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Abstract. Fitting piecewise affine models to data points is a perva-
sive task in many scientific disciplines. In this work, we address the k-
Piecewise Affine Model Fitting with Pairwise Linear Separability problem
(k-PAMF-PLS) where, given a set of m points {a1, . . . ,am} ⊂ Rn and
the corresponding observations {b1, . . . , bm} ⊂ R, we have to partition
the domain Rn into k pairwise linearly separable subdomains and to de-
termine an affine submodel (function) for each of them so as to minimize
the total linear fitting error w.r.t. the observations bi.

To solve k-PAMF-PLS to optimality, we propose a mixed-integer linear
programming (MILP) formulation where symmetries are broken by sep-
arating the so-called shifted column inequalities. For medium-to-large
scale instances, we develop a four-step heuristic involving, among others,
a point reassignment step based on the identification of critical points
and a domain partition step based on multicategory linear classifica-
tion. Differently from traditional approaches proposed in the literature
for similar fitting problems, in our methods the domain partitioning and
submodel fitting aspects are taken into account simultaneously.

Computational experiments on real-world and structured randomly gen-
erated instances show that, with our MILP formulation with symmetry
breaking constraints, we can solve to proven optimality many small-size
instances. Our four-step heuristic turns out to provide close-to-optimal
solutions for small-size instances, while allowing to tackle instances of
much larger size. The experiments also show that the combined impact
of the main features of our heuristic is quite substantial when compared
to standard variants not including them.
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1 Introduction

Fitting a set of data points in Rn with a combination of low complexity mod-
els is a pervasive problem in, essentially, any area of science and engineering.
It naturally arises, for instance, in prediction and forecasting when determin-
ing a model to approximate the value of an unknown function, or whenever
one wishes to approximate a highly complex nonlinear function with a simpler
one. Applications range from optimization (see, e.g., [TV12] and the references
therein) to data mining (see, e.g., [AM02]) and system identification (see, for
instance, [BGPV03,FTMLM03,TPSM06]), only to cite a few.

Among the different options, piecewise affine models have a number of advan-
tages with respect to other model fitting approaches. Indeed, they are compact
and simple to evaluate, visualize, and interpret, in contrast to models obtained
with other techniques such as, e.g., neural networks, while allowing to approxi-
mate even highly nonlinear functions.

Given a set of m points A = {a1, . . . ,am} ⊂ Rn, where I = {1, . . . ,m}, with
the corresponding observations {b1, . . . , bm} ⊂ R and a positive integer k, the
general problem of fitting a piecewise affine model to the data points {(a1, b1), . . . , (am, bm)}
consists in partitioning the sub-domain Rn into k continuous subdomainsD1, . . . , Dk,
where J = {1, . . . , k}, and in determining, for each subdomain Dj , an affine
submodel (an affine function) fj : Dj → R, so as to minimize a measure of

the total fitting error. Adopting the notation fj(x) = wjx − wj
0 with coeffi-

cients (wj , wj
0) ∈ Rn+1, the j-th affine submodel corresponds to the hyperplane

Hj = {(x, fj(x)) ∈ Rn+1 : fj(x) = wjx−wj
0} where x ∈ Dj . The total fitting er-

ror is defined as the sum, over all i ∈ I, of a function of the difference between bi
and the value fj(i)(ai) provided by the piecewise affine model, where j(i) is
the index of the affine submodel corresponding to the subdomain Dj(i) which
contains the point ai.

In the literature, different error functions (e.g., linear or quadratic) as well
as different types of domain partition (with linearly or nonlinearly separable
subdomains) have been considered. See Figure 1 (a) for an illustration of the
case with k = 2 and a domain partition with linearly separable subdomains.

In this work, the focus is on the version of the general piecewise affine model
fitting problem with a linear error function (L1 norm) and a domain partition
with pairwise linearly separable subdomains. We refer to it as to the k-Piecewise
Affine Model Fitting with Pairwise Linear Separability problem (k-PAMF-PLS).
A more formal definition of the problem will be provided in Section 3.

k-PAMF-PLS shares a connection with the so-called k-Hyperplane Cluster-
ing problem (k-HC), an extension of a classical clustering problem which calls
for k hyperplanes in Rn+1 that minimize the sum, over all the data points
{(a1, b1), . . . , (am, bm)}, of the L2 distance from (ai, bi) to the hyperplane it is
assigned to. See [BM00,AC13,Con11,Con15] for some recent work on the prob-
lem and [ADC13] for the problem variant where we minimize the number of
hyperplanes needed to fit the points within a prescribed tolerance ε. It is nev-
ertheless crucial to note that, differently from many of the approaches in the
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Fig. 1. (a) A piecewise affine model with k = 2, fitting the eight data points
A = {ai}i∈I and their observations {bi}i∈I with two submodels (in dark grey). The
points (ai, bi) assigned to each submodel are indicated by � and N. The model adopts
a linearly separable partition of the domain R2 (represented in light grey). (b) An
infeasible solution obtained by solving a k-hyperplane clustering problem in R3 with
k = 2. Although yielding a smaller fitting error than that in (a), this solution induces a
partition A1, A2 of A where the points ai assigned to the first submodel (indicated by
�) cannot be linearly separated from those assigned to the second submodel (indicated
by M). In other words, the solution does not allow for a domain partition D1, D2 of R2

with linearly separable subdomains that is consistent with the point partition A1, A2.

literature (which we briefly summarize in Section 2) and depending on the type
of the domain partition that is adopted, a piecewise affine function cannot be
determined by just solving an instance of k-HC. As illustrated in Figure 1 (b),
the two aspects of k-PAMF-PLS, namely, submodel fitting and domain parti-
tioning, should be taken into account at once to obtain a solution where the
submodels and the domain partition are consistent. In this work, we propose
exact and heuristic algorithms for k-PAMF-PLS which simultaneously consider
both aspects.

The paper is organized as follows. After summarizing previous and related
work in Section 2, we formally define the problem under consideration in Sec-
tion 3. In Section 4, we provide a mixed-integer linear programming (MILP)
formulation for k-PAMF-PLS. We then strengthen the formulation, when solv-
ing the problem in a branch-and-cut setting, by generating symmetry-breaking
constraints. In Section 5, we propose a four-step heuristic to tackle larger-size
instances. Computational results are reported and discussed in Section 6. Sec-
tion 7 contains some concluding remarks. Portions of this work appeared, in a
preliminary stage, in [ACT11,ACT12].

2 Previous and related work

In the literature, many variants of the general problem of fitting a piecewise
affine model to data points have been considered. We briefly mention some of
the most relevant ones in this section.



In some works, the domain is partitioned a priori, exploiting the domain-
specific information about the dataset at hand. This approach has a typically
limited applicability, as it requires knowledge of the underlying structure of the
data, which may often not be available. For some examples, the reader is referred
to [TV12] (which admits the use of a predetermined domain partition as a special
case of a more general approach) and to the references therein.

In other works, a domain partition is easily derived when the attention is
restricted to convex or concave piecewise affine models. Indeed, if the model is
convex, each subdomain Dj is uniquely defined as Dj = {x ∈ Rn : fj(x) ≥
fj′(x) ∀j′ ∈ J} (similarly, for concave models, with ≤ instead of ≥). This is,
for instance, the case of [MB09] and [MRT05], where the fitting function is the
pointwise maximum (or minimum) of a set of k affine functions. A similar case
is that of [RBL04], where the authors address the identification of a special type
of dynamic systems which, due to the properties of the models they consider, do
not require an explicit definition of the subdomains.

In the general version of the problem (that we address in this paper), a
partition of the domain has to be explicitly derived together with the fitting
submodels in order to obtain a piecewise affine function from Rn to R. To
the best of our knowledge, the available methods split the problem into two
subproblems that are solved sequentially: i) a clustering problem aiming at
partitioning the data points and simultaneously fitting each subset with an
affine submodel, and ii) a classification problem asking for a domain parti-
tion consistent with the previously determined submodels and the correspond-
ing point partition. Note that the clustering problem considers the data points
{(a1, b1), . . . , (am, bm)} ⊂ Rn+1, whereas the classification problem considers
the original points {a1, . . . ,am} ⊂ Rn but not the observations bi. The clus-
tering phase is typically carried out by either choosing a given number k of
hyperplanes which minimize the fitting error, or by finding a minimum number
of hyperplanes yielding a fitting error of, at most, a given ε. We remark that
these two-phase approaches, due to deferring the domain partition to the end of
the method, may lead to poor quality solutions.

Such an approach is adopted, for instance, in [BGPV03]. In the clustering
phase, as proposed in [AM02], the problem of fitting the data points in Rn+1

with a minimum number of linear submodels within a given error tolerance ε > 0
is formulated and solved as a Min-PFS problem, which amounts to partitioning
a given infeasible linear system into a minimum number of feasible subsystems.
Then, in the classification phase, the domain is partitioned via a Support Vec-
tor Machine (SVM). In [TPSM06], the authors solve a k-hyperplane clustering
problem via the heuristic proposed in [BM00] for the clustering phase, resorting
to SVM for the classification phase. The authors of [FTMLM03] adopt a vari-
ant of k-means1 [Mac67] for the clustering phase, but fit each affine submodel a
posteriori by solving a linear regression problem where the weighted least square

1 k-means is a well-known heuristic to partition m points {a1, . . . ,am} into k groups
(clusters) so as to minimize the total distance between each point and the centroid
(mean) of the corresponding group.



error is minimized and, then, partition the domain via SVM. A similar approach
is also adopted in [BS07], where, in the first phase, a k-hyperplane clustering
problem is solved as a mixed-integer linear program and, in the second phase,
the domain partition is derived via Multicategory Linear Classification (MLC).
For references to SVM and MLC, see [BM94] and [Vap96].

As already mentioned in the previous section, this kind of approaches may
produce, in the first phase, affine submodels inducing a partition A1, . . . , Ak

of the points of A which does not allow for a consistent domain partition
D1, . . . , Dk, i.e., for a partition where all the points ai in a subset Aj are con-
tained into one and only one subdomain Dj(i). Refer again to Figure 1 (b) for
an illustration.

3 Problem definition

In this work, we require that the domain partition D1, . . . , Dk of Rn satisfy
the property of pairwise linear separability, which is the basis of the so-called
multicategory linear classification problem.

3.1 Pairwise linear separability and multicategory linear
classification

Given k groups of points A1, . . . , Ak ⊂ Rn, the multicategory linear classification
problem calls for a partition of the domain Rn into k subdomains D1, . . . , Dk

where: i) for every j ∈ J , each group Aj is completely contained into the subdo-
main Dj , and ii) for any pair of indices j1, j2 ∈ J with j1 6= j2, the subdomains
Dj1 and Dj2 of Rn can be linearly separated by a hyperplane.

As shown in [DF66], such a partition can be conveniently defined by in-
troducing, for each group of points Aj with j ∈ J , a vector of parameters

(yj , yj0) ∈ Rn+1 such that a point ai ∈ Aj belongs to the subdomain Dj if

and only if, for every j′ 6= j, we have (yj − yj′)ai − (yj0 − y
j′

0 ) > 0. Note that,
this way, for any pair of indices j1, j2 ∈ J with j1 6= j2, the sets of points Aj1 and

Aj2 are separated by the hyperplane Hj1j2 = {x ∈ Rn : (yj1−yj2)x = yj10 −y
j2
0 }

with coefficients (yj1−yj2 , yj10 −y
j2
0 ) ∈ Rn+1. See Figure 2 (a) for an illustration.

It follows that, for any j ∈ J , the domain Dj is defined as:

Dj =
{
x ∈ Rn : (yj − yj′)x− (yj0 − y

j′

0 ) > 0 ∀j′ ∈ J \ {j′}
}
. (1)

If the group of points A1, . . . , Ak are not linearly separable, for any choice of
the vectors of parameters (yj , yj0) with j ∈ J , there exists at least a pair j1, j2
for which the inequality (yj1 − yj2)ai − (yj10 − y

j2
0 ) > 0 is violated. In this case,

the typical approach is to look for a solution which minimizes the sum, over all
the data points, of the so-called misclassification error. For a point ai ∈ Aj(i),
where j(i) is the index of the group it belongs to, the latter is defined as:

max

{
0, max

j∈J\{j(i)}

{
−(yj(i) − yj)ai + (y

j(i)
0 − yj0)

}}
, (2)
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Fig. 2. (a) Pairwise linear separation of five linearly separable groups of points. (b)
Classification with minimum misclassification error of two linearly inseparable groups
of points (note the misclassified black point).

thus corresponding to the largest violation among the inequalities (yj(i)−yj)ai−
(y

j(i)
0 − yj0) > 0. For an illustration, see Figure 2 (b).

Since the set of vectors (yj , yj0), for j ∈ J , satisfying constraint (yj(i)−yj)ai−
(y

j(i)
0 − yj0) > 0 is an open subset of Rn+1, it is common practice to replace it by

the inhomogeneous constraint (yj(i) − yj)ai − (y
j(i)
0 − yj0) ≥ 1, which induces a

closed feasible set. This can be done without loss of generality if we assume that

the norm of the vectors (yj(i), y
j(i)
0 ), (yj , yj0) can be arbitrarily large, for all j ∈ J .

Indeed, if (yj(i) − yj)ai − (y
j(i)
0 − yj0) > 0 but (yj(i) − yj)ai − (y

j(i)
0 − yj0) < 1

for some ai ∈ A, then a feasible solution which satisfies the inhomogeneous

constraint can be obtained by just scaling (yj(i), y
j(i)
0 ) and (yj , yj0) by a constant

λ ≥ 1

(yj(i)−yj)ai−(yj(i)
0 −yj

0)
. In the inhomogeneous version, the misclassification

error becomes:

max

{
0, max

j∈J\{j(i)}

{
1− (yj(i) − yj)ai + (y

j(i)
0 − yj0)

}}
. (3)

3.2 k-Piecewise affine model fitting problem with pairwise linear
separability

We can now provide a formal definition of k-Piecewise Affine Model Fitting with
Pairwise Linear Separability.

k-PAMF-PLS: Given a set of m points A = {a1, . . . ,am} ⊂ Rn with the
corresponding observations {b1, . . . , bm} ⊂ R and a positive integer k:

i) partition A into k subsets A1, . . . , Ak which are pairwise linearly
separable via a domain partition D1, . . . , Dk of Rn induced, according
to Equation (1), by a set of vectors (yj , yj0) ∈ Rn+1, for j ∈ J ,

ii) determine, for each subdomain Dj , an affine function fj : Dj → R
where fj(x) = wjx− wj

0 with parameters (wj , wj
0) ∈ Rn+1,



so as to minimize the linear error function
∑m

i=1 |bi − (wj(i)ai −wj(i)
0 )|,

where j(i) ∈ J is the index for which ai ∈ Aj(i) ⊂ Dj(i).

4 Strengthened mixed-integer linear programming
formulation

In this section, we propose an MILP formulation to solve k-PAMF-PLS to opti-
mality via branch-and-cut, as implemented in state-of-the-art MILP solvers. To
enhance the efficiency of the solution algorithm, we break the symmetries that
naturally arise in the formulation by generating symmetry-breaking constraints.

Our MILP formulation is derived by combining a hyperplane clustering for-
mulation (to partition the data points into k subsets A1, . . . , Ak and to determine
an affine submodel for each of them) with multicategory linear classification con-
straints (to guarantee a pairwise linearly separable domain partition D1, . . . Dk,
consistent with the k subsets A1, . . . , Ak).

4.1 MILP formulation

For each i ∈ I and j ∈ J , we introduce a binary variable xij which takes value 1
if the point ai is contained in the subset Aj and 0 otherwise. Let zi be the

fitting error of point ai ∈ A for each i ∈ I, (wj , wj
0) ∈ Rn+1 the parameters of

the submodel of index j ∈ J , and (yj , yj0) ∈ Rn+1, with j ∈ J , the parameters
used to enforce pairwise linear separability. Let also M1 and M2 be large enough
constants (whose value is discussed below). The formulation is as follows:

min

m∑
i=1

zi (4)

s.t.

k∑
j=1

xij = 1 ∀i ∈ I (5)

zi ≥ bi −wjai + wj
0 −M1(1− xij) ∀i ∈ I, j ∈ J (6)

zi ≥ −bi + wjai − wj
0 −M1(1− xij) ∀i ∈ I, j ∈ J (7)

(yj1 − yj2)ai − (yj1
0 − yj2

0 ) ≥ 1−M2(1− xij1) ∀i ∈ I, j1, j2 ∈ J : j1 6= j2 (8)

xij ∈ {0, 1} ∀i ∈ I, j ∈ J (9)

zi ≥ 0 ∀i ∈ I (10)

(wj , wj
0) ∈ Rn+1 ∀j ∈ J (11)

(yj , yj
0) ∈ Rn+1 ∀j ∈ J. (12)

Constraints (5) guarantee that each point ai ∈ A be assigned to exactly one

submodel. Constraints (6) and (7) impose that zi = |bi−wj(i)ai+w
j(i)
0 |. Indeed,

together they imply that zi ≥ |bi−wjai +wj
0|−M1(1−xij). When xij = 1, this

amounts to imposing zi ≥ |bi −wjai + wj
0| (which will be tight in any optimal

solution due to the objective function direction), while being redundant (since



zi ≥ 0) when xij = 0 and M1 is large enough. For each j1 ∈ J , Constraints (8)
impose that all the points assigned to the subsetAj1 (for which the term−M2(1−
xij) vanishes) belong to the intersection of all the halfspaces defined by (yj1 −
yj2)ai − (yj10 − yj20 ) ≥ 1, whereas they are deactivated when xij1 = 0 and
M2 is sufficiently large. This way, we impose a zero misclassification error for
each data point, thus guaranteeing pairwise linear separability among the points
assigned to the different submodels. Note that, if Constraints (8) are dropped, we
obtain a relaxation corresponding to a k-hyperplane clustering problem where
the objective function is measured according to (4), (6) and (7).

It is important to observe that, in principle, there exists no (large enough)
finite value for the parameter M1 in Constraints (6) and (7). As an example,
the fitting error between a point (a, b) = (e,−1) ∈ Rn+1, where e is the all-one
vector, and the affine function f = wa− 1 is equal to ‖w‖1 (the L1 norm of w)
and, thus, it is unbounded and arbitrarily large for an arbitrary large ‖w‖1. Let
j(i) ∈ J such that xij(i) = 1. The introduction of a finite M1 corresponds to
letting:

zi = max


j=j(i) and xij(i)=1︷ ︸︸ ︷
|bi −wj(i)ai + w

j(i)
0 |,

j 6=j(i) and xij=0︷ ︸︸ ︷
max

j∈J\{j(i)}
{|bi −wjai + wj

0| −M1}

 , (13)

rather than zi = |bi − wj(i)ai + w
j(i)
0 |. Therefore, a finite M1 introduces a pe-

nalization term into the objective function, equal to:

m∑
i=1

max

{
0, max

j∈J\{j(i)}
{|bi −wjai + wj

0| −M1} − |bi −wj(i)ai + w
j(i)
0 |

}
. (14)

The effect is of penalizing solutions where the fitting error between any point
and any submodel is too large, regardless of the submodels to which each point
is assigned.

We face a similar issue for Constraints (8) due to the presence of the pa-
rameter M2. Indeed, for any finite M2 and for xij1 = 0, the constraint implies

(yj1 − yj2)ai − (yj10 − y
j2
0 ) ≥ 1 −M2. Hence, Constraints (8) impose that the

“linear distance”2 between each point ai and the hyperplane separating any pair
of subdomains Dj1 , Dj2 be smaller than M2 − 1 even if ai is not contained in
either of the subdomains, i.e., even if ai /∈ Aj1 and ai /∈ Aj2 .

In spite of the lack of theoretically finite values for M1 and M2, setting them
to a value a few orders of magnitude larger than the size of the box encapsulating
the data points in Rn+1 typically suffices to produce good quality (if not optimal)
solutions. We will mention an occurrence where this is not the case in Section 6.

2 Given a point a and a hyperplane of equation wx−w0 = 0, the distance from a to
the closest point belonging to the hyperplane amounts to |wa−w0|

‖w‖2
. Then, the “linear

distance” mentioned in the text corresponds to the point-to-hyperplane distance
multiplied by ‖w‖2.



4.2 Symmetries

Let X ∈ {0, 1}m×k be the binary matrix with entries {X}ij = xij for i ∈ I and
j ∈ J . We observe that Formulation (4)–(12) admits symmetric solutions as a
consequence of the existence of a symmetry group acting on the columns of X.
This is because, for any X representing a feasible solution, an equivalent solution
can be obtained by permuting the columns of X, an operation which corresponds
to permuting the labels 1, . . . , k by which the submodels and subdomains are
indexed.

From a computational point of view, the solvability of our MILP formu-
lation for k-PAMF-PLS is hindered by the existence of symmetries. On the
one hand, this is because, when adopting methods based on branch-and-bound,
symmetries typically lead to an unnecessarily large search tree where equiva-
lent (symmetric) solutions are discovered again and again at different nodes.
On the other hand, the presence of symmetries usually leads to weaker Lin-
ear Programming (LP) relaxations, for which the barycenter of each set of
symmetric solutions, which often yields very poor LP bounds, is always fea-
sible [KP08]. This is the case of our formulation where, for a sufficiently large
M = M1 = M2 ≥ k

k−1 max{1, |b1|, |b2|, . . . , |bm|}, the LP relaxation of Formu-

lation (4)–(12) admits a solution of value 0. To see this, let xij = 1
k for all

i ∈ I, j ∈ J . Constraints (5) are clearly satisfied. Let then zi = 0 for all i ∈ I,
(wj , wj

0) = (0, 0) and (yj , yj0) = (0, 0) for all j ∈ J . Constraints (6), (7), and (8)
are then satisfied whenever we have, respectively, M1

k−1
k ≥ bi, M1

k−1
k ≥ −bi,

and M2
k−1
k ≥ 1.

A way to deal with this issue is to partition the set of feasible solutions
into equivalence classes (or orbits) under the symmetry group, selecting a sin-
gle representative per class. Different options are possible. We refer the reader
to [Mar10] for an extensive survey on symmetry in mathematical programming.
A possibility, originally introduced in [MDZ01,MDZ06], is of selecting as a rep-
resentative the (unique) feasible solution of each orbit where the columns of X
are lexicographically sorted in non-increasing order. According to [KP08], we call
the convex hull of such lexicographically sorted matrices X ∈ {0, 1}n×k orbitope.

4.3 Symmetry breaking constraints from the partitioning orbitope

Since, in our case, X is a partitioning matrix (a matrix X ∈ {0, 1}n×k with
exactly a 1 per row), we are interested in the so-called partitioning orbitope,
whose complete linear description is given in [KP08].

Neglecting the trivial constraints, the partitioning orbitope is defined by the
set of so-called Shifted Column Inequalities (SCIs). Call B(i,j) a bar, defined
as B(i,j) = {(i, j), (i, j + 1), . . . , (i,min{i, k})}, and col(i,j) a column, defined
as col(i,j) = {(j, j), (j + 1, j), ..., (i, j)}. A shifted column S(i,j) is a subset of
the indices of X obtained by shifting some of the indices in col(i,j) diagonally
towards the upper-left portion of X. For an illustration, see Figure 3. For two
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Fig. 3. (a) The bar B(i,j) (in black and dark gray) and the column col(i−1,j−1) (in light
gray). (b) and (c) Two shifted columns (in light gray) obtained by shifting col(i−1,j−1).
Note how the shifting operation introduces empty rows.

subsets of indices B(i,j), S(i−1,j−1) ⊂ I × J thus defined, an SCI reads:∑
(i′,j′)∈B(i,j)

xi′j′ −
∑

(i′,j′)∈S(i−1,j−1)

xi′j′ ≤ 0.

As shown in [KP08], the linear description of the partitioning orbitope is:

k∑
j=1

xij = 1 ∀i ∈ I (15)

∑
(i′,j′)∈B(i,j)

xi′j′ −
∑

(i′,j′)∈S(i−1,j−1)

xi′j′ ≤ 0 ∀B(i,j), S(i−1,j−1) (16)

xij = 0 ∀i ∈ I, j ∈ J : j ≥ i + 1 (17)

xij ≥ 0 ∀i ∈ I, j ∈ J, (18)

where Constraints (16) are SCIs, while Constraints (17) restrict the problem to
the only elements of X that are either on the main diagonal or below it.

Although there are exponentially many SCIs, the corresponding separation
problem can be solved in linear time by dynamic programming, as shown in [KP08].

When solving the MILP formulation (4)–(12) with a branch-and-cut algo-
rithm, we generate maximally violated SCIs both at each node of the enumera-
tion tree (by separating the corresponding fractional solution) and every time a
new integer solution is found (thus separating the integer incumbent solution).

5 Four-step heuristic algorithm

As we will see in Section 6, the introduction of SCIs has a remarkable impact
on the solution times. Nevertheless, even with them the MILP formulation only
allows to solve small to medium size instances in a reasonable amount of com-
puting time.

To tackle instances of larger size, we propose an efficient heuristic that takes
into account all the aspects of the problem at each iteration by alternately and



coordinately solving a sequence of subproblems, namely, affine submodel fitting,
point partition, and domain partition, as explained in detail in the following.
Differently from other heuristic approaches in the literature (see Section 2), the
domain partitioning aspect is considered at each iteration, rather than deferred
to a final stage.

We start from a feasible solution composed of a point partition A1, . . . , Ak,
a domain partition D1, . . . , Dk (induced by the parameters (yj , yj0) for j ∈ J),

and a set of affine submodels of parameters (wj , wj
0), for j ∈ J . Iteratively, the

algorithm tries to improve the current solution by applying the following four
steps (until convergence or until a time limit is met):

i) Submodel Fitting: Given the current point partition A1, . . . , Ak of A =
{a1, . . . ,am}, determine for each j ∈ J an affine submodel with parame-
ters (wj , wj

0) that minimize the linear fitting error over all the data points
{(a1, b1), . . . , (am, bm)} ⊂ Rn+1. As we shall see, this is carried out by solving
a single linear program.

ii) Point Partition: Given the current set of affine submodels fj : Dj → R
with fj(x) = wjx − wj

0 and j ∈ J , identify a set of critical data points
(ai, bi) ∈ Rn+1 and (re)assign them to other submodels in an attempt to
improve (decrease) the total linear fitting error over all the dataset. As de-
scribed below, the identification and reassignment of such points is based on
an ad hoc criterion and on a related control parameter.

iii) Domain Partition: Given the current point partition A1, . . . , Ak of A =
{a1, . . . ,am}, a multicategory linear classification problem is solved via Lin-
ear Programming to either find a pairwise linearly separable domain parti-
tion D1, . . . , Dk of Rn, consistent with the current point partition, or, if none
exists, to construct a domain partition which minimizes the total misclassi-
fication error. In the latter case, i.e., when there is at least an index j ∈ J
for which Aj 6⊂ Dj , we say that the previously constructed point partition
is not consistent with the resulting domain partition D1, . . . , Dk.

iv) Partition Consistency: If the current point partition and domain parti-
tion are inconsistent, the former is modified to make it consistent with the
latter. For every index j ∈ J and every misclassified point ai (if any) be-
longing to Aj (i.e., for any ai ∈ A where ai ∈ Aj and ai ∈ Dj′ , for some
j, j′ ∈ J such that j 6= j′), ai is reassigned to the subset Aj′ associated with
Dj′ .

In the following, we describe the four steps in greater detail.

In the Submodel Fitting step, we determine, for each j ∈ J , the submodel
parameters (wj , wj

0) yielding the smallest fitting error by solving the following



linear program:

min

m∑
i=1

di (19)

s.t. di ≥ bi −wj(i)ai + w
j(i)
0 ∀i ∈ I (20)

di ≥ −bi + wj(i)ai + w
j(i)
0 ∀i ∈ I (21)

(wj , wj
0) ∈ Rn+1 ∀j ∈ J (22)

di ≥ 0 ∀i ∈ I, (23)

where j(i) denotes the submodel to which the point ai is currently assigned.
Note that this linear program decomposes into k independent linear programs,
one per submodel.

Let us now consider the Point Partition step. Many clustering heuristics
(see, e.g., [Mac67,BM00]) are based on the iterative reassignment of each point ai

to a subset Aj whose corresponding submodel yields the smallest fitting error. As
shown in Figure 4 (a), and as it can be confirmed computationally, this choice is
likely to lead to poor quality local minima. In our method, we adopt a criterion
to help identify a set of critical points which might jeopardize the overall quality
of the current solution. The criterion is an adaptation of the corresponding one
employed in the Distance-Based Point Reassignment heuristic (DBPR) proposed
in [AC13] for the k-hyperplane clustering problem.

The idea is to identify as critical those points which, not only give a large
contribution to the total fitting error for their current submodel, but also have
another submodel to which they could be reassigned without increasing too much
the overall fitting error. The set of such points is determined by ranking, for each
subset Aj , each point ai ∈ Aj in nonincreasing order with respect to the ratio
between its fitting error w.r.t. the current submodel of index j(i) and the fitting
error w.r.t. a candidate submodel. The latter is defined as the submodel that best
fits ai but which is different from j(i). Formally, for each j ∈ J , the criterion
ranks each point ai ∈ Aj with respect to the quantity:

|bi −wj(i)ai + w
j(i)
0 |

minj∈J\{j(i)}{|bi −wjai + wj
0|}
. (24)

The Point Partition step also relies on a control parameter α ∈ [0, 1).
Given a current solution characterized by a point partition A1, . . . , Ak and the
k associated affine submodels, let m(j) denote, for all j ∈ J , the cardinality
of Aj . At each iteration and for each submodel of index j ∈ J , dαm(j)e of
the points with highest rank are reassigned to the corresponding candidate sub-
model, even if this leads to a worse objective function value. The remaining
points are simply reassigned to the closest submodel (if they are not already as-
signed to it). Then, α is decreased exponentially, by updating it as α := 0.99ρt,
for some parameter ρ ∈ (0, 1), where t is the index of the current iteration. For
an illustration, see Figure 4 (b).
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Fig. 4. (a) A solution corresponding to a local minimum for an algorithm where each
point is reassigned to the submodel yielding the smallest fitting error. (b) An improved
solution that can be obtained by reassigning the point a1 in (a) which, according to our
criterion, achieves the highest ranking, to the rightmost submodel, and by updating
the affine submodel fitting as well as the domain partition.

Since the reassignment of critical points, as identified by our criterion, in-
troduces a high variability in the sequence of solutions that are generated, the
search process is stabilized by decreasing α to 0 over the iterations, which pro-
gressively leads from substantial changes of the current solution to fine polishing
operations.

To avoid cycling effects, whenever a worse solution is found we add the whole
set of the point-to-submodel assignments that we carried out involving critical
points to a tabu list of short memory. We also consider an aspiration criterion,
that is, a criterion that allows to override the tabu status of a move if, by per-
forming it, a solution with an objective function value that is better than that
of the best solution found so far can be achieved. Since it is computationally too
demanding to compute the exact objective function value of a solution obtained
after the reassignment of a model from a submodel to another one (as it would
require to carry out the Submodel Fitting, Domain Partition, and Partition

Consistency steps for each point, at each iteration), we consider a partial as-
piration criterion in which we override the tabu status of a point-to-submodel
reassignment only if the corresponding fitting error is strictly smaller than the
value that was registered when the reassignment move was added to the tabu
list.

In the Domain Partition step, we derive a domain partition by constructing
a pairwise linear separation of the sets A1, . . . , Ak which minimizes the total



misclassification error. This is achieved by solving the following linear program:

min

m∑
i=1

ei (25)

s.t. ei ≥ −(yj(i) − yj)ai + (y
j(i)
0 − yjo) + 1 ∀i ∈ I, j ∈ J \ {j(i)} (26)

ei ≥ 0 ∀i ∈ I (27)

(yj , yj0) ∈ Rn+1 ∀j ∈ J, (28)

where j(i) denotes the submodel to which the point ai is currently assigned,
and ei represents the misclassification error of point ai, for all i ∈ I. If this
subproblem admits an optimal solution with total misclassification error equal
to 0, then the k subsets are linearly separable, otherwise the current solution
contains at least a misclassified point ai ∈ Aj(i) where ai ∈ Dj , for some j ∈ J \
{j(i)}. Each such point is then reassigned to Aj in the Partition Consistency

step.
The overall four-step algorithm, which we refer to with the shorthand 4S-

CR (4 Steps-CRiterion), starts from a point assignment obtained by randomly
generating the coefficients of k affine submodels and assigning each point (ai, bi)
to a submodel yielding the smallest fitting error (ties are broken arbitrarily).
The above four steps are repeated until α = 0, while storing the best solution
found so far. The method is then restarted until the time limit is reached.

Note that the Domain Partition step drives the search towards solutions
that induce a suitable domain partition, avoiding infeasible solutions which are
good from a submodel fitting point of view but do not admit a pairwise linearly
separable domain partition, i.e., where Aj ⊂ Dj does not hold for all j ∈ J .
Then the Partition Consistency step makes sure that the point partition and
domain partition are consistent at the end of each iteration.

6 Computational results

In this section, we report and discuss on a set of computational results obtained
when solving k-PAMF-PLS either to optimality with branch-and-cut and sym-
metry breaking constraints or with our four-step heuristic 4S-CR. First, we in-
vestigate the impact of symmetry breaking constraints when solving the problem
to global optimality. On a subset of instances for which the exact approach is vi-
able, we compare the best solutions obtained with the exact algorithm (within a
time limit) to those produced by our heuristic method. Then we experiment with
4S-CR on larger instances and also assess the impact of its main components on
the overall quality of the solutions found.

6.1 Experimental setup

The exact formulation is solved with CPLEX 12.5, interfaced with the Concert
library in C++. The separation algorithm for SCIs and the heuristic methods



are implemented in C++ and compiled with GNU-g++-4.3. SCIs are added
to the default branch-and-cut algorithm implemented in CPLEX via both a
lazy constraint callback and a user cut callback, thus separating SCIs for both
integer and fractional solutions. This way, with lazy constraints we guarantee
the lexicographic maximality of the columns of the partitioning matrix X for
any feasible solution found by the method. With user cuts, we also allow for
the introduction of SCIs at the different nodes of the branch-and-cut tree, thus
tightening the LP relaxations. In 4S-CR (and its variants, as introduced in the
following), the Submodel Fitting and Domain Partition steps are carried out
by solving the corresponding LPs, namely (19)–(23) and (25)–(28), with CPLEX.

The experiments are conducted on a Dell PowerEdge Quad Core Xeon 2.0 Ghz,
with 16 GB of RAM. In the heuristics, we set ρ = 0.5 and adopt a tabu list with
a short memory of two iterations.

6.2 Test instances

We consider both a set of structured, randomly generated instances, as well as
some real-world ones taken from the UCI repository [FA13].

We classify the random instances into four groups: small (m = 20, 30, 40,
50, 60, 75, 100 and n = 2, 3, 4, 5), medium (m = 500 and n = 2, 3, 4, 5), and
large (m = 1000 and n = 2, 3, 4, 5)3. They are constructed by randomly sam-
pling the data points ai and the corresponding observations bi from a randomly
generated (discontinuous) piecewise affine model with k = 5 pieces and an ad-
ditional Gaussian noise. First, we generate k subdomains D1, . . . , Dk by solving
a multiway linear classification problem on k randomly chosen representative
points in Rn. Then, we randomly choose the submodel parameters (wj , wj

0) for
all j ∈ J and sample, uniformly at random, the m points {a1, . . . ,am} ∈ Rn.
For each sampled point ai, we keep track of the subdomain Dj(i) which contains
it and set bi to the value that the affine submodel of index j(i) takes in ai, i.e.,

wj(i)ai−wj(i)
0 . Then, we add to bi an additive Gaussian noise with 0 mean and

a variance which is chosen, for each submodel, by sampling uniformly at random
within [ 7

10 ·
3

1000 ,
3

1000 ]. For convenience, but w.l.o.g., after an instance has been
constructed, we rescale all its data points (and their observations) so that they
belong to [0, 10]n+1.

As to the real-world instances, we consider four datasets from the UCI reposi-
tory: Auto MPG (auto), Breast Cancer Wisconsin Original (breast), Computer
Hardware (cpu), and Housing (house). We remove data points with missing
features, convert each categorical attribute (if any) to a numerical value, and
normalize the data so that each point belongs to the interval [0, 10]n+1. We then
perform feature extraction via Principal Component Analysis (PCA), using the

3 We do not consider instances with n = 1 since k-PAMF-PLS is pseudopolynomially
solvable in this case. Indeed, if the domain coincides with R, then the number of
linear domain partitions is, at most, O(mk). An optimal solution to k-PAMF-PLS
can thus be found by constructing all such partitions and then solving, for each of
them, an affine model fitting problem in polynomial time by Linear Programming.



Matlab toolbox PRTools, calling the function PCAM(A,0.9), where A is the Mat-
lab data structure where the data points are stored. After preprocessing, the
instances are of the following size: m = 397, n = 3 (auto), m = 698, n = 5
(breast), m = 209, n = 5 (cpu), and m = 506, n = 8 (house).

All the instances are solved with different values of k, namely, k = 2, 3, 4, 5.
This way, the experiments are in line with a real-world scenario where the com-
plexity of the underlying model is unknown.

Throughout the section, speedup factors and average improvements will be
reported as ratios of geometric means.

6.3 Exact solutions via the MILP formulations

We test our MILP formulation with and without SCIs on the small dataset,
considering four figures:

– total computing time (in seconds) needed to solve the problem, including
the generation of SCIs as symmetry breaking constraints (Time);

– total number of branch-and-bound nodes that have been generated, divided
by 1000 (Nodes[k]);

– percent gap at the end of the computations (Gap), defined as 100 |LB−UB|
10−4+|LB| ,

where LB and UB are the tightest lower and upper bounds that have been
found; if LB = 0, a “-” is reported;

– total number of generated symmetry breaking constraints (Cuts).

The instances are solved for k = 2, 3, 4, 5, within a time limit of 3600 seconds.
We run CPLEX in deterministic mode on a single thread with default settings.
In all the cases, we set M = M1 = M2 = 1000.

The results are reported in Tables 1 for k = 2, 3 and in Table 2 for k = 4, 5.
In the second table, we omit the results for the instances with n = 4, 5 as, both
with or without SCIs, no solutions with a finite gap are found within the time
limit (i.e., the lower bound LB is always 0). Note that, for k = 2, symmetry is
broken by just fixing the top left element of the matrix X to 1, i.e., by letting,
w.l.o.g., x11 = 1. Hence, we do not resort to the generation of SCIs in this case.

Let us neglect the case of k = 2 and focus on the full set of 56 k-PAMF-
PLS problems that are considered for this dataset (28 instances for k = 3 and
14 for k = 4, 5). Without SCI inequalities, we achieve an optimal solution in
24 cases out of 56 (43%). The introduction of SCIs has a very positive impact.
They allow to solve to optimality 10 more instances, for a total of 34 (60.1%).
SCIs also yield a substantial reduction in both computing time and number
of nodes. When focusing on the 24 instances solved by both variants of the
algorithm, the overall results show that the introduction of SCIs yields a speedup,
on (geometric) average, of almost 3 times, corresponding to a reduction of 66%
of the computing times. The number of nodes is reduced by the same factor
of 66%. Interestingly, this improvement is obtained by adding a rather small
number of cuts which, in practice, prove to be highly effective. See, e.g., the
instance with m = 40, n = 3 which, when solved for k = 3 with SCIs, presents



Table 1. Results obtained on the small dataset when solving the MILP formulation for
k = 2 (without SCIs) and for k = 3 (with and without SCIs). For k = 3 and for each
instance, if both variants achieve an optimal solution, the smallest number of nodes
and computing time are highlighted in boldface. If at least a variant does not achieve
an optimal solution, the smallest gap is highlighted.

k=2 k=3

without SCIs without SCIs with SCIs

n m Time Nodes[k] Gap Time Nodes[k] Gap Time Nodes[k] Gap Cuts

2 20 0.1 0.2 0.0 2.3 2.0 0.0 2.1 1.1 0.0 12
2 30 0.7 0.5 0.0 4.8 6.5 0.0 4.3 5.0 0.0 10
2 40 0.7 0.7 0.0 7.9 11.3 0.0 4.1 4.0 0.0 18
2 50 0.8 0.6 0.0 9.3 9.8 0.0 4.0 5.2 0.0 17
2 60 1.2 1.0 0.0 14.7 17.9 0.0 8.7 8.3 0.0 8
2 75 2.4 1.2 0.0 20.2 20.7 0.0 8.8 7.7 0.0 8
2 100 3.8 1.7 0.0 43.6 28.9 0.0 43.1 28.4 0.0 13

3 20 0.4 0.9 0.0 13.9 29.0 0.0 5.6 9.3 0.0 7
3 30 0.7 1.2 0.0 58.3 124.4 0.0 35.6 55.1 0.0 20
3 40 1.8 2.2 0.0 226.9 291.7 0.0 49.1 64.6 0.0 19
3 50 1.5 3.1 0.0 603.6 467.0 0.0 117.7 122.2 0.0 15
3 60 4.7 5.1 0.0 615.9 440.3 0.0 171.5 147.8 0.0 22
3 75 5.4 7.4 0.0 3600.0 802.4 76.7 512.7 324.8 0.0 29
3 100 9.9 19.6 0.0 3600.0 757.1 89.4 3196.2 1272.8 0.0 42

4 20 1.2 2.3 0.0 131.0 270.1 0.0 35.2 84.0 0.0 10
4 30 2.1 3.8 0.0 633.1 802.8 0.0 167.8 224.8 0.0 11
4 40 5.6 11.1 0.0 3600.0 1519.4 79.3 3345.2 1867.2 0.0 21
4 50 8.6 20.8 0.0 3600.0 1096.8 - 3600.0 1206.0 85.3 19
4 60 15.2 39.0 0.0 3600.0 970.8 - 3600.0 1238.7 89.7 22
4 75 50.3 87.1 0.0 3600.0 851.1 - 3600.0 1014.9 86.6 17
4 100 98.9 192.3 0.0 3600.0 529.5 - 3600.0 508.1 - 26

5 20 1.9 5.6 0.0 679.6 974.1 0.0 170.0 311.7 0.0 11
5 30 6.3 16.2 0.0 3600.0 1775.3 - 3600.0 2054.0 73.3 18
5 40 27.7 61.4 0.0 3600.0 1422.8 - 3600.0 1363.3 - 13
5 50 54.4 125.6 0.0 3600.0 1118.3 - 3600.0 1132.1 - 24
5 60 491.2 830.6 0.0 3600.0 963.5 - 3600.0 1009.1 - 17
5 75 1751.1 1841.4 0.0 3600.0 788.0 - 3600.0 815.1 - 17
5 100 3600.0 3649.2 9.3 3600.0 769.3 - 3600.0 623.1 - 32



Table 2. Results obtained on the small dataset when solving the MILP formulation
for k = 4, 5 with and without SCIs. For each instance, if both variants achieve an
optimal solution, the smallest number of nodes and computing time are highlighted in
boldface. If at least a variant does not achieve an optimal solution, the smallest gap is
highlighted.
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a speedup in the computing time, when compared to the case without SCIs, of
4.6 times (corresponding to a reduction of 78%) with the sole introduction of 19
symmetry breaking constraints.

In our preliminary experiments, we observed the generation of a higher num-
ber of cuts when employing older versions of CPLEX, such as 12.1 and 12.2
whereas, with CPLEX 12.5, their number is significantly smaller. This is, most
likely, a consequence of the introduction of more aggressive techniques for sym-
metry detection and symmetry breaking in the latest versions of CPLEX. We
nevertheless remark that the improvement in computing time provided by the
introduction of SCIs appears to be comparable for all the versions of CPLEX 12,
regardless of the number of cuts that are generated.

Although the introduction of SCIs clearly increases the number of instances
which can be solved to optimality, the results in Tables 1 and 2 show that
the exact approach via mixed-integer linear programming might require large
computing times even for fairly small instances with n ≥ 3 and m ≥ 40 for
k ≥ 4. For k = 2, all the instances are solved to optimality, with the sole
exception of the instance with m = 100, n = 5 (which reports a gap of 9.3%).
For k = 3, Table 1 shows that, already for n = 4 and m ≥ 50, the gap after one
hour is still larger than 80%. According to Table 2, the exact approach becomes
impractical for n = 3 and m ≥ 40 for k = 4, and for n = 3 and m ≥ 30 for
k = 5.

6.4 Comparison between the four-step heuristic 4S-CR and the
MILP formulation

Before assessing the effectiveness of 4S-CR on larger instances, we compare the
solutions it provides with the best ones found via mixed-integer linear program-
ming on the small dataset (within the time limit). The results are reported in
Table 3. For a fair comparison, 4S-CR is run, for the instances that are solved
to optimality by the exact method, for the same time taken by the latter. For
the instances for which an optimal solution has not been found, 4S-CR is run
up to the time limit of 3600 seconds.

When comparing the quality of the solutions found by 4S-CR with those
found by the MILP formulation with SCIs, we register, for k = 2, very close to
optimal solutions with, on (geometric) average, a 4% larger fitting error. This
number decreases to 1% for k = 3. For larger values of k, namely k = 4 and
k = 5, for which the number of instances that are unsolved when adopting the
MILP formulation is much larger, 4S-CR yields solutions that are much better
than those found via mixed-integer linear programming. When neglecting the
instances with an optimal solution of value 0 (which would skew the geometric
mean), the solutions provided by 4S-CR are, on geometric average, better than
those obtained via the exact method by 14% for k = 4 and by 20% for k = 5.

For k = 2, 3, 4, 5, 4S-CR finds equivalent or better solutions that those ob-
tained via mixed-integer linear programming in, respectively, 11, 15, 18, and
19 cases, with strictly better solutions in, respectively, 1, 5, 16, and 15 cases.



Table 3. Comparison between the best results obtained for k = 2, 3, 4, 5 on the small
instances when solving the MILP formulation (with symmetry breaking constraints
and within a time limit of 3600 seconds) and those obtained via 4S-CR. The latter is
run for as much time as that required to solve the MILP formulation (within the time
limit). For each instance, the value of the best solution found is highlighted in boldface.

k = 2 k = 3 k = 4 k = 5

Objective Objective Objective Objective
n m Time MILP 4S-CR Time MILP 4S-CR Time MILP 4S-CR Time MILP 4S-CR

2 20 0.1 18.3 22.4 2.1 9.6 9.6 4.5 6.1 7.1 31.1 4.5 6.1
2 30 0.1 30.5 30.5 4.3 19.3 19.3 7.2 10.0 10.0 59.6 7.7 8.8
2 40 0.5 61.3 61.3 4.1 37.8 45.4 19.0 24.7 35.5 98.2 14.8 21.2
2 50 0.3 56.0 56.0 4.0 39.1 40.9 35.8 26.9 29.5 347.4 22.1 22.1
2 60 1.2 86.6 91.7 8.7 53.1 61.8 244.1 43.2 53.1 1062.9 35.7 43.5
2 75 1.7 40.5 45.4 8.8 31.3 31.6 158.5 28.6 30.5 2385.9 27.3 28.4
2 100 1.6 114.9 114.9 43.1 62.9 62.9 367.0 48.4 48.5 3600.0 187.4 48.4

3 20 0.3 11.3 11.3 5.6 4.3 4.6 118.8 2.3 2.4 2013.0 0.4 0.9
3 30 0.7 14.1 13.8 35.6 9.4 9.0 2336.6 6.3 6.3 3600.0 4.5 4.7
3 40 2.9 29.3 32.3 49.1 19.6 21.2 3600.0 14.7 15.5 3600.0 11.7 11.7
3 50 2.0 48.6 55.5 117.7 26.3 26.3 3600.0 20.2 17.9 3600.0 21.2 15.1
3 60 4.9 40.0 40.0 171.5 22.7 25.0 3600.0 22.7 17.5 3600.0 17.3 12.9
3 75 5.9 72.5 82.4 512.7 43.9 47.9 3600.0 35.2 31.6 3600.0 54.0 31.5
3 100 10.3 86.5 88.0 3196.2 51.3 51.3 3600.0 77.2 33.6 3600.0 69.2 33.2

4 20 1.2 7.5 7.5 35.2 2.3 2.3 3600.0 0.2 0.3 2.1 0.0 0.4
4 30 1.2 20.0 20.3 167.8 6.8 6.8 3600.0 3.5 3.4 3600.0 1.3 1.4
4 40 4.1 34.4 34.4 3345.2 16.5 16.5 3600.0 11.0 10.3 3600.0 7.4 6.8
4 50 6.2 38.0 38.0 3600.0 20.5 20.0 3600.0 19.0 13.4 3600.0 17.7 6.3
4 60 12.1 40.1 41.0 3600.0 28.8 27.3 3600.0 24.8 17.9 3600.0 21.1 15.5
4 75 23.0 85.0 88.5 3600.0 49.4 53.9 3600.0 50.4 37.8 3600.0 46.1 32.4
4 100 57.0 110.3 118.0 3600.0 113.9 74.0 3600.0 139.3 49.7 3600.0 117.6 43.3

5 20 2.6 8.9 8.9 170.0 0.5 0.5 0.3 0.0 0.5 0.6 0.0 0.0
5 30 4.0 17.1 19.2 3600.0 6.7 6.7 3600.0 1.9 1.7 3600.0 0.3 0.6
5 40 12.1 37.9 41.7 3600.0 18.7 19.5 3600.0 13.3 8.9 3600.0 6.7 5.1
5 50 32.0 28.9 29.4 3600.0 21.7 17.9 3600.0 15.8 12.4 3600.0 9.7 8.4
5 60 457.1 58.4 58.6 3600.0 43.9 44.0 3600.0 37.5 31.9 3600.0 33.6 21.2
5 75 820.9 62.6 65.0 3600.0 26.7 29.4 3600.0 50.9 20.7 3600.0 53.0 18.4
5 100 3600.0 79.3 84.1 3600.0 56.0 60.8 3600.0 60.5 49.3 3600.0 61.6 42.9



Overall, when considering the instances jointly, 4S-CR performs as good or bet-
ter than mixed-integer linear programming in 63 cases out of 112 (28 instances,
each solved 4 times, once per value of k), strictly improving over the latter in 37
cases. This indicates that the quality of the solutions found via 4S-CR can be
quite high even for small-size instances and that the difference w.r.t. the exact
method, at least on the instances for which a comparison is viable, seems to be
increasing with the number of points m, the number of dimensions n, and the
number of submodels k.

Note that, for the instance with m = 30, n = 3 and for both k = 2 and k = 3,
the MILP formulation yields, in strictly less than the time limit, a solution which
is worse than the corresponding one found by 4S-CR. As discussed in Section 4,
this is most likely due to the selection of too small values for the parameters M1

and M2. Experimentally, we observed that the issue can be avoided by choosing
M = M1 = M2 = 10000, although at the cost of a substantially larger computing
time (due to the need for a higher numerical precision to handle the larger
differences between the magnitudes of the coefficients in the formulation).

6.5 Experiments with 4S-CR on larger instances and impact of the
main 4S-CR features

We now present the results obtained with 4S-CR on larger instances and assess
the impact of the main features of 4S-CR (i.e., the criterion for identifying and
reassigning critical points in the Point Partition step, the Domain Partition

step, and the Partition Consistency step, applied at each iteration) on the
quality of the solutions found.

As already mentioned, we set ρ = 0.5 in all the experiments involving our
criterion for identifying critical points and we consider a tabu list with a memory
of two iterations. When tuning the parameters, we observed improved results on
the smaller instances when increasing ρ, as opposed to worse ones on the larger
instances. This is, most likely, a consequence of the number of iterations carried
out within the time limit, which becomes much smaller for a larger value of ρ,
thus forcing the method to halt with a solution which is too close to the starting
one. As to the tabu list, we observed that a short memory of two iterations
suffices to prevent loops. Indeed, due to the nature of the problem as well as due
to the many aspects of k-PAMF-PLS that our method considers, the values of the
parameters of the piecewise-affine submodels change often dramatically within
very few iterations. This way, few iterations taking place after a worsening move
typically suffice to prevent that a point-to-submodel reassignment take place
twice, thus making the occurrence of loops extremely unlikely.

To assess the impact of the Point Partition step based on the criterion
for critical points (and on the corresponding control parameter), we introduce a
variant of 4S-CR where, in the former step, every point (ai, bi) is (re)assigned to
a submodel yielding the smallest fitting error. This is in line with many popular
clustering heuristics, as reported in Section 2. We refer to this method as 4S-CL
(where “CL” stands for “closest”).



To evaluate the relevance of considering, in 4S-CR, the domain partition
aspect directly at each iteration (via the Domain Partition and Partition

Consistency steps), we also consider a standard (STD) two-phase method which,
first, addresses the clustering aspect of k-PAMF-PLS and, only at the end, be-
fore halting, takes the domain partition aspect into account. In the algorithm,
which we consider in two versions, we iteratively alternate between the Submodel
Fitting and Point Partition steps. In the latter step, we either reassign every
point to the “closest” submodel (STD-CL) or to that indicated by our criterion
(STD-CR). After a local minimum has been reached, a pairwise linearly separa-
ble domain partition with minimum misclassification error is derived by solving
a multiway linear classification problem via linear programming, as in Prob-
lem (25)–(28).

Since STD-CL is similar to most of the standard techniques proposed in the
literature (see Section 2), we consider it as the baseline method and compare the
other methods (4S-CR, 4S-CL, and STD-CR) to it. The results for the medium,
large, and UCI datasets, obtained with a time limit of, respectively, 900, 1800,
and 900 seconds, are reported in Table 4.

The comparison shows that 4S-CR outperforms the baseline method STD-CL
in almost all the cases. When considering the medium instances, 4S-CR yields
an improvement in objective function value of, on geometric average, 8%, 21%,
21%, and 24% for, respectively, k = 2, 3, 4, and 5. On the large instances, the
improvement is of 16%, 24%, 29%, and 24%. For the four UCI instances, the
improvement is of 6%, 9%, 13%, and 16%. When considering the three datasets
jointly, the improvement is of 8%, 21%, 21%, 24%. On geometric average, for
all the values of k, 4S-CR improves on the fitting error of STD-CL by 20%. On
a total of 112 instances (for the different values of k) of k-PAMF-PLS, 4S-CR
achieves the best solution in 103 cases (92%).

When comparing 4S-CL to STD-CL, we register, on geometric mean and
for the different values of k, an improvement of 4%, 9%, 10%, and 16% for the
medium instances, of 12%, 17%, 17%, and 11% for the large ones, and of 4%,
9%, 10%, and 16% on the UCI datasets. When considering all the datasets and
all the values of k jointly, the improvement is of 12%. Although still substantial,
this value is not as large as that for 4S-CR, thus highlighting the relevance of the
criterion based on critical points that is adopted in the Point Partition step.
At the same time, it also shows that, even without the criterion, the central idea
of 4S-CR (i.e., considering the domain partition aspect of the problem directly
at each iteration, rather than deferring it to a final phase) has a large positive
impact on the solution quality.

Most interestingly, the results for STD-CR are quite poor. When considering
all the 112 instances (for the different values of k), the method yields, on geo-
metric average, a 4% larger fitting error w.r.t. STD-CL. This is not surprising
as, by constructing a domain partition only at the very end of the algorithm,
the solutions that are obtained before its derivation typically contain a large
number of misclassified points, which yield a large negative contribution to the
final fitting error. Indeed, when comparing the value of the solutions that are



Table 4. Results obtained with 4S-CR, when compared to STD-CL, STD-CR, and
4S-CL on the medium, large, and UCI instances, within a time limit of, respectively,
900, 1800, and 900 seconds, for k = 2, 3, 4, 5. For each instance, the value of the best
solution found is highlighted in boldface.
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found before and after carrying out the domain partition phase at the end of the
method, we register an increase in fitting error of up to 4 times for both STD-CR
and STD-CL. This suggests the lack of a strong correlation, in both algorithms,
between the quality of the solutions found before and after constructing the fi-
nal domain partition. Also note that, with the adoption of our criterion for the
identification of critical points, the Point Partition step becomes more time
consuming. Indeed, our experiments show that the average number of iterations
carried out in the time limit by STD-CR with respect to those for STD-CL can
be up to 40% smaller (as observed for the large instances with k = 5). There-
fore, investing more computing time in a more refined criterion for the Point

Partition step turns out to be not effective for a method (such as STD-CR)
which only considers the domain partition aspect in a second phase.

7 Concluding remarks

We have addressed the k-PAMF-PLS problem of fitting a piecewise affine model
with a pairwise linearly separable domain partition to a set of data points.
We have proposed an MILP formulation to solve the problem to optimality,
strengthened via symmetry breaking constraints. To solve larger instances, we
have developed a four-step heuristic algorithm which simultaneously deals with
the various aspects of the problem. It is based on two key ideas: a criterion for
the identification of a set of critical points to be reassigned and the introduction
of a domain partitioning step at each iteration of the method.

Computational experiments on a set of structured randomly generated and
real-world instances show that with our MILP formulation with symmetry break-
ing constraints we can solve to optimality small-size instances, while our four-step
heuristic provides close-to-optimal solutions for small-size instances and allows
to tackle instances of much larger size. The results not only indicate the high
quality of the solutions found by 4S-CR when compared to those obtained with
either an exact method or a standard two-phase heuristic algorithm, but they
also highlight the relevance of the different features of 4S-CR, which must be
adopted in a joint way to yield higher quality solutions to k-PAMF-PLS.
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