2,194 research outputs found

    Efficient Clustering on Riemannian Manifolds: A Kernelised Random Projection Approach

    Get PDF
    Reformulating computer vision problems over Riemannian manifolds has demonstrated superior performance in various computer vision applications. This is because visual data often forms a special structure lying on a lower dimensional space embedded in a higher dimensional space. However, since these manifolds belong to non-Euclidean topological spaces, exploiting their structures is computationally expensive, especially when one considers the clustering analysis of massive amounts of data. To this end, we propose an efficient framework to address the clustering problem on Riemannian manifolds. This framework implements random projections for manifold points via kernel space, which can preserve the geometric structure of the original space, but is computationally efficient. Here, we introduce three methods that follow our framework. We then validate our framework on several computer vision applications by comparing against popular clustering methods on Riemannian manifolds. Experimental results demonstrate that our framework maintains the performance of the clustering whilst massively reducing computational complexity by over two orders of magnitude in some cases

    An interior point algorithm for minimum sum-of-squares clustering

    Get PDF
    Copyright @ 2000 SIAM PublicationsAn exact algorithm is proposed for minimum sum-of-squares nonhierarchical clustering, i.e., for partitioning a given set of points from a Euclidean m-space into a given number of clusters in order to minimize the sum of squared distances from all points to the centroid of the cluster to which they belong. This problem is expressed as a constrained hyperbolic program in 0-1 variables. The resolution method combines an interior point algorithm, i.e., a weighted analytic center column generation method, with branch-and-bound. The auxiliary problem of determining the entering column (i.e., the oracle) is an unconstrained hyperbolic program in 0-1 variables with a quadratic numerator and linear denominator. It is solved through a sequence of unconstrained quadratic programs in 0-1 variables. To accelerate resolution, variable neighborhood search heuristics are used both to get a good initial solution and to solve quickly the auxiliary problem as long as global optimality is not reached. Estimated bounds for the dual variables are deduced from the heuristic solution and used in the resolution process as a trust region. Proved minimum sum-of-squares partitions are determined for the rst time for several fairly large data sets from the literature, including Fisher's 150 iris.This research was supported by the Fonds National de la Recherche Scientifique Suisse, NSERC-Canada, and FCAR-Quebec

    On the multisource hyperplanes location problem to fitting set of points

    Get PDF
    In this paper we study the problem of locating a given number of hyperplanes minimizing an objective function of the closest distances from a set of points. We propose a general framework for the problem in which norm-based distances between points and hyperplanes are aggregated by means of ordered median functions. A compact Mixed Integer Linear (or Non Linear) programming formulation is presented for the problem and also an extended set partitioning formulation with an exponential number of variables is derived. We develop a column generation procedure embedded within a branch-and-price algorithm for solving the problem by adequately performing its preprocessing, pricing and branching. We also analyze geometrically the optimal solutions of the problem, deriving properties which are exploited to generate initial solutions for the proposed algorithms. Finally, the results of an extensive computational experience are reported. The issue of scalability is also addressed showing theoretical upper bounds on the errors assumed by replacing the original datasets by aggregated versions.Comment: 30 pages, 5 Tables, 3 Figure

    Discrete optimization methods to fit piecewise affine models to data points

    Get PDF
    Fitting piecewise affine models to data points is a pervasive task in many scientific disciplines. In this work, we address the k-Piecewise Affine Model Fitting with Piecewise Linear Separability problem (k-PAMF-PLS) where, given a set of m points {a1,…,am}?Rn{a1,…,am}?Rn and the corresponding observations {b1,…,bm}?R{b1,…,bm}?R, we have to partition the domain RnRn into k piecewise linearly (or affinely) separable subdomains and to determine an affine submodel (function) for each of them so as to minimize the total linear fitting error w.r.t. the observations bi.To solve k-PAMF-PLS to optimality, we propose a mixed-integer linear programming (MILP) formulation where symmetries are broken by separating shifted column inequalities. For medium-to-large scale instances, we develop a four-step heuristic involving, among others, a point reassignment step based on the identification of critical points and a domain partition step based on multicategory linear classification. Differently from traditional approaches proposed in the literature for similar fitting problems, in both our exact and heuristic methods the domain partitioning and submodel fitting aspects are taken into account simultaneously.Computational experiments on real-world and structured randomly generated instances show that, with our MILP formulation with symmetry breaking constraints, we can solve to proven optimality many small-size instances. Our four-step heuristic turns out to provide close-to-optimal solutions for small-size instances, while allowing to tackle instances of much larger size. The experiments also show that the combined impact of the main features of our heuristic is quite substantial when compared to standard variants not including them. We conclude with an application to the identification of dynamical piecewise affine systems for which we obtain promising results of comparable quality with those achieved with state-of-the-art methods from the literature on benchmark data sets

    Bregman Voronoi Diagrams: Properties, Algorithms and Applications

    Get PDF
    The Voronoi diagram of a finite set of objects is a fundamental geometric structure that subdivides the embedding space into regions, each region consisting of the points that are closer to a given object than to the others. We may define many variants of Voronoi diagrams depending on the class of objects, the distance functions and the embedding space. In this paper, we investigate a framework for defining and building Voronoi diagrams for a broad class of distance functions called Bregman divergences. Bregman divergences include not only the traditional (squared) Euclidean distance but also various divergence measures based on entropic functions. Accordingly, Bregman Voronoi diagrams allow to define information-theoretic Voronoi diagrams in statistical parametric spaces based on the relative entropy of distributions. We define several types of Bregman diagrams, establish correspondences between those diagrams (using the Legendre transformation), and show how to compute them efficiently. We also introduce extensions of these diagrams, e.g. k-order and k-bag Bregman Voronoi diagrams, and introduce Bregman triangulations of a set of points and their connexion with Bregman Voronoi diagrams. We show that these triangulations capture many of the properties of the celebrated Delaunay triangulation. Finally, we give some applications of Bregman Voronoi diagrams which are of interest in the context of computational geometry and machine learning.Comment: Extend the proceedings abstract of SODA 2007 (46 pages, 15 figures

    A Hierarchical Procedure for the Synthesis of ANFIS Networks

    Get PDF
    Adaptive neurofuzzy inference systems (ANFIS) represent an efficient technique for the solution of function approximation problems. When numerical samples are available in this regard, the synthesis of ANFIS networks can be carried out exploiting clustering algorithms. Starting from a hyperplane clustering synthesis in the joint input-output space, a computationally efficient optimization of ANFIS networks is proposed in this paper. It is based on a hierarchical constructive procedure, by which the number of rules is progressively increased and the optimal one is automatically determined on the basis of learning theory in order to maximize the generalization capability of the resulting ANFIS network. Extensive computer simulations prove the validity of the proposed algorithm and show a favorable comparison with other well-established techniques

    Amortized Global Search for Efficient Preliminary Trajectory Design with Deep Generative Models

    Full text link
    Preliminary trajectory design is a global search problem that seeks multiple qualitatively different solutions to a trajectory optimization problem. Due to its high dimensionality and non-convexity, and the frequent adjustment of problem parameters, the global search becomes computationally demanding. In this paper, we exploit the clustering structure in the solutions and propose an amortized global search (AmorGS) framework. We use deep generative models to predict trajectory solutions that share similar structures with previously solved problems, which accelerates the global search for unseen parameter values. Our method is evaluated using De Jong's 5th function and a low-thrust circular restricted three-body problem
    corecore