning of six PEMs (CASA; GLO-PEM; TURC; C-Fix; MOD17; and BEAMS) identified in the literature; 2) to review each model to determine potential improvements to the general PEM methodology; 3) to review the related literature on satellite-based gross primary productivity (GPP) and NPP modeling for additional possibilities for improvement; and 4) based on this review, propose items for coordinated research

    Global Estimation of Biophysical Variables from Google Earth Engine Platform

    Get PDF
    This paper proposes a processing chain for the derivation of global Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Fraction Vegetation Cover (FVC), and Canopy water content (CWC) maps from 15-years of MODIS data exploiting the capabilities of the Google Earth Engine (GEE) cloud platform. The retrieval chain is based on a hybrid method inverting the PROSAIL radiative transfer model (RTM) with Random forests (RF) regression. A major feature of this work is the implementation of a retrieval chain exploiting the GEE capabilities using global and climate data records (CDR) of both MODIS surface reflectance and LAI/FAPAR datasets allowing the global estimation of biophysical variables at unprecedented timeliness. We combine a massive global compilation of leaf trait measurements (TRY), which is the baseline for more realistic leaf parametrization for the considered RTM, with large amounts of remote sensing data ingested by GEE. Moreover, the proposed retrieval chain includes the estimation of both FVC and CWC, which are not operationally produced for the MODIS sensor. The derived global estimates are validated over the BELMANIP2.1 sites network by means of an inter-comparison with the MODIS LAI/FAPAR product available in GEE. Overall, the retrieval chain exhibits great consistency with the reference MODIS product (R2 role= presentation \u3e2 = 0.87, RMSE = 0.54 m2 role= presentation \u3e2/m2 role= presentation \u3e2 and ME = 0.03 m2 role= presentation \u3e2/m2 role= presentation \u3e2 in the case of LAI, and R2 role= presentation \u3e2 = 0.92, RMSE = 0.09 and ME = 0.05 in the case of FAPAR). The analysis of the results by land cover type shows the lowest correlations between our retrievals and the MODIS reference estimates (R2 role= presentation \u3e2 = 0.42 and R2 role= presentation \u3e2 = 0.41 for LAI and FAPAR, respectively) for evergreen broadleaf forests. These discrepancies could be attributed mainly to different product definitions according to the literature. The provided results proof that GEE is a suitable high performance processing tool for global biophysical variable retrieval for a wide range of applications
    • 

    corecore