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Abstract

In this paper we study the problem of locating a given number of hyperplanes minimizing an
objective function of the closest distances from a set of points. We propose a general framework
for the problem in which norm-based distances between points and hyperplanes are aggregated by
means of ordered median functions. A compact Mixed Integer Linear (or Non Linear) programming
formulation is presented for the problem and also an extended set partitioning formulation with a
huge number of variables is derived. We develop a column generation procedure embedded within
a branch-and-price algorithm for solving the problem by adequately performing its preprocessing,
pricing and branching. We also analyze geometrically the optimal solutions of the problem, deriving
properties which are exploited to generate initial solutions for the proposed algorithms. Finally,
the results of an extensive computational experience are reported. The issue of scalability is also
addressed showing theoretical upper bounds on the errors assumed by replacing the original datasets
by aggregated versions.

Keywords: Hyperplanes Location, Mixed Integer Non Linear Programming, Column Generation.
2010 MSC: 52C35, 90B85, 90C11, 90C30.

1. Introduction

Location Analysis deals with the determination of the optimal positions of facilities to satisfy
the demand of a set of customers. The problems analyzed in the field are diverse but can be usually
classified as: Discrete Location problems (DLP) and Continuous Location problems (CLP). In the
first family, a set of potential facilities is previously given and the goal is to select, among them,
the optimal ones under one or more criteria. The main tools for solving these problems come from
Discrete Optimization, or more precisely, from Integer Linear Programming. In the second family
of problems, the facilities have to be located in a continuous space and then, convex analysis and
global optimization tools are needed to solve the problems. The most popular problem in the latter
family is the Weber problem (Weber, 1909) in which a single point-facility has to be positioned on
the plane so as to minimize the overall sum of the (Euclidean) distances to a set of (planar) demand
points. The applications of both types of location problems are vast. DLP are more common in the
location of physical facilities (as ATMs, supermarkets, stations, etc), while CLP are more useful
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when locating facilities in telecommunication networks (as wifi routers, servers, etc) or even to
provide the sets of potential facilities for a DLP.

In this paper we study a problem that falls into the family of CLP. More specifically, we focus on
the determination of optimal hyperplanes fitting a given finite set of demand points. The location
of a single hyperplane is a classical problem that has been addressed in different fields. On the
one hand, this problem clearly extends the classical Weber problem, but where instead of locating
zero-dimensional facilities one looks for locating higher dimensional structures. On the other hand,
in Statistics and Data Analysis, the determination of a hyperplane minimizing the sum of squares
of vertical residuals is key for estimating a multivariate linear regression model using the Least Sum
of Squares (LSS) method, credited to Gauss (1809). One can also find recent useful applications,
both in Location Science and Data Analysis, for the problem of finding optimal hyperplanes fitting
a set of points. For instance, Espejo and Rodŕıguez-Ch́ıa (2011) deals with the location of a rapid
transit line on the plane to be used as an alternative transportation mean. Analogously, the widely
used Support Vector Machine (SVM) methodology due to Cortes and Vapnik (1995), is also based
on constructing a hyperplane minimizing certain loss functions of the distances to a given set of
points.

Scanning the literature one can find that most of the attention has been devoted to finding
hyperplanes with any of the following assumptions (see e.g., (Martini and Schöbel, 1998; Schöbel,
1999, 2003, 2015; Martini and Schöbel, 2001; Plastria and Carrizosa, 2001; Brimberg et al., 2002,
2003; Blanco et al., 2018; Bradley and Mangasarian, 2000)): (a) the problem is embedded on the
plane; (b) a single hyperplane has to be located; (c) the vertical distance between each point and the
hyperplane is considered; or (d) the residuals are aggregated by the sum or the maximum operators.
Our goal here is to study a generalization of this problem in which, we construct simultaneously a
given number, p, of hyperplanes in any finite dimensional space, Rd, by minimizing a rather general
globalizing function, an ordered median function, of the residuals from the points to the fitting
bodies. Ordered median functions aggregate the set of distances from the demand points to their
closest hyperplanes (residuals) by means of a sorting, weighting averaging operation: distances
are sorted and then their weighted sum is performed. The sum and maximum functions can be
easily represented as ordered median functions with adequate choices of the weights inducing the
median and center objective functions. Also, the k-centrum (sum of the k-th largest distances) or
the cent-dian (convex combination of the sum and the max criteria) can be cast within this family
of functions. In addition, different point-to-hyperplane norm-based distances are considered as a
measure of the residuals of the fitting. Thus, this paper naturally extends the analysis performed
in Blanco et al. (2018) where the location of a single ordered median hyperplane was studied.

As in the classical Weber problem (Weber, 1909), the extension from the location of one to
several facilities (the so-called multisource problem) is not trivial (Blanco et al., 2016). Actually,
while the classical single-facility point location problem with standard distances (ℓτ , polyhedral, etc)
can be formulated as a Second Order Cone programming problem (Blanco et al., 2014) (being then
polynomially solvable), its multisource version becomes a non-convex NP-hard problem (Blanco
et al., 2016).

In the case of locating hyperplanes, the situation is even harder, since the location of a single
hyperplane is, in general, an NP-hard problem (see Blanco et al. (2018)) whose exact solution can
be obtained, using Mixed Integer Linear Programming, for vertical and polyhedral norm based
residuals, while for general ℓτ -based residuals one has to resort to global optimization tools.

The problem considered in this paper is not fully new although, in our opinion, it has not been
fully analyzed and there is room for further improvement. In particular, similar problems have
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been analyzed from the Data Analysis field, and different names have been adopted. In the so-
called Clusterwise Linear Regression (CLR) problem, a set of observations is provided and the goal
is to cluster them by means of the sum of the squared residuals of several multivariate regression
models (Späth, 1982; Hennig, 1999; Carbonneau et al., 2014; Park et al., 2017; Gitman et al., 2018).
In (Bertsimas and Shioda, 2007), classification and regression are simultaneously performed, and
also clustering by classical linear regression approaches. Finally, in (Bradley and Mangasarian,
2000), the clusters are constructed based on the closest distances to optimal hyperplanes in a
given d-dimensional space. In the so-called Piecewise Linear Regression problem, a dependent
variable is partitioned into p intervals and it adjusts linear bodies to each of them (see (McGee
and Carleton, 1970)). However, only local search heuristic algorithms have been proposed for these
problems, alternating clustering and regression techniques sequentially. Carbonneau et al. (2014)
present a column generation algorithm for the (planar) clusterwise regression problem with sum of
squared residuals which combined with some heuristic strategies outperforms previous results in the
literature. Moreover, Park et al. (2017) generalized the clusterwise regression problem by allowing
each entity to have more than one observation and propose an exact mathematical programming-
based approach relying on column generation, and several heuristics.

The main contributions of this paper are:

1. To provide a general framework for the simultaneous location of several hyperplanes to fit a
data set using mathematical programming tools. We formulate the problem by using general
norm-based error measures of the distance from points to hyperplanes and ordered median
functions to aggregate the residuals. This approach generalizes both the standard multisource
regression (Carbonneau et al., 2014; Park et al., 2017) and also the more recent proposal for
the p = 1 case (Blanco et al., 2018).

2. To develop two exact solution methods:

(a) One based on a compact formulation, that for vertical residuals (resulting in a Mixed
Integer Second Order Cone Optimization problem) and for polyhedral norm-based resid-
uals (resulting in a Mixed Integer linear Programming Problem) can be solved by using
some of the available off-the-shell solvers.

(b) A novel branch-and-price algorithm, based on a set partitioning formulation for the
problem, combining several features as preprocessing, exact and heuristic pricing, and
Ryan-and-Foster branching.

3. To prove some geometrical characterizations of ordered median optimal hyperplanes that are
incorporated in the preprocessing phase of our column generation approach.

4. To compare the proposed approaches on a extensive battery of computational experiments on
both real and synthetic instances.

5. To derive upper bounds on the error assumed by aggregation procedures on original datasets
that allow to control the scalability of the proposed approaches.

The rest of the paper is organized as follows. In Section 2 we introduce the problem and fix
the notation for the rest of the sections. This section also contains two illustrative examples taken
from the literature. Section 3 is devoted to a first compact formulation for the problem. This
formulation has a polynomial number of variables and constraints but its performance is not always
good since it has a large integrality gap. For that reason, in Section 4 we develop an alternative set
partitioning formulation that is solved (exactly, for vertical and polyhedral-norm based residuals)
within a branch-and-price (B&P) algorithm using column generation at each node of the branching
tree. This section describes all the elements of this B&P: initialization, pricing (exact and heuristic)
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and branching. Section 5 reports our computational results based on two different datasets: the
classical 50 points dataset by Eilon et al. (1971) and another synthetic dataset randomly generated.
Section 6 is devoted to explore scalability issues and finally Section 7 draws some conclusions and
future extensions.

2. Multisource Location of Hyperplanes

In this section we describe the problem under study and fix the notation for the rest of the
paper.

We are given a set of n observations/demand points (denoted as points from now on) in R
d,

{x1, . . . , xn} ⊂ R
d and p ∈ Z+ (p > 0). Our goal is to find p hyperplanes in R

d that minimize an
objective function of the closest distances from points to hyperplanes. We denote the index sets of
demand points and hyperplanes by I = {1, . . . , n} and J = {1, . . . , p}, respectively. Given β ∈ R

d

and α ∈ R, we denote by
H(β, α) = {y ∈ R

d : βty + α = 0},

the hyperplane in R
d with coefficients β and intercept α (here vt stands for the transpose of the

vector v ∈ R
d).

Several elements are involved when finding the best p hyperplanes to fit a set of demand points.
In what follows we describe them:

• Residuals: The point-to-hyperplane measure of closeness. Given a demand point a = (a1,
. . ., ad) ∈ R

d and a hyperplane H(β, α), how far/close is the point from the hyperplane? The
classical fitting methods use the so-called vertical-distance measure, which given a reference
coordinate, say the d-th, computes the deviation ad + α

βd
+
∑d−1

ℓ=1
βℓ

βd
aℓ, whenever βd 6= 0.

However, it has been already proposed that the use of more general distance measures based
on norms may be advisable. In particular, some authors (see e.g., Blanco et al. (2018, 2020b))
have shown the usefulness of norm-based distances, such as polyhedral, or ℓτ -distances (τ ≥ 1).
Among them, we mention, for their importance, the Manhattan (ℓ1-norm), the Tchebyshev
(ℓ∞-norm) or the Euclidean (ℓ2-norm) distances.

Thus, for a point a ∈ R
d and a hyperplane H(β, α), we consider the residual from a to H(β, α)

as:
εa(β, α) = D

(

a,H(β, α)
)

:= min{D(a, y) : y ∈ H(β, α)},

where D is a norm-based distance or the vertical distance in R
d (see Mangasarian (1999);

Blanco et al. (2018) for further details on this projection).

• Allocation Rule: Given a set of hyperplanes and a point, once the residuals to each of the
hyperplanes are calculated, one has to allocate the point to a single hyperplane. Different
alternatives can be considered, as the allocation to the closest or the furthest hyperplane.
In our framework we assume, as usual in Location Analysis, that each point is allocated to
the hyperplane with the smallest residual, i.e., for a point a ∈ R

d and an arrangement of

hyperplanes H =
{

H(βj , αj) : j ∈ J
}

, the final residual point-to-hyperplanes is computed as:

εa

(

H

)

= min
j∈J

εa(βj , αj),

and the hyperplane, H(βj , αj), reaching such a minimum is the one where a is allocated to
(in case of ties among more than one hyperplane, a random assignment is performed).
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• Aggregation of Residuals: Given a set of points and an arrangement of hyperplanes, once
the residuals are computed with respect to the arrangement, and in order to find the p

hyperplanes that best fit the n data points, a global measure of goodness must be chosen for
aggregating the residuals. The classical aggregation functions are the sum or maximum of
squared residuals. Most of these criteria can be cast within the framework of the family of
ordered median aggregation criteria. More explicitly, given x1, . . . , xn ∈ R

d, an arrangement

of hyperplanes H =
{

H(βj , αj) : j ∈ J
}

, and λ ∈ R
n
+ (with λ1 ≥ · · · ≥ λn ≥ 0) the λ-ordered

median function is defined as:

OMλ(ε1, . . . , εn) =
n∑

i=1

λi e(i), (OMF)

where e(1), . . . , e(n) are defined such that e(i) ∈ {εx1
(H), . . . , εxn

(H)} for all i ∈ I and e(1) ≥
· · · ≥ e(n). Observe that particular cases of ordered median problem are the sum (λi = 1,
i = 1, . . . , n), the maximum (λ1 = 1, λi = 0, i 6= 1), the k-centrum (λi = 1, i = 1, . . . , k,
λj = 0, j > k) or the ρ-centdian, a convex combination of sum and max criterion (λ1 =
1, λi = ρ, i = 2, . . . , n), for 0 < ρ < 1.

Summarizing all the above considerations, the Multisource Ordered Median Fitting Hyperplanes
Problem (MOMFHP) can be stated as the problem of finding β1, . . . ,βp ∈ R

d and α1, . . . , αp ∈ R

solving the following optimization problem:

min
∑

i∈I

λi e(i) (MOMFHP0)

s.t. ei ≥ min
j∈J

εxi
(βj , αj), ∀i ∈ I,

βj ∈ R
d, αj ∈ R, ∀j ∈ J,

ei ≥ 0, ∀i ∈ I.

where ei represents the residual for the i-th point in the data set, for all i ∈ I.
(MOMFHP) appears when different trends or clouds have to be differentiated on the demand

points, and then, different hyperplanes want to be used to fitting to the points, such that the global
error assumed, when the points are allocated to their closest hyperplanes, is as small as possible.
In Figure 1 we illustrate a set of demand points in the plane which could be clustered into three
groups according to different linear trends which are drawn in gray color. In the following example
we illustrate the problem under analysis in two classical instances.

Example 2.1. In the seminal paper by McGee and Carleton (1970), the authors illustrate the
Clusterwise Linear Regression method with two instances. The first instance, (Quandt, 1958),
consists of 20 points on the plane, {x1, . . . , x20} generated as follows:

xi2 = 2.5 + 0.7xi1 + ǫi, for i = 1, . . . , 12, and

xi2 = 5 + 0.5xi1 + ǫi, for i = 13, . . . , 20,

where ǫ is randomly generated as a univariate normal distribution with mean 0 and standard devi-
ation 1.

We run our model with this dataset choosing as residuals the ℓ1-norm projection of the data
onto the hyperplanes, and four different ordered median criteria: Weber, Center, ⌈n

2 ⌉-Centrum
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Figure 1: Illustration of a feasible solution of our problem for a set of demand points.

(λ = (

⌈n
2 ⌉

︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0)) and 0.9-centdian (λ = (1, 0.9, . . . , 0.9)). The results are shown in Figure
2.

McGee and Carleton (1970) also analyzed a real instance, the Boston dataset. It was motivated
by the fact that regional stock exchanges were hurt by the abolition of give-ups in 1968. The model
tries to analyze the dollar volume of sales on the Boston Stock Exchange with respect to dollar
volumes for the New York and American Stock Exchanges, based on a dataset with 35 monthly
observations from January 1967 to November 1969. One can observe, in the results shown in
(Figure 3), that our models are able to adequately cast the trends of these observations.

3. A Compact Formulation for (MOMFHP0)

In this section we provide a mathematical programming formulation for (MOMFHP0). The main
components which involve decisions in this problem, and that have to be adequately included in a
suitable formulation, are the representation of general norm-based residuals and the aggregation of
residuals using an ordered median function. We describe here how to incorporate all these elements
into a mathematical programming formulation which in many cases is suitable to be solved with
any of the available MILP/MISOCO solvers.

Theorem 3.1. Let {x1, . . . , xn} ⊆ R
d, p ∈ Z+ (p > 0) and λ1 ≥ · · · ≥ λn ≥ 0. Then, (MOMFHP0)
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(a) Solution for Weber criterion. (b) Solution for Center criterion.

(c) Solution for k-Centrum criterion. (d) Solution for Centdian criterion.

Figure 2: Lines obtained for Quandt dataset for ℓ1-norm residuals and different criteria.

can be equivalently reformulated as follows:

min
∑

k∈I

uk +
∑

i∈I

vi (MOMFHP)

s.t. uk + vi ≥ λkei, ∀i, k ∈ I, (1)

ei ≥ εxi
(βj , αj)−Mij(1− zij), ∀i ∈ I, j ∈ J, (2)

p
∑

j=1

zij = 1, ∀i ∈ I, (3)

zij ∈ {0, 1}, ∀i ∈ I, j ∈ J, (4)

ei ∈ R+, ∀i ∈ I, (5)

βj ∈ R
d, αj ∈ R, ∀j ∈ J, (6)

uk, vi ∈ R, ∀i, k ∈ I. (7)

where Mij are upper bounds on the residual values εxi
(βj , αj), for all i ∈ I, j ∈ J .

Proof. First, observe that given a set of residuals e1, . . . , en ≥ 0, the evaluation of the objective

7



(a) Solution for Weber criterion. (b) Solution for Center criterion.

(c) Solution for k-Centrum criterion. (d) Solution for Centdian criterion.

Figure 3: Lines obtained for Boston dataset for ℓ1-norm residuals and different criteria.

function in (MOMFHP0) requires sorting and averaging them (the residuals) with the λ-weights. In

Blanco et al. (2014), the authors proved that the computation of

n∑

k=1

λke(k) can be done by means

of the optimal value of the following Linear Programming Problem (see Blanco et al. (2014)):

∑

k∈I

λke(k) =







min
∑

k∈I

uk +
∑

i∈I

vi

s.t. uk + vi ≥ λkei ∀k, i ∈ I,

u, v ∈ R
n.

Thus, the objective function in (MOMFHP0) can be replaced by the above objective function and
the constraints incorporated to the rest of constraints in the model.

In order to identify the point-to-hyperplane allocation we consider the following set of binary
variables:

zij =

{
1 if the i-th observation is assigned to H(βj , αj),
0 otherwise,

for all i ∈ I and j ∈ J .
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Note that with our allocation rule, an observation can be always assigned to a hyperplane that
reaches the minimum residual among all the possible assignments to the p hyperplanes.

Finally, using the variables previously described, the objective function computes the ordered
median function of the residuals. Constraints (2) assure the correct definition of the residuals ei
and the allocation to their correct hyperplane. Indeed, if zij = 1 this constraint forces ei to take
the value of εxi

(βj , αj). Constraints (3) assure that only one of these variables will be equal to 1,
which in turns forces by the minimization character of the objective function to be the one with
the correct assignment. Finally, (4)–(7) are the domains of the variables.

Remark 3.2. Observe that the different choices of ordered median functions are embedded into
constraint (1). In some particular cases, this formulation can be simplified avoiding useless variables
and constraints.

• p-Median Problem (λ = (1, . . . , 1)) In this case, since the ordering does not affect the
aggregation operator, the u and v-variables can be avoided, and the problem simplifies to:

min
∑

i∈I

ei

s.t. (2)− (6).

• p-Center Problem (λ = (1, 0, . . . , 0)): For the Center problem, one can represent the objec-
tive function, maxi∈I ei, by using an auxiliary variable, t, in the usual manner:

min t

s.t. (2)− (6),

t ≥ ei, ∀i ∈ I,

• p-k-Center Problem (λ = (

k
︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0)): For the k-Centrum problem, in Ogryczak
and Tamir (2003) the authors derive a formulation similar to the one for the center problem:

min k t+
∑

i∈I

ri

s.t. (2)− (6),

ri ≥ ei − t, ∀i ∈ I,

t ≥ 0,

ri ≥ 0, ∀i ∈ I.

Note also that the explicit expression of εxi
(βj , αj) and then, the difficulty of the optimization

problem above, depends (apart from the binary variables that appears in the problem) on the
choice of the distance measure D which defines the residuals of the fitting. In what follows we
describe general shapes for the distances inducing the residuals and how they can be incorporated
to (MOMFHP).
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3.1. Vertical Distance Residuals

Although not rigorously a distance measure, the so-called vertical distance is a very common
measure for computing the residuals in Data Analysis. The vertical distance is computed as the
absolute deviation, with respect to one of the coordinates, of the hyperplane. Without loss of
generality, we consider that the deviation is computed with respect to the d-th coordinate, and
then, one can assume that βjd = −1 for j ∈ J . Given a ∈ R

d and a hyperplane H(α,β) the vertical
distance residual is calculated as:

εx(β, α) =

∣
∣
∣
∣
∣
ad − α−

d−1∑

ℓ=1

βℓaℓ

∣
∣
∣
∣
∣
.

This measure can be incorporated to (MOMFHP), replacing (2) by the following set of linear
constraints:

ei ≥ xid − αj −
d−1∑

ℓ=1

βjℓxiℓ −Mij(1− zij), ∀i ∈ I, j ∈ J,

ei ≥ −xid + αj +
d−1∑

ℓ=1

βjℓxiℓ −Mij(1− zij), ∀i ∈ I, j ∈ J.

Thus, becoming (MOMFHP) a Mixed Integer Linear Programming problem.

Remark 3.3 (Support Vector Regression). One particular case in which vertical residuals are
used in Machine Learning tools is in Support Vector Regression (SVR). Vapnik (2013) proposed
this methodology for obtaining regression models based on Support Vector Machines as introduced
in Cortes and Vapnik (1995). The method is based on fitting a hyperplane to the set of points
{x1, . . . , xn} with a modified vertical distance, such that only the residuals greater than a given
threshold ∆ ≥ 0 are accounted, apart from maximizing the separation between the observations at
each of the sides of the hyperplanes. SVR can be modeled as follows:

min
1

2
‖β‖22 + C

∑

i∈N

ei

s.t. ei ≥

∣
∣
∣
∣
∣
xid −

d−1∑

ℓ=1

βkxiℓ − α

∣
∣
∣
∣
∣
−∆, ∀i ∈ I,

β ∈ R
d−1, α ∈ R,

ei ≥ 0, ∀i ∈ I,

where C is a given parameter.
Observe that the measure used in this approach is nothing but a truncated version of the vertical

distance:

εa(β, α) =







|ad − α−
d−1∑

ℓ=1

βℓaℓ| if |ad − α−
d−1∑

ℓ=1

βℓaℓ| > ∆,

0 otherwise.

Thus, this shape of the residuals can also be embedded in our multisource framework, just by adding
to the objective functions the terms measuring the norms of the coefficients of the hyperplanes, i.e.,
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replacing the objective function in (MOMFHP) by

1

2

∑

j∈J

‖βj‖
2
2 +

∑

i∈I

λi e(i).

In case p = 1 and λ = (1, . . . , 1), we obtain classical SVR taking also into account the parameter
∆, but more flexible counterparts can be generated with our framework.

3.2. Norm-based Residuals

For general norm-based distances, a given observation yt = (y1, . . . , yd) and a set of p hyperplanes

defined by β1, . . . ,βp ∈ R
d and α1, . . . , αp ∈ R inducing the arragement H =

{

H(βj , αj) : j ∈ J
}

,

based on (Mangasarian, 1999, Theorem 2.1), the projection, ŷ, of y consistent with the residual ε
induced by a norm ‖ · ‖ is

ŷ = y−0 −min
j∈J

αj + βt
jy

‖(βj1, . . . ,βjd)‖
∗
κ(βj),

where ‖ · ‖∗ is the dual norm of ‖ · ‖ and κ(β) = arg max
‖z‖=1

(βj1, . . . ,βjd)
tz. Moreover, the residuals

can be written as:

εy(H) = min
j∈J

|αj + βt
jy|

‖(βj1, . . . ,βjd)‖
∗
. (8)

Remark 3.4 (ℓ1-norm case). In the case of the ℓ1-norm residuals, the expression above, for the
hyperplane H(βj , αj), reduces to:

εy(βj , αj) =
|αj + βt

jy|

max
ℓ=1,...,d

|βjℓ|
, (9)
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and constraints (2) can be replaced in (MOMFHP) by:

ei ≥ αj +

d∑

ℓ=1

βjℓxiℓ −Mij(1− zij), ∀i ∈ I, ∀j ∈ J (10)

ei ≥ −αj −
d∑

ℓ=1

βjℓxiℓ −Mij(1− zij), ∀i ∈ I, ∀j ∈ J (11)

βjℓ = η+jℓ − η−jℓ, ∀j ∈ J, ℓ = 1, . . . , d, (12)

η+jℓ ≤ Ujℓ ξjℓ, ∀j ∈ J, ℓ = 1, . . . , d, (13)

η−jℓ ≤ Ujℓ (1− ξjℓ), ∀j ∈ J, ℓ = 1, . . . , d, (14)

θjℓ = η+jℓ + η−jℓ, ∀j ∈ J, ℓ = 1, . . . , d, (15)

θjℓ ≤ 1, ∀j ∈ J, ℓ = 1, . . . , d, (16)

θjℓ ≥ µjℓ, ∀j ∈ J, ℓ = 1, . . . , d, (17)

d∑

ℓ=1

µjℓ = 1, ∀j ∈ J, (18)

η+jℓ, η
−
jℓ, θjℓ ∈ R

d
+, ∀j ∈ J, ℓ = 1, . . . , d, (19)

µjℓ, ξjℓ ∈ {0, 1}, ∀j ∈ J, ℓ = 1, . . . , d, (20)

where Mij and Ujℓ are big enough constants.
We have introduced in the above formulation some new variables to model the ℓ∞-distance in the

denominator of the residual (9). In particular, for each j ∈ J , the d-dimensional variable θj models
the vector (|βj1|, . . . , |βjd|) for which the maximum has to be taken; η+jℓ represents max{βjℓ, 0} and

η−jℓ the amount max{−βjℓ, 0}, for all ℓ = 1, . . . , d. Clearly, one has that βj = η+
j − η−

j and

θj = η+
j + η−

j as imposed in constraints (12)-(15), where the auxiliary variables ξ enforce that for
each coordinate, either the positive or the negative part assumes value zero (avoiding other types
of decompositions). Constraints (16), (17) and (18) assure that maxj∈J |βj | = 1 via the auxiliary
binary variables µjℓ ∈ {0, 1} that take value 1 in exactly one position (the one where the maximum
is achieved).

Thus, the formulation assures that maxl=1,...d |βjℓ| = 1, and then, the expression of the residual

for the point xi becomes εxi
(βj , αj) = |αj + βt

jxi| for all i ∈ I and j ∈ J .
In this case, also (MOMFHP) becomes a Mixed Integer Linear Programming problem.

4. Set Partitioning formulation

In this section we alternatively reformulate (MOMFHP0) as a set partitioning problem (SPP)
(see e.g., Balas and Padberg (1976)). Our SPP is based on the idea that once the p clusters of
demand points are known, (MOMFHP0) reduces to finding the optimal hyperplanes for each of
those clusters in which all the residuals are aggregated by means of an ordered median function. In
particular, let S be a cluster of observations S ⊆ I. To this cluster S, we associate a hyperplane
H which induces the residuals of the observations in S. Let R = (S,H) be the pair composed by
cluster S and hyperplane H, we denote by eiR the marginal contribution of observation i in the
cluster, and let eR = (eiR)(i∈S) the vector of residuals induced by individuals in S with respect to
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the hyperplane H. Next, let ēR be the cost of cluster S, i.e., the overall aggregation of the residuals

of the data in S (ēR =
∑

i∈S

eiR). Finally, for each pair R = (S,H) we define the variable

yR =

{
1 if cluster S is selected and its associate hyperplane is H,
0 otherwise.

Let R be the set containing all possible pairs R = (S,H).
The set partitioning formulation for (MOMFHP0) is:

min
∑

i∈I

∑

R=(S,H)∈R:i∈S

λie
(i)
R yR (21)

s.t.
∑

R=(S,H)∈R

yR = p, (22)

∑

R=(S,H)∈R:i∈S

yR = 1, ∀ i ∈ I, (23)

yR ∈ {0, 1}, ∀R ∈ R. (24)

where e
(i)
R is the i-th element in the sorted sequence of (active) residuals. In the above formulation

the objective function computes the ordered median aggregation of the residuals (each demand
point i allocated to its cluster S). Constraint (22) assures that p clusters have to be computed and
constraints (23) that each observation belongs to a single cluster.

In the same manner that we formulate the ordered median objective function in the compact
formulation we can equivalently reformulate the problem above as follows:

min
∑

k∈I

uk +
∑

i∈I

vi (25)

s.t. uk + vi ≥ λk

∑

R∈R:i∈S

eiRyR, ∀i, k ∈ I, (26)

∑

R∈R

yR = p, (27)

∑

R∈R:i∈S

yR = 1, ∀ i ∈ I, (28)

yR ∈ {0, 1}, ∀R ∈ R, (29)

uk, vi ∈ R, ∀i, k ∈ I.

This problem will be referred to as the Master Problem.
The problem above, although adequately solves the problem of finding the p hyperplanes once

the optimal clusters are computed, has a huge number of variables (and coefficients to incorporate
to constraints (26)). Thus, we propose a column generation (CG) approach for solving, efficiently,
the problem above by adding new variables to the model as needed and not considering all of them
at the same time. A pseudocode indicating the general procedure is shown in Algorithm 1.

Initially, a (small) subset of the y-variables is considered (those indexed by the sets in R0) and
a relaxed version of the problem is solved with only these variables. It implies to compute the
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amounts eiR for all R ∈ R0 and i ∈ S. Next, it has to be checked whether the optimality condition
is satisfied. If it is not the case, a new set of variables is found and added to the relaxed problem
and the procedure is repeated.

Algorithm 1: General Scheme for the CG approach.

Data: {x1, . . . , xn} ⊆ R
d, p ∈ Z+ (p > 0), λ1 ≥ · · · ≥ λn ≥ 0.

1. Preprocessing: Compute a set of initial clusters with their associated hyperplanes for the
problem R0 = {R1, . . . , RK} with Rk = (Sk,Hk), Sk ⊆ I for all k = 1, . . . ,K.

2. Relaxed Master: Solve the relaxed master problem:

min
∑

k∈I

uk +
∑

i∈I

vi

s.t. uk + vi ≥ λk

∑

R∈R0:i∈S

eiRyR, ∀i, k ∈ I,

∑

R∈R0

yR = p, (RMP)

∑

R∈R0:i∈S

yR = 1, ∀ i ∈ I,

0 ≤ yR ≤ 1, ∀R ∈ R0,

uk, vi ∈ R, ∀i, k ∈ I.

3. New Columns : Check if new columns have to be added to (RMP).

if Optimality is satisfied then
C∗ = {R ∈ R : y∗R = 1}.

else
Update R0 with the new columns
and go to 2.

end
Result: {H(βS , αS) : R = (S,H(βS , αS)) ∈ C∗}.

The crucial steps in the implementation of the CG approach are the following:

1. Preprocessing: Generation of initial feasible solutions induced by a set of initial clusters and
their associated hyperplanes (and their costs). This step may be improved by the theoretical
properties verified by the corresponding optimal hyperplanes. First, we have heuristically
generated different types of initial variables (see Section 4.1). Second, we also have imple-
mented different initial solutions based on properties of the optimal solution of median and
center hyperplanes (see Section 4.2).

2. Pricing: As already mentioned, in set partitioning problems, instead of solving initially the
problem with the whole set of variables, the variables have to be incorporated on-the-fly by
solving adequate pricing subproblems derived from previously computed solutions until the
optimality of the solution is guaranteed.
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3. Branching: The rule that creates new nodes of the branch and bound tree when a fractional
solution is found at a node of the search tree. In this problem, we have adapted the Ryan-and-
Foster branching complemented by a secondary ad-hoc branching in some special situations.

In what follows we describe how each of the items above is performed in our proposal.

4.1. Preprocessing

In the preprocessing phase, we generate different types of initial solutions, which implies the
initialization of the CG algorithm with a given set of variables.

We consider different types of initial solutions derived from the construction of hyperplanes
fitting the sets of points. First, to initialize the pool of columns, R0, we randomly generate hy-
perplanes passing through d original points. Among the various strategies compared, we have
eventually implemented one that chooses all possible pairs of original points and performs comple-
tions with d−2 points randomly chosen among the remaining. These d points determine a variable

and a unique hyperplane passing through all of them. This strategy augment, at most, n(n−1)
2 new

variables into the pool each time it is repeated. In addition, we also augment to the pool all variables
associated to singletons. Finally, apart from the above initial columns, we also charge an initial
heuristic solution (in the y-variables) so as to have a good upper bound in our branch-and-price
algorithm and assuring that the problem is feasible at the root node of the branch-and-price tree.
Our algorithm chooses at random p mutually disjoint subsets of d points and finds the hyperplanes
determined by those p sets of d points. Next, the remaining points are assigned to the closest
hyperplanes among those p. Then, we choose at random one of these p-clusters and perform a
1-interchange heuristic among its points generating a new hyperplane that replaces, one at a time,
the one currently considered in the configuration until the first iteration where no improvement is
possible. The neighborhood for the points that determine each hyperplane is formed by the points
in its cluster that do not belong to the hyperplane. In case the hyperplane spans all the points in its
cluster the new point is chosen randomly among the points not spanned by the current hyperplanes
of the remaining clusters. The incumbent set of hyperplanes and their corresponding allocations
define a set of columns that gives rise to an initial solution that is loaded into the solver.

4.2. Median and center optimal hyperplanes

We have used the following properties to build the initial solutions of our CG approach since
they determine optimal hyperplanes for specific objective functions, see e.g., Schöbel (2003).

Lemma 4.1. The following properties are verified:

1. Weak incidence property: There exists an optimal median hyperplane passing through d

affinely independent points.

2. Pseudo-halving property: Every optimal median hyperplane, H(β∗, α∗) verifies

#
{

i ∈ I : xi ∈ H−(β∗, α∗)
}

≤ n
2 and #

{

i ∈ I : xi ∈ H+(β∗, α∗)
}

≤ n
2 .

3. Weak blockedness property: There exists an optimal center hyperplane that is at maximum
distance from d+ 1 of the points.

4. Parallel facets property: There exists an optimal center hyperplane that is parallel to a facet
of the convex hull of the given points.
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For the more general ordered median objective function, we have proved the following result
that characterizes the ordered median hyperplanes. In what follows, we derive a novel result for
these hyperplanes that will be useful in the preprocessing phase of our CG approach.

Let us introduce the following notation:

• Let B be the subdivision of the space of coefficients of the hyperplanes (β, α), Rd+1, induced
by the following arrangement of hyperplanes:

Bab
ij =

{

(β, α) ∈ R
d+1 : a(βxi + α) = b(βxj + α)

}

, ∀i, j ∈ I, a, b ∈ {−1, 1}.

• Let S be the subdivision of the space of coefficients of the hyperplanes (β, α), Rd+1, induced
by the following arrangement of hyperplanes

Si =
{

(β, α) ∈ R
d+1 : βxi + α = 0

}

, ∀i ∈ I.

Lemma 4.2. If H(β, α) is an optimal ordered median hyperplane then (β, α) is an extreme point
of a cell in the subdivision of Rd+1 induced by the intersection B ∩ S.

Proof. For a given hyperplaneH(β, α), let us consider the objective function of the problem, namely
∑

i∈I λie(i), where ei = D(H(β, α), xi).
Observe that within each cell of the subdivision B the sorting of the residuals does not change

since this subdivision is the one induced by the equations |βxi+α| = |βxj+α|. In addition, in each
cell of the subdivision S the sign of βxi +α is either positive or negative (but does not change) for
each i ∈ I. Therefore, if C ∈ B∩S is a cell in the subdivision induced by B∩S, there is permutation σ

that fixes the sorting of the residuals and also a constant vector (sign(βx1+α), . . . , sign(βxn+α)) ∈
{−1, 1}n such that

∑

i∈I

λie(i) =
∑

i∈I

λi

sign(βxi + α)(βxi + α)

‖β‖∗
=

∑

i∈I λisign(βxi + α)(βxi + α)

‖β‖∗
.

The above function is the ratio of a non-negative linear function and a convex function, then it is
quasiconcave provided that (β, α) ∈ C. Therefore, it attains its minima at the extreme points of
this region. Hence, if H(β, α) is an optimal ordered median hyperplane (β, α) must be an extreme
point of some of those cells.

The above result allows us to interpret optimal ordered median hyperplanes also in terms of
a geometrical description as those that meet d conditions between the following cases: i) passing
through points xi, i ∈ I, and ii) being at the same distance of two points xi, xj , i, j ∈ I. Optimal
ordered median hyperplanes must also satisfy, for some k = 1, . . . , d, the following property: it
contains k points xi, i ∈ I and it is at the same distance from d− k pairs xi, xj i, j ∈ I.

In our computational results we have computed the initial solutions and the initial pool of vari-
ables for the objective functions of type median, k-centrum and centdian, using the weak incidence
property, whereas for the center objective function we use the weak blockedness property.
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4.3. Pricing problem

Certifying optimality in a CG approach avoiding the inclusion of all the columns into the relaxed
master problem, (RMP), requires testing whether a new tentative column must be added to the
problem. In case no new candidates are added to the master problem, the optimality is guaranteed,
otherwise, one should add the new columns and repeat the process (Step 3 in Algorithm 1). Search-
ing for new columns to be added to the model will be performed by looking at the dual formulation
of the set partitioning formulation.

Let γ be the dual variable for constraint (27), φi the dual variables for constraints (28) and δik
the dual variables for constraints (26). Then, the dual of the Master Problem is the following:

max− pγ +
n∑

i∈I

φi

s.t.
∑

k∈I

δik = 1, ∀i ∈ I,

∑

i∈I

δik = 1, ∀k ∈ I,

−
∑

i∈S:
R=(S,H)

∑

k∈I

λke
i
Rδik − γ +

∑

i∈S:
R=(S,H)

φi ≤ 0, ∀R ⊆ R0,

δik, γ, φi ≥ 0.

Hence, for any R ⊂ R0, since yR does not appear in the objective function, the reduced cost for
variable yR is:

ēR = γ −
∑

i∈S:
R=(S,H)

φi +
∑

i∈S:
R=(S,H)

∑

k∈I

λke
i
Rδik.

Then, given an optimal dual solution (γ∗, φ∗, δ∗), and considering the binary variables

wi =







1 if the i-th point is chosen for the cluster S defining the pair R indexing the
new column,

0 otherwise,

the pricing problem is to choose the subset S with minimum reduced cost, i.e., to solve:

min−
∑

i∈I

φ∗
iwi + γ∗ +

∑

i∈I

c∗i ri

s.t. zi ≥ εxi
(β, α)), ∀i ∈ I,

ri ≥ zi −M(1− wi), ∀i ∈ I,

wi ∈ {0, 1}, ∀i ∈ I,

zi, ri ≥ 0, ∀i ∈ I,

β ∈ R
d, α ∈ R.

where c∗i =
∑n

k=1 λkδ
∗
ik, ∀i ∈ I.

If the optimal value of this problem is negative, the new column y
R̂
is added to the pool, where

R̂ = (Ŝ, Ĥ(β, α)) and Ŝ = {i : wi = 1}, since its reduced cost in the (RMP) is negative, and thus,
it improves the objective function of the master problem. Otherwise, optimality is certified and we
are finished.
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4.3.1. Heuristic pricing

The exact pricing routine described above is an NP-hard problem and thus in general, it takes
time finding new columns to be added to the pool or to certify optimality of the reduced master
problem. This last task cannot be avoided, provided that we design an exact solution algorithm.
Nevertheless, in many occasions finding promising new variables can be done at very low computa-
tional time resorting to heuristic schemes.

In our problem, we propose to test hyperplanes chosen from a discrete set of potential candidates.
To do so, we set a d-dimensional grid on the normalized space of α and β coefficients. Each point
represents a hyperplane to be tested. Once the candidate (α,β) is chosen we determine which set
of points S is going to be added to the cluster encoded by the new variable yR. This is done with
a simple greedy rule: choose those points with negative reduced cost with respect to H(β, α).

If after this process we find a hyperplane that produces a negative reduced cost, we add this
new column to the pool. Otherwise, we proceed with the exact pricer. This scheme speeds up the
search for new columns without loosing the exactness of the whole algorithm.

4.4. Branching

The set partitioning formulation of the MOMFHP0 is often not solved at the root node, in con-
trast with what is stated in Park et al. (2017). Thus, some branching strategy must be implemented
to cope with the branch and bound search. Ryan-Foster (R-F) is one of the most popular techniques
for branching in set partitioning problems (see Ryan and Foster (1981)). If a fractional solution is
reached at a node, R-F creates two new branches as follows: Given two elements i1, i2 ∈ I, they
may never go together on a set in the whole branch, or they may always go together, i.e., if one of
them belongs to a set S, the other one must also be included in S.

To implement this branching, we can take advantage of the wi variables defined on the previous
section for the pricing subproblem, to easily adapt this way of branching in our problem, by means
of the following constraints:

A) wi1 + wi2 = 1 ensuring that elements i1 and i2 are not assigned to the same hyperplane.

B) wi1 = wi2 ensuring that elements i1 and i2 are assigned to the same hyperplane.

Moreover, in our formulation there is a new case in which, despite the fact of having fractional
solutions on a node, we will not create new branches following the R-F rule. This fact is motivated
because in our problem may appear different columns (different y-variables) but being associated
to the same set S, although possibly with different hyperplanes.

Let S ⊆ I be a subset of points and let yR1 , ..., yRq be fractional variables for the same set S

although with different hyperplanes H(βi, αi), i = 1 . . . q, with q > 1, namely, Ri = (S,H(βi, αi)),

such that

q
∑

i=1

yRi = 1. If there are no more fractional variables, or the rest of the fractional variables

of the node satisfy the same conditions for some other subsets of points, we cannot apply R-F rule
and either the node need not be branched (see Theorem 4.3 and Remark 4.4) or a different branching
strategy must be implemented in these cases.

Without loss of generality, we will describe the new branching for the case in which two fractional
variables, yR1 and yR2 , with hyperplanes H(β1, α1) and H(β2, α2), are obtained in a node for the
same subset S. In this situation, the new branching rule that we propose creates three new branches
as follows:
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1. A branch where yR1 = 1 meaning that this variable will be in the solution in this branch.
This is easily implemented in the pricing routine since it amounts to avoid considering the
elements in S in any further column in that branch because they are already in the set S

which is part of the solution. Therefore, it suffices to fix the variables wi = 0, ∀i ∈ S in all
the subproblems in the branch.

2. Analogously, it creates another branch where yR2 = 1.

3. The third branch sets yR1 = yR2 = 0. This branch represents the case in which none of the
original fractional solutions are part of the integer solution. Once again, this can be enforced
by adding the following constraints to the pricing subproblems of the branch:

((

|S| −
∑

i∈S

wi

)

+

∣
∣
∣
∣
∣
|S| −

∑

i∈I

wi

∣
∣
∣
∣
∣
+

d∑

ℓ=1

|βj
ℓ − β∗

ℓ |+ |αj − α∗|

)

·M ≥ 1, j = 1, 2,

for a big enough constant M , where β∗ and α∗ define the new hyperplane H(β∗, α∗). These
constraints will make the problem infeasible if and only if all the individuals in S, and only
the individuals of S, belong to the new solution, and moreover, the new solution provides a
hyperplane H(β∗, α∗) that is equal to H(β1, α1) or H(β2, α2).

The alternative branching may be necessary in case of using general norm based residuals.
Nevertheless, as we show below, the situation is simpler using vertical distance residuals.

Theorem 4.3. Ryan and Foster branching is enough in the set partitioning formulation of (MOMFHP0)
for the vertical distance residuals: If for a subset of points S ⊆ I, there exist fractional solutions
0 < yRi < 1 with Ri = (S,H(βi, αi)) for i=1,2 at a node of the branch and bound tree then there
exists an explicit solution that combines these variables to obtain a single one satisfying yR∗ = 1
with R∗ = (S,H(β∗, α∗)).

Proof. Let us consider a subset of points S ⊆ I. At a fractional node, we can have two possible
scenarios: 1) # {yR 6= 0} = 1, hence, it would exist a single hyperplane (a facility) H(β, α) that
would serve the points of S, and hence, R-F branching is enough, and 2) #{R : such that R = (S, ·)
and yR 6= 0} > 1 . This latter case needs a further analysis since it may seem as if more than one
facility would need to be involved to optimally serve the points in S.

Without loss of generality we can assume # {R = (S, ·) : yR 6= 0} = 2 (a case with cardinality
greater than 2 can be treated sequentially by smaller problems with two solutions). In this situation
there are two variables, yR1 and yR2 , with values σ and 1 − σ, σ ∈ (0, 1), so that yR1 + yR2 = 1.
These variables are represented by two hyperplanes H(β1, α1) and H(β2, α2), where the cost of a
point i ∈ S with coordinates x ∈ R

d, ei, is given by ei = σD(x,H(β1, α1))+(1−σ)D(x,H(β2, α2)).
We prove that the hyperplane H(β∗, α∗) defined as

H(β∗, α∗) =
{
z ∈ R

d : σ(α1 + β1z) + (1− σ)(α2 + β2z) = 0
}
,

satisfies that D(x,H(β∗, α∗)) ≤ σD(x,H(β1, α1)) + (1 − σ)D(x,H(β2, α2)) for vertical distance
residuals, and this would mean that there exists a unique hyperplane that optimally serves all the
points in S. Therefore, considering yR∗ , no further branching is required.

If we consider the normalized hyperplanes H(β1, α1), and H(β2, α2), such that β1
d = β2

d = −1,
then β∗

d = −1, the vertical distance from x to H(β∗, α∗) is

19



Dv(x,H(β∗, α∗)) =

∣
∣
∣
∣
∣
xd − α∗ −

d−1∑

ℓ=1

β∗
ℓ xℓ

∣
∣
∣
∣
∣
.

Hence,

Dv(x,H(β∗, α∗)) =

∣
∣
∣
∣
∣
xd − α∗ −

d−1∑

ℓ=1

β∗
ℓ xℓ

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
σxd + (1− σ)xd − (σα1 + (1− σ)α2)−

d−1∑

ℓ=1

(σβ1
ℓ + (1− σ)β2

ℓ )xℓ

∣
∣
∣
∣
∣

≤ σ

∣
∣
∣
∣
∣
xd − α1 −

d−1∑

ℓ=1

β1
ℓxℓ

∣
∣
∣
∣
∣
+ (1− σ)

∣
∣
∣
∣
∣
xd − α2 −

d−1∑

ℓ=1

β2
ℓxℓ

∣
∣
∣
∣
∣

= σDv(x,H(β1, α1)) + (1− σ)Dv(x,H(β2, α2)).

Remark 4.4. We prove that under mild conditions, R-F branching is also enough for the ℓ1-norm
based residuals.

Without loss of generality, assume that there is a solution with two fractional variables y1S and
y2S, with values σ and (1 − σ), and corresponding hyperplanes H(β1, α1) and H(β2, α2). Let us
define the set SP =

{
j : |β1

j | = |β2
j | = 1, j = 1, . . . , d

}
. Hence, if SP 6= ∅, RF-branching is enough

for the ℓ1-norm residuals.
Indeed, let ̂ be an index such that |β1

̂ | = |β2
̂ | = 1.

It is clear that for any ̂ ∈ SP , β∗(̂) = σβ1 + (1 − σ)β1
̂ · β2

̂ β
2 ∈ R

d satisfies ‖β∗
̂ ‖∞ = 1.

Consider for any ̂ ∈ SP the hyperplane

H(β∗(̂), α∗) =
{
z ∈ R

d : σ(α1 + β1z) + (1− σ)β1
̂ · β2

̂ (α
2 + β2z) = 0

}
,

then for any individual i ∈ S with coordinates xi ∈ R
d, taking into account that ||β1||∞ = ||β2||∞ =

1, we obtain that

Dℓ1(xi,H(β∗(̂), α∗)) =
|α∗ +

∑d

ℓ=1 β
∗
ℓ xiℓ|

||β∗||∞

≤ σ
|α1 +

∑d

ℓ=1 β
1
ℓxiℓ|

||β1||∞
+ (1− σ)

|α2 +
∑d

ℓ=1 β
2
ℓxiℓ|

||β2||∞

= σDℓ1(xi,H(β1, α1)) + (1− σ)Dℓ1(xi,H(β2, α2)).

and hence, yR∗ = 1 for R∗ = (S,H(β∗(̂), α∗)) is an optimal solution for the problem.

5. Computational Results

A series of computational experiments has been performed in order to test the two proposed
methodologies. We consider two different sets of instances, one based on Eilon et al. (1971) dataset
and another on synthetic data. For all of them we solve (MOMFHP0) for four different objective
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functions: Weber (W), Center (C), ⌈n
2 ⌉-Centrum (K) (λ = (

⌈n
2 ⌉

︷ ︸︸ ︷

1, . . . , 1, 0, . . . , 0)) and 0.9-Centdian
(D) (λ = (1, 0.9, . . . , 0.9)) and with the two proposed approaches: the compact approach based on
formulation (MOMFHP) and with the branch-and-price methodology. We test the performance
of the algorithms on two different types of residuals: ℓ1-norm based residuals and absolute value
vertical distance residuals.

The models were coded in C and solved with SCIP v.6.0.1 (Gleixner et al., 2018) using as
optimization solver CPLEX 12.8 in a Mac OS El Capitan with a Core i7 CPU clocked at 2.8 GHz
and 16GB of RAM memory. A time limit of 5 hours was fixed for all the instances. It is well-known
in the field of location analysis that continuous multifacility ordered median problems are very
difficult to solve and already problems of moderate sizes (n = 50 demand points) can not often be
solved to optimality (see e.g., Blanco et al. (2016)). The same or even a harder behavior should
be expected here since these problems introduce a new degree of difficulty in the representation of
general distance based residuals.

5.1. Eilon et al. (1971) dataset

First, we tested our approach on instances based on the classical planar 50-points dataset pro-
vided by Eilon et al. (1971). We randomly generate five instances from such a dataset with sizes
n ∈ {20, 30, 40, 45} and the entire complete original instance with n = 50. We run the models
for p ∈ {2, 5} hyperplanes. The average results obtained for these instances are shown in tables
1 and 2. There, for each combination of n (size of the instance), p (number of hyperplanes to be
located) and type (ordered median objective function to be minimized), we provide both for the
compact formulation MOMFHP (Compact) and for the branch-and-price (B&P) approach: the
CPU time in seconds needed to solve the problem (Time) and within parentheses the number of
unsolved instances ((#Unsolved)), the MIP Gap in percentage (GAP(%)) remaining after the time
limit, the number of nodes (Nodes) explored in the branch and bound tree and the RAM memory
(Memory (MB)) in Megabytes required during the execution process. Within each column (Time,
GAP, Nodes and Memory), we highlight in bold the best result between the two formulations, namely
Compact or B&P. Table 1 gives the results for the models with vertical distance residuals while
Table 2 provides the results for the ℓ1-norm residuals.

As expected, the difficulty of the problem increases with n and p. Problems with smaller n are
easier and p = 2 is also easier than p = 5. We also observe in Table 1 that the B&P approach is
more efficient than formulation MOMFHP for p = 5 but not for p = 2.

For that type of problem, p = 2, with vertical distance residuals the compact formulation is
able to solve most of the instances and for those not solved the gap at termination is smaller than
the corresponding for the B&P. Nevertheless, the behavior for p = 5 is the opposite and B&P
solves more instances and reports smaller gap that the compact formulation. As it can be expected
the number of nodes to be explored in order to solve the problems is several orders of magnitude
larger for the compact formulation than for the B&P algorithm. This fact shows that the former
formulation is weaker (also confirmed by the LP bound) than the latter thus requiring many more
nodes to be explored to solve the problems, implying a better scalability of the B&P approach. In
addition, MOMFHP requires very large RAM memory resources since already for n = 50 points, it
demands, in some cases, more than 11 GB whereas B&P solves the problems using at most 4 GB
of RAM memory.

Turning to Table 2 we observe, as expected, that using ℓ1-norm residuals make problems harder
to solve mainly due to the representation of the projections point-to-hyperplane stated in Remark
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3.4. In this case, the overall gaps increase from 29.36% and 11.24% in Table 1, for MOMFHP and
B&P, respectively, to 62.69% and 20.53%. This behavior is more severe for MOMFHP because
already for n = 20 and p = 5 that formulation is not able to certify optimality for any of the
problems regardless of the type within the time limit. On the contrary, B&P is affected less and
its behavior is similar to what one observes for vertical distance in Table 1. The rest of comments
regarding number of nodes and memory requirements are similar to those given previously for
vertical distances.

5.2. Synthetic Instances

We have also randomly generated another set of instances to evaluate the performance of the
two solution approaches depending on the space dimension (d). We have generated five instances
of random points in the unit hypercube for each meaningful combination of n ∈ {20, 30, 40, 45, 50},
p ∈ {2, 5, 10} and d ∈ {2, 3, 8} (note that for these datasets, we have included additionally p = 10 to
analyze how increasing the number of hyperplanes affects the complexity for larger space dimension
(d = 8)). At this point, it is important to point out that several combinations of the above factors
result in trivial problems, for instance for n = 20 and p = 10 there is always a solution passing
through all the points and thus with zero objective value. All those cases that give rise to trivial
solutions are not reported. Table 3 reports the results for the models with vertical distance residuals
while Table 4 provides the results for the ℓ1-norm residuals. We report the same information as the
one provided in the previous section but this time the results do not distinguish the type of objective
function but the dimension of the space. (Needless to say that all the results disaggregated also by
type are available upon request.)

For this dataset the results reinforce our previous observations in that for problems with vertical
distances (see Table 3), MOMFHP is much weaker than B&P for p = 5, 10 and in any dimension.
In this case, however as seen in Table 3 there are cases where for p = 2 MOMFHP (see column
Compact) is more efficient. Turning to problems with ℓ1-norm residuals the performance is more
homogeneous and B&P is more efficient than MOMFHP for all n and d and for p = 5, 10. For
p = 2, Compact solves more instances than B&P for n = 20, 40 and 45, less instances for n = 20
and the same number for n = 50. Nevertheless, for those instances that are not solved Compact
reports larger gaps than B&P in all cases. Once again, one observes that problems with ℓ1-norm
residuals are more difficult than with vertical residuals. The overall gaps increase from 51.49% and
29.93% in Table 3, for MOMFHP and B&P, respectively, to 83.78% and 37.41% in Table 4.

6. Scalability: Bounding the error in aggregation procedures

This section is devoted to analyze the issue of scalability of our approach. We are aware that
the methodology based on a branch and price algorithm may be computationally costly (we refer
the reader to the Section 5 for further details). For that reason, we derive an approach that allows
one to handle large data sets with appropriate error bounds.

Our approach is based on aggregating data to reduce the dimensionality of the original problem
so that our branch and price approach can properly handle the problem. The important issue is that
we can provide error bounds on these approximations that monotonically decrease with the quality
of the aggregation. Obviously, aggregation strategies are not new since they have been already
applied in some other areas although mostly from a heuristic point of view (see e.g., Current and
Schilling (1987, 1990))
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Time (#Unsolved) GAP(%) Nodes Memory (MB)
n type p Compact B&P Compact B&P Compact B&P Compact B&P

20

W
2 2.08 68.15 0.00 0.00 2878 2 3 23
5 8686.50 (2) 23.48 18.67 0.00 23623465 16 2226 13

K
2 2.10 69.18 0.00 0.00 2878 2 3 23
5 8703.61 (2) 23.31 18.70 0.00 23560539 16 2221 13

D
2 6.70 86.14 0.00 0.00 2904 2 3 24
5 9803.60 (2) 43.96 18.67 0.00 24131841 26 2161 15

C
2 0.11 3171.27 0.00 0.00 35 5070 1 1347
5 103.70 2798.43 0.00 0.00 204693 12259 36 300

30

W
2 52.13 1439.90 0.00 0.00 60401 11 9 109
5 — (5) 654.68 87.13 0.00 22547601 109 7194 47

K
2 52.77 1440.09 0.00 0.00 60401 11 9 109
5 — (5) 653.84 87.11 0.00 22459376 109 7161 47

D
2 57.57 2410.21 0.00 0.00 62889 7 9 107
5 — (5) 242.66 83.94 0.00 22252049 25 7240 41

C
2 0.17 — (5) 0.00 25.73 40 2833 3 4033
5 349.26 1275.77 (3) 0.00 28.76 503141 7537 89 1318

40

W
2 1870.93 — (5) 0.00 11.71 1453146 1 91 251
5 — (5) 10694.92 (3) 99.96 1.88 15197462 280 9801 141

K
2 1923.60 — (5) 0.00 11.73 1453146 1 91 248
5 — (5) 10574.62 (3) 99.96 1.77 15210786 281 9792 142

D
2 1765.95 — (5) 0.00 10.56 1290038 1 87 244
5 — (5) 3346.72 99.83 0.00 14810951 864 9700 183

C
2 0.26 17046.73 (4) 0.00 22.50 81 408 4 1264
5 982.10 8626.58 (2) 0.00 18.17 1196810 1358 205 1559

45

W
2 10238.75 — (5) 0.00 27.97 6492828 1 219 351
5 — (5) — (5) 99.86 29.67 12121664 32 10427 139

K
2 10438.84 3858.26 (2) 0.00 5.05 6532368 9 208 401
5 — (5) — (5) 100.00 47.44 12720196 25 11047 142

D
2 10192.16 — (5) 0.00 45.37 6066819 1 217 336
5 — (5) 7525.10 99.46 0.00 12193404 2383 9076 336

C
2 0.35 706.28 (4) 0.00 7.58 133 2286 5 932
5 1268.05 15430.62 (4) 0.00 36.94 1570195 1490 244 2245

50

W
2 — (1) — (1) 22.46 3.48 9401360 1 1593 582
5 — (1) — (1) 100.00 52.33 10760962 1 11353 127

K
2 — (1) — (1) 22.57 3.48 9275884 1 1584 583
5 — (1) — (1) 100.00 52.33 10743398 1 11335 126

D
2 — (1) — (1) 21.06 2.84 8902849 1 1238 515
5 — (1) — (1) 100.00 46.21 9732814 1 9864 134

C
2 0.29 — (1) 0.00 19.79 37 372 6 923
5 1778.36 — (1) 0.00 43.86 2234747 470 281 1432

Total Average: 2521.67 (57) 2481.66 (73) 29.36 11.24 7737963 1120 2888 517

Table 1: Results for Eilon et al. (1971) instances for vertical distance.
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Time (#Unsolved) GAP(%) Nodes Memory (MB)
n type p Compact B&P Compact B&P Compact B&P Compact B&P

20

W
2 166.73 136.75 0.00 0.00 163750 21 17 30
5 — (5) 111.13 100.00 0.00 29829455 32 10437 14

K
2 167.49 136.65 0.00 0.00 163750 21 17 30
5 — (5) 109.85 100.00 0.00 30416596 32 10655 14

D
2 624.85 103.66 0.00 0.00 690721 26 40 30
5 — (5) 56.87 100.00 0.00 31528234 15 10624 13

C
2 0.98 4877.58 (2) 0.00 5.13 1398 3597 3 2141
5 — (5) 11288.38 (3) 100.00 12.23 40775405 18269 7513 2118

30

W
2 9743.92 (2) 4509.86 28.75 0.00 13086135 26 1187 123
5 — (5) 947.24 98.89 0.00 20504433 35 10616 39

K
2 9724.20 (2) 4507.75 28.74 0.00 13098248 26 1188 123
5 — (5) 927.14 98.88 0.00 21254042 35 11006 39

D
2 2897.96 (3) 4595.89 26.93 0.00 13057250 27 1724 127
5 — (5) 1885.54 100.00 0.00 20197549 140 10972 49

C
2 2.92 3154.04 (3) 0.00 19.61 1192 507 4 2154
5 2055.73 (4) — (5) 80.00 46.40 25951648 3028 8158 3031

40

W
2 — (5) — (5) 42.82 6.40 13047861 1 2218 201
5 — (5) — (5) 100.00 39.89 14778541 49 10698 98

K
2 — (5) — (5) 42.95 6.40 12998370 1 2214 201
5 — (5) — (5) 100.00 39.20 15280145 59 11070 101

D
2 — (5) — (5) 65.74 7.03 10642421 1 1809 213
5 — (5) — (5) 100.00 35.47 14043320 111 9495 145

C
2 2.64 13923.59 (4) 0.00 39.56 3792 124 5 1593
5 — (5) — (5) 100.00 60.84 23716675 299 11125 1002

45

W
2 — (5) — (5) 42.39 4.85 10512338 1 2795 287
5 — (5) — (5) 100.00 49.90 11757058 2 10826 97

K
2 — (5) — (5) 49.79 25.56 10903011 1 2767 299
5 — (5) — (5) 100.00 55.13 12704430 1 11911 98

D
2 — (5) — (5) 62.64 24.59 8683785 1 2263 296
5 — (5) — (5) 100.00 48.34 11591052 3 9553 95

C
2 2.13 — (5) 0.00 41.79 2251 37 6 1036
5 — (5) — (5) 100.00 61.79 22769758 133 11064 728

50

W
2 — (1) — (1) 96.53 8.22 7215656 1 3368 371
5 — (1) — (1) 100.00 53.68 11063050 1 9171 109

K
2 — (1) — (1) 96.51 8.22 7288856 1 3402 371
5 — (1) — (1) 100.00 53.68 11115826 1 9212 109

D
2 — (1) — (1) 96.34 8.21 6792290 1 2722 338
5 — (1) — (1) 100.00 55.80 11147925 1 9840 118

C
2 4.21 — (1) 0.00 47.22 5241 15 8 680
5 — (1) — (1) 100.00 63.66 19632691 52 9468 488

Total Average: 1580.36 (123) 2172.46 (100) 62.69 20.53 13958539 794 5756 508

Table 2: Results for Eilon et al. (1971) instances for ℓ1-distance.
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Time (#Unsolved) GAP(%) Nodes Memory (MB)
n d p Compact B&P Compact B&P Compact B&P Compact B&P

20

2
2 11.00 56.48 0.00 0.00 2710 139 2 49
5 3765.45 (13) 413.44 (4) 46.32 1.25 13909807 40836 2209 430

3
2 4.39 233.22 0.00 0.00 2922 417 3 137
5 — (20) 21.86 (5) 100.00 19.56 19586370 8330 629 29

8 2 30.88 1506.93 0.00 0.00 29777 1530 3 782

30

2
2 55.66 2083.69 (1) 0.00 1.34 44038 1039 7 1218
5 1735.01 (15) 729.11 (5) 74.14 11.01 11575613 7989 4058 1274
10 — (20) 30.71 (5) 100.00 11.05 15536270 10046 1572 298

3
2 60.69 6473.90 (4) 0.00 5.77 48533 1741 8 2737
5 — (20) 7749.20 (9) 100.00 18.32 15098323 5033 3187 384

8 2 414.28 — (20) 0.00 67.19 270055 779 23 1516

40

2
2 1490.88 6080.82 (19) 0.00 14.85 903463 805 56 2186
5 7047.41 (16) 6557.14 (11) 75.78 18.52 10566235 3642 5303 1187
10 — (20) 1331.86 (5) 100.00 19.66 12196952 1770 2179 159

3
2 1164.17 — (20) 0.00 18.04 726140 466 40 1579
5 — (20) — (20) 100.00 57.67 12378840 705 5061 412
10 — (20) 884.80 (15) 100.00 43.81 12359358 584 1121 79

8 2 8455.38 — (20) 0.00 71.44 4005359 59 140 417

45

2
2 8065.22 (6) — (20) 4.56 25.70 5700797 587 316 2353
5 11523.46 (16) 10873.49 (15) 75.04 33.86 9858979 2061 6104 945
10 — (20) 2683.05 (5) 100.00 20.37 11236807 889 2124 111

3
2 8390.99 — (20) 0.00 25.64 4494533 235 127 1205
5 — (20) — (20) 100.00 63.19 11396830 353 5914 344
10 — (20) 2403.31 (9) 100.00 28.47 10911247 272 1471 71

8
2 283.87 (15) — (20) 33.32 67.26 5409179 11 962 324
5 — (20) — (20) 100.00 100.00 11094838 1 329 64

50

2
2 0.36 (3) — (4) 18.70 6.95 6135466 393 1132 2361
5 12373.18 (3) — (4) 75.02 51.32 8984044 801 7563 729
10 — (4) 6654.32 (1) 100.00 20.01 10892069 363 2483 83

3
2 2.05 (3) — (4) 20.60 30.71 6182966 112 989 1209
5 — (4) — (4) 100.00 65.74 10380563 157 5969 268
10 — (4) — (4) 100.00 68.93 10139295 214 1537 75

8
2 272.73 (3) — (4) 45.65 67.16 4649063 2 1243 407
5 — (4) — (4) 100.00 100.00 10407264 1 1472 83

Total Average: 2625.00 (309) 2251.36 (321) 51.49 29.93 7735135 3287 1718 773

Table 3: Results for synthetic instances for vertical distance.
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Time (#Unsolved) GAP(%) Nodes Memory (MB)
n d p Compact B&P Compact B&P Compact B&P Compact B&P

20

2
2 2799.81 540.45 (1) 0.00 1.50 4193628 545 216 424
5 17545.62 (19) 1160.12 (3) 100.00 4.15 35717983 5312 9878 922

3
2 6691.57 (7) 4226.37 8.41 0.00 17136729 617 696 693
5 — (20) 147.31 (5) 100.00 16.99 39208660 3325 5832 52

8 2 — (20) 10356.65 (12) 100.00 36.68 32145208 324 488 476

30

2
2 2491.37 (11) 8898.27 (3) 43.06 4.35 11908005 293 2283 1230
5 — (20) 5575.20 (7) 100.00 14.72 24028581 1361 11038 1765
10 17960.21 (19) 327.34 (5) 100.00 14.56 24603724 1162 8567 169

3
2 14.09 (15) 9603.14 (13) 50.87 18.57 13408414 178 2644 894
5 — (20) 6628.48 (11) 100.00 22.45 23654639 631 9211 785

8 2 — (20) — (20) 100.00 85.77 18682135 14 3855 171

40

2
2 2.09 (15) 13973.80 (19) 63.24 14.27 8495764 76 2259 1074
5 — (20) — (20) 100.00 42.62 17696588 193 10524 904
10 11767.31 (19) 7695.73 (6) 100.00 22.17 17749077 212 8306 45

3
2 38.58 (15) — (20) 64.33 31.75 7710536 25 2929 601
5 — (20) — (20) 100.00 69.83 19758253 76 9542 378
10 — (20) — (20) 100.00 63.85 16865456 111 5522 44

8 2 — (20) — (20) 100.00 73.86 12839616 2 4272 192

45

2
2 2.61 (15) 16547.12 (19) 61.73 16.31 7295436 26 2189 1101
5 — (20) 9227.47 (17) 100.00 45.50 13916126 714 9640 729
10 — (20) 9606.52 (9) 100.00 24.11 14582103 234 8573 61

3
2 28.92 (15) — (20) 74.40 25.74 5456543 10 2359 602
5 — (20) — (20) 100.00 68.74 15523670 31 9216 294
10 — (20) 5573.00 (18) 100.00 60.65 14067756 54 6130 59

8
2 — (20) — (20) 100.00 69.62 10392241 1 4242 243
5 — (20) — (20) 100.00 100.00 13168789 1 1284 57

50

2
2 1.59 (3) 7203.33 (3) 71.34 10.99 6941692 11 3250 950
5 — (4) 8172.47 (3) 100.00 46.58 15611084 492 10326 704
10 — (4) 7236.13 (3) 100.00 29.85 14012908 273 6934 72

3
2 48.23 (3) — (4) 60.70 13.84 5691897 5 1877 1068
5 — (4) — (4) 100.00 85.37 14771026 9 8255 199
10 — (4) — (4) 100.00 67.47 12123118 26 5274 69

8
2 — (4) — (4) 100.00 64.78 9864048 1 3915 345
5 — (4) — (4) 100.00 100.00 10436698 1 3278 69

Total Average: 2961.44 (480) 4924.89 (377) 83.78 37.41 16590341 569 5435 531

Table 4: Results for synthetic instances for ℓ1 distance.
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Let X = {x1, . . . , xn} ⊂ R
d be a set of demands points. Aggregating X into a new set of

demand points X ′ consists of replacing X by a smaller (multi)set X ′ = {x′
1, . . . , x

′
n} and to assign

each point xi in X to a point x′
i in X ′ (since the cardinality of the different elements of X ′ is smaller

than the cardinality of X, several xi may be assigned to the same x′
i and thus actually, some of the

elements in X ′ coincide). A possible choice can be substituting the set of original demand points
by the centroids obtained by any of the available clustering techniques. In any case, when solving
(MOMFHP0) for X

′ instead of using X one incurs in aggregation errors.
Let H be the optimal arrangement of p hyperplanes for the problem and e = (e1, . . . , en) with

ei = εxi

(

H

)

, for i ∈ I, the residuals with respect to H. Analogously, let H
′ be the optimal

arrangement for the demand points in X ′ and e′ the vector of residuals.

Theorem 6.1. Let T = max
i=1,...,n

D(xi, x
′
i). Then, the following relation holds:

|OMλ(e
′)−OMλ(e)| ≤ 2OMλ(T, . . . , T ). (30)

Proof. First of all, observe that, based on the triangular inequality, for any H

εxi
(H) ≤ εx′

i
(H) + D(xi, x

′
i), ∀i = 1, . . . , n.

Let us also consider the vector t = (D(x1, x
′
1), . . . ,D(xn, x

′
n)) of distances from the original points in

X to their corresponding points in X ′ and denote by ẽ = (εx′
1
(H), . . . , εx′

n
(H)). Since the function

OM is non-decreasing monotone and sublinear, it follows that:

OMλ(e) ≤ OMλ(ẽ+ t) ≤ OMλ(ẽ) + OMλ(t).

Hence, since T ≥ D(xi, x
′
i) for all i = 1, . . . , n, we get that:

|OMλ(e)− OMλ(ẽ)| ≤ OMλ(T, . . . , T ).

From the above inequality we can apply (Geoffrion, 1977, Theorem 5) to conclude that

|OMλ(e
′)− OMλ(e)| ≤ 2OMλ(T, . . . , T ).

The difference considered in the above theorem is the excess due to the implementation of an
approximate solution based on the reduced model with data set X ′ rather than the correct optimal
solution for the original data in the larger set X. This result allows us to scale our CG algorithm
to problems of any size using aggregation techniques and providing estimates on the deviation from
the optimal value.

We illustrate the application of the above result including the percent error obtained aggregating
to 20 points some of our random problems with 50 points by the 20-mean clustering technique. As
one can see in Table 5 the percent errors are small. Observe that in some cases they are even
negative, for problems that were not solved to optimality, and where the hyperplanes obtained by
aggregating points, once evaluated on the actual 50 points, produce a smaller error than the upper
bound found by the algorithm on the original dataset.

27



error (%)

p type d = 2 d = 3

2

W 3.48 2.78

K -17.84 -16.52

C 4.40 5.90

D 3.59 2.87

5

W -0.16 1.21

K -9.17 -2.99

C 6.60 20.86

D 0.16 -11.16

Table 5: % aggregation errors for 50 points problems and vertical distance.

7. Conclusions

This paper considers the problem of locating a given number of hyperplanes in order to minimize
an objective function of the distances from a set of points. Each point is assigned to its closest
hyperplane, thus inducing as many clusters as the number of fitting hyperplanes. The distance from
each point to its corresponding fitting hyperplane can be seen as a residual and these residuals are
aggregated using ordered median functions that are ordered weighted averages representing different
types of utilities. Two exact approaches are presented to solve the problem. The first one is based
on a compact mixed integer formulation whereas the second one is an extended set partitioning
formulation that is handled by a branch-and-price approach. To enhance the performance of this last
method we have developed a generator of initial feasible solutions based on geometrical properties
of the optimal solutions of the hyperplane location problem that we have also derived in this paper,
and that are used to initialize the column generation routine of this branch-and-price. We have
also presented a heuristic pricing strategy that is used in combination with the exact one to speed
up some pricing iterations. We report the comparison of both method to solve the problem in two
different datasets on an extensive battery of computational experiments. The issue of scalability
of the exact methods is also analyzed obtaining theoretical upper bounds of the error induced by
some aggregated versions of the original dataset.

A possible extension to be developed in a follow up paper is the development of alternative
heuristic algorithms capable to solve the problem for large instances. In view of the applications of
the proposed methodology in machine learning, other types of tools could be also explored under
the multisource ordered median paradigm, as for instance Support Vector Machines, where a first
attempt have been already proposed by Blanco et al. (2020a).
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Brimberg, J., Juel, H., and Schöbel, A. (2003). Properties of three-dimensional median line location
models. Annals of Operations Research, 122(1-4):71–85.

Carbonneau, R. A., Caporossi, G., and Hansen, P. (2014). Globally optimal clusterwise regression
by column generation enhanced with heuristics, sequencing and ending subset optimization. J.
Classif., 31(2):219–241.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3):273–297.

Current, J. R. and Schilling, D. A. (1987). Elimination of source a and b errors in p-median location
problems. Geographical Analysis, 19(2):95–110.

Current, J. R. and Schilling, D. A. (1990). Analysis of errors due to demand data aggregation in
the set covering and maximal covering location problems. Geographical Analysis, 22(2):116–126.

Eilon, S., Watson-Gandy, C. D. T., and Christofides, N. (1971). Distribution management : math-
ematical modelling and practical analysis. London : Griffin.
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