
Author’s Accepted Manuscript

Efficient clustering on riemannian manifolds: A
kernelised random projection approach

Kun Zhao, Azadeh Alavi, Arnold Wiliem, Brian C.
Lovell

PII: S0031-3203(15)00348-9
DOI: http://dx.doi.org/10.1016/j.patcog.2015.09.017
Reference: PR5521

To appear in: Pattern Recognition

Received date: 19 December 2014
Revised date: 2 September 2015
Accepted date: 9 September 2015

Cite this article as: Kun Zhao, Azadeh Alavi, Arnold Wiliem and Brian C.
Lovell, Efficient clustering on riemannian manifolds: A kernelised random
projection approach, Pattern Recognition,
http://dx.doi.org/10.1016/j.patcog.2015.09.017

This is a PDF file of an unedited manuscript that has been accepted for
publication. As a service to our customers we are providing this early version of
the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting galley proof before it is published in its final citable form.
Please note that during the production process errors may be discovered which
could affect the content, and all legal disclaimers that apply to the journal pertain.

www.elsevier.com

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Queensland eSpace

https://core.ac.uk/display/43381613?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com
http://dx.doi.org/10.1016/j.patcog.2015.09.017
http://dx.doi.org/10.1016/j.patcog.2015.09.017

Efficient Clustering on Riemannian Manifolds:
A Kernelised Random Projection Approach

Kun Zhao? , Azadeh Alavi† , Arnold Wiliem? , Brian C. Lovell?

?School of ITEE, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
† Center for Automation Research, University of Maryland, College Park, MD 20742-3275

Abstract

Reformulating computer vision problems over Riemannian manifolds has demon-

strated superior performance in various computer vision applications. This is

because visual data often forms a special structure lying on a lower dimensional

space embedded in a higher dimensional space. However, since these manifolds

belong to non-Euclidean topological spaces, exploiting their structures is com-

putationally expensive, especially when one considers the clustering analysis of

massive amounts of data. To this end, we propose an efficient framework to

address the clustering problem on Riemannian manifolds. This framework im-

plements random projections for manifold points via kernel space, which can

preserve the geometric structure of the original space, but is computationally

efficient. Here, we introduce three methods that follow our framework. We then

validate our framework on several computer vision applications by comparing

against popular clustering methods on Riemannian manifolds. Experimental

results demonstrate that our framework maintains the performance of the clus-

tering whilst massively reducing computational complexity by over two orders

of magnitude in some cases.

Keywords: Riemannian manifolds, Random projection, Clustering

1. Introduction

Clustering analysis is an automated process that groups unlabelled data into

subsets (here called clusters) that may express the underlying structure of the

1Corresponding author: Kun Zhao (kun.zhao@uq.net.au)
Tel: +61 7 33658302. Fax: +61 7 3365 4999

Preprint submitted to Pattern Recognition September 22, 2015

data. It is one of the most critical tools for understanding visual data [1, 2].

For instance, significant amounts of visual data such as videos and pictures5

are uploaded every second [3]. Indeed, this is the case for YouTube where 100

hours of video are uploaded every minute [4]. Although these videos have titles

and some additional meta-information, it is often desirable to automatically

group the videos in terms of specific criteria such as visual similarity or detected

objects.10

In recent years, modelling visual data in analytical manifolds such as Rie-

mannian manifolds has enjoyed success in various computer vision application

domains such as face recognition [5], action recognition [6] and pedestrian de-

tection [7]. This is because visual features and models often possess special

structures which Euclidean space fails to capture. Riemannian manifolds which15

form curved spaces are a more appropriate approach to model problems in var-

ious computer vision tasks.

Unfortunately, despite the fact that clustering methods have been studied

since the 1950s [1, 8], applying such methods directly on data represented on

Riemannian manifolds is not trivial. Riemannian manifolds generally do not20

conform to Euclidean space [5, 9]. To address this, one could use manifold

tangent spaces which are locally homeomorphic to Euclidean space [9]. However,

this brings another challenge to applying existing clustering algorithms as some

general algebraic operations are not well defined [10]. For instance, K-means

requires the computation of the mean within a cluster which cannot be computed25

directly. To this end, Pennec et al. [10] reformulated the computation of mean as

a solution to an optimisation problem. Using this formulation, the mean point

is considered as the point over the manifold minimising the geodesic distance

(i.e. the true distance on the manifold between two points) from the mean

point to all other points. The algorithm to solve this problem is called Karcher30

mean [10]. Thanks to the Karcher mean, Turaga et al. [5] extended the K-means

algorithm into the Riemannian manifold, which is regarded as intrinsic K-means

and has been applied to activity-based video clustering. Intrinsic K-means has

further demonstrated better performance than Euclidean-based methods (for

example, Protein Clustering [11]).35

Generally, methods that completely honour the manifold topology lead to

higher accuracy. We shall categorise these methods as intrinsic methods. Un-

fortunately, the computational cost of intrinsic methods is extremely high since

2

these need to map all of the data to tangent spaces repeatedly.

Extrinsic methods, on the other hand, seek solutions that may not com-40

pletely consider the manifold topology [12, 13, 14, 15, 16, 17]. The most sim-

plistic way, here called Log Euclidean methods, is to embed all of the points into

a designated tangent space at the identity point [18]. Log Euclidean methods

can be considered as flattening the manifold space. It has been used in var-

ious computer vision applications, such as human action recognition [13] and45

cell classification [14]. This addresses the computational cost issues suffered by

the intrinsic methods, as the tangent space is homeomorphic to the Euclidean

space and well-known Euclidean clustering approaches such as K-means can be

directly applied. Unfortunately, as the flattening step distorts the pair-wise dis-

tances in regions far from the origin of the tangent space, accuracy is severely50

compromised. So much of the value of the manifold approach is lost.

Other approaches that fall in the extrinsic method category are kernel-

based approaches [15, 16, 17], such as Kernel K-means. In essence, the data in

manifold space are first embedded into the Reproducing Kernel Hilbert Space

(RKHS) [19]. As the embedding function is defined implicitly, generally kernel-55

based approaches make use of the inner products in the RKHS in their formu-

lation. These inner products are then arranged in a Gram matrix. It is often

observed that the right choice of kernel could significantly improve the perfor-

mance [15]. Furthermore, in general, kernel inner products with specified met-

rics have much less computational complexity than geodesic distances [20, 21].60

With these properties, kernel-based approaches could be suitable to address is-

sues suffered in both the intrinsic approach and the Log Euclidean approach.

Unfortunately, the kernel-based approaches cannot scale easily, as the Gram

matrix computation is O(n2) where n is the number of data points. Also, it

is often quite challenging to kernelise the existing algorithms that do not have65

known kernelised versions [22]. Furthermore, Nikhil et al. demonstrate that

clustering data in the RKHS may lead to unexpected results since the clusters

obtained in the RKHS may not exhibit the structure of the original data[23].

Contributions We summarise the advantages and shortcomings of the ex-

isting approaches in Table 1. Our goal is to develop an efficient clustering70

algorithm for Riemannian manifolds, which significantly reduces the computa-

tional complexity, but still maintains acceptable performance. The inspirations

are drawn from the random projection for Euclidean spaces which has enjoyed

3

Table 1: Summary of the existing works compared to our proposal.

Approach Exploits Manifold Structure Accuracy Computational

Complexity

Intrinsic Methods[5, 11] Yes High High

Log-Euclidean Methods [12, 13, 14] Minimal Low Low

Kernel Methods [15, 16, 17] Approximately High Moderate

Our proposal Approximately High Low

success in various domains [24, 25, 26] due to its simplicity and theoretical

guarantees [27]. We list our contributions as follows:75

1. We propose a random projection framework for manifold features. In

general, the term projection is not well defined in Riemannian manifolds.

Therefore, we address this via the RKHS constructed from a small subset

of data. Once projected, we choose to apply the K-means algorithm.

2. From our framework, it becomes clear that random hyperplane generation80

is essential. Thus, we describe three generation algorithms which are

followed in our framework: (1) Kernelised Gaussian Random Projection

(KGRP); (2) Kernelised Orthonormal Random Projection (KORP) and

(3) Kernel Principal Component Analysis Random Projection (KPCA-

RP).85

We note that our method is different from manifold learning approaches

for clustering analysis described in [28]. Manifold learning is the collection

of non-linear dimensionality reduction (NLDR) techniques that seek for a low

dimensional representation of a set of high-dimensional points lying on a non-

linear manifold [29]. They assume the structure of the underlying manifold90

was unknown. Contrary to this, in our paper, we are interested in Riemannian

manifolds whose underlying geometry is known.

We continue the paper as follows. Section 2 provides a brief mathematical

background of Riemannian manifolds. Section 3 details the proposed random

projection framework for manifold points and develops three different random95

projection methods for clustering points on manifold spaces. The proposed

methods are then contrasted with the state-of-the-art methods in Section 4.

The conclusions and future directions are summarised in Section 5.

4

2. The Geometry of Riemannian Manifolds

A differentiable manifold M is a topological space that is locally similar to100

Euclidean space [30]. One can use the tangent space to model the neighbourhood

structure on a differentiable manifold. The tangent space at a point X on

the manifold, TXM, is a vector space that contains all possible directions

tangentially passing through X [30].

A Riemannian manifold is a differentiable manifold, endowed with a Rie-105

mannian metric. The Riemannian metric is the family of inner products on all

of the tangent spaces [31]. This metric enables us to define geometric concepts

such as lengths, angles and distances. The geodesic distance between two points

X,Y is defined as the length of the shortest curve between X and Y [31].

In this section, we briefly introduce two well known Riemannian mani-110

folds used in the computer vision community, namely Symmetric Positive Defi-

nite (SPD) manifold and Grassmannian manifold.

2.1. SPD Manifolds

To compute a compact representation of an image, one method is to calculate

the covariance matrix of a set of d-dimensional vector features extracted from115

the image [32]. Covariance matrices naturally arise in the form of SPD matrices,

which can be considered as points on SPD manifolds [7]. The geodesic distance

between points on SPD manifolds then can be calculated through an affine

invariant Riemannian metric:

dist(X,Y) = || log(X−
1
2Y X−

1
2)||2F , (1)

whereX,Y ∈M are two points over the SPD manifold. For further discussions120

on SPD manifolds, the readers are referred to [9].

To further improve clustering performance, SPD manifolds could be pro-

jected into RKHS by Mercer kernels. In this paper, we use one of the popular

kernels for SPD manifolds, namely the Gaussian kernel, which is defined by:

K(X,Y) = exp(−β · dist(X,Y)) , (2)

where dist(X,Y) is the geodesic distance between point X and Y from Eqn.1.125

Since the geodesic distance is computationally demanding, several methods for

computing the approximate distance have been developed [18, 33, 34]. In this

5

paper, we use two popular approximate distance functions: Log Euclidean Dis-

tance (LED) [18] and Stein Divergence (SD) [33]. The Gaussian kernel with

LED and SD then can be respectively formulated by:130

KLED(X,Y) = exp(−β · || log(X)− log(Y)||2F) (3)

and

KSD(X,Y) = exp(−β · log

(
det

(
X + Y

2

))
− 1

2
log (det (XY))) . (4)

Note that, in order to become a Mercer kernel, the Gaussian kernel with SD

requires β to be of the form: β ∈
{

1
2 ,

2
2 , ...,

d−1
2

}
.

2.2. Grassmannian Manifolds

The Grassmannian Manifold Gq,d, is the set of all d-dimensional subspaces

of Rq. A point on the Grassmann manifold, X ∈ Gq,d, can be denoted by an135

orthonormal matrix in Rq×d. The geodesic distance between points X and Y

on a Grassmannian manifold is defined as:

dist(X,Y) =
√
θ21 + ...+ θ2d , (5)

where θi is the principal angle betweenX and Y . The angle θi can be calculated

by θi = cos−1(ξi) wherein ξi are singular values of X>Y . We refer readers

to [35] for further treatment on Grassmannian manifolds. A popular kernel140

used over Grassmannian manifolds is known as the Projection kernel [36, 37],

which can be formulated as:

K(X,Y) = β · ||X>Y ||2F . (6)

3. Proposed Framework

As mentioned in Section 1, the goal of our work is to significantly reduce

clustering computational complexity for manifold features while maintaining145

reasonable clustering performance. We address this by adopting a random pro-

jection approach to Riemannian manifolds. In this section, we first discuss the

overview of random projection in Euclidean space. We then extend the notion

into the Riemannian manifold space.

6

3.1. Random Projection in Euclidean Space150

In Euclidean space, the random projection embeds original data into a much

lower dimensional space whilst preserving the geometric structure [38]. This can

significantly reduce the computational complexity of learning algorithms, such

as classification or clustering. For instance, as a result, this is used to achieve

real time performance in object tracking [39].155

A point x ∈ Rd in Euclidean space can be projected into a random k-

dimensional subspace (k << d) via a set of randomly generated hyperplanes

{r1}ki=1 where ri ∈ Rd. This can be formulated as:

f(x) = x>R , (7)

where R is the random matrix that arranges the random hyperplanes as column

vectors. Note that in order to minimise distortions produced by the projection,160

the matrix R should possess a particular property. We introduce this property

in Definition 3.2. When the random projection matrix R possesses such a

property, then the Johnson-Lindenstrauss Lemma (JL-Lemma) [40] applies.

Lemma 3.1. [Johnson-Lindenstrauss Lemma [40]] For any ε such that ε > 0,

and any set of points X with |X | = n upon projection to a uniform random165

k-dimension subspace where k ≥ O(ε−2 log n), the following property holds for

every pair u,v ∈ X , (1− ε)||u−v||2 ≤ || f(u)− f(v)||2 ≤ (1 + ε)||u−v||2, where

f(u), f(v) are the projections of u,v.

Remarks The JL-Lemma principally states that a set of high dimensional points

can be embedded using a set of uniform random hyperplanes into lower dimen-170

sional space wherein the pairwise distance between two points is well preserved

(with high probability). The original proof of JL-Lemma uses quite challenging

geometric approximation machinery [40]. Frankl and Meahara [41] simplified

that proof by considering a projection into k random orthonormal vectors. Re-

cently there have been several properties of the random matrix where JL-Lemma175

still applies. We shall call the type of projection wherein the random matrix

has properties that allow the JL-Lemma to be applied as a JL-Type projection.

Definition 3.2 (JL-Type projection). Let R = [r1 · · · rk], ri ∈ Rd be a

random matrix whose columns are the random hyperplanes. The projection180

7

f(u) = R>u,u ∈ Rd, f(u) ∈ Rk is called JL-Type projection when the matrix R

possesses at least one of the following properties:

1. The columns of R are orthogonal unit-length vectors [41];

2. Each element in R is selected independently from a standard Gaussian

distribution N(0, 1) or uniform distribution U(−1, 1) [42];185

3. R is a sparse matrix whose elements belong to {−1, 0,+1} with probability

{1/6, 2/3, 1/6} [43].

We note that Property 1 in Definition 3.2 considers columns of the random

matrix R as the basis of a random space, thus they are required to be pairwise

orthogonal [41]. To this end, one needs to apply an orthogonalisation technique190

such as the Gram-Schmidt method [44] on R. Arriaga et al. [42] proved that

it suffices to use random non-orthonormal matrices with independent elements

chosen from some distributions which are listed in Property 2 of Definition 3.2.

Recently, Li et al. [43] proposed a sparse random projection matrix presented in

Property 3 of Definition 3.2. The sparse random projection achieves a further195

threefold speed-up as only 1/3 of the matrix have non-zero elements.

We note that the random projection is not data driven. It means that it

does not need a set of labelled training data, making it suitable for unsupervised

learning scenarios such as clustering [45, 46].

3.2. Random Projection in Riemannian Manifolds via RKHS200

As mentioned in Section 1, applying the random projection on points re-

siding in the Riemannian manifold space is not trivial, due to the notion of

projection itself being generally not well defined. We approach this problem by

reformulating the problem in the RKHS. Recall that, the random matrix con-

taining column vector of hyperplanes ri should be generated from a particular205

process. Thus, the projection of each individual dimension into the projected

space is carried out as follows:

fi(x) = x>ri , (8)

where fi(·) is the i-th dimension of the projected vector x.

8

Manifold space

Random projection space

RKHS

K-means

Figure 1: The illustration of our proposed framework. We first generate the hyperplanes in

RKHS. Each point in the manifold space is then mapped into the projected space via the

kernel inner product. Finally we apply K-means in the projected space.

In the RKHS, the above formulation can be rewritten as:

fi(x) = φ(x)>ri , (9)

where φ(·) is the function that embeds the input space into the RKHS. Note210

that, in this case, the hyperplane ri is now defined in the RKHS, ri ∈ H. The

projection in the RKHS can be considered as the inner product which is defined

as the kernel similarity function.

Eqn. 9 provides insight that the JL-Type projection could be achieved as long

as one could generate the hyperplanes that follow one of the above properties215

in Definition 3.2 in the RKHS. In similar fashion, when the data point x is

replaced by a point X in manifold X ∈M, then one could use Eqn. 9 as the

framework to achieve JL-Type projection in the manifold space. As such, we

propose a framework for clustering manifold points, which is briefly illustrated

in Figure 1. This hyperplane generation is the central idea in our work. First,220

we generate the hyperplanes over the RKHS. The points over the manifold

space are then projected into the projected space by using the specified kernel

similarity function, such as the Gaussian kernel or projection kernel. Once the

manifold points have been embedded into the projected space, we apply the

general K-means algorithm to perform clustering.225

In this paper, we explore three hyperplane generation methods for manifold

points: (1) KGRP; (2) KORP and (3) KPCA-RP. The diagram of our proposed

generation methods is illustrated in Figure 2. Briefly speaking, the hyperplanes

are generated using a randomly selected subset from the entire dataset. The

projection made by the hyperplanes will follow one of the properties in Defini-230

9

manifold

points

Randomly select

 a subset of

manifold points

Kernelise the points using

kernel func�on ;

obtain the kernel

similarity matrix

Compute the projec�on matrix

 by weighted sum

 of the kernelised points (Eqn. 13)

Compute the projec�on matrix

 by Cholesky Factorisa�on

on (Eqn. 16)

Compute the projec�on matrix

 by KPCA on (Eqn. 20)

Project points onto the random projec�on spaces

Compute the projec�on matrix

Compute the kernel similarity

 matrix with regard

to the subset

Project all points by

Project all points by

Project all points by

KORP

KGRP

KPCA-RP

KPCA-RP

KORP

KGRP

Figure 2: The diagram of our proposed generation methods: KORP, KGRP and KPCA-RP.

tion 3.2. We will elaborate on the generation process and theoretical analysis

in the following section.

3.2.1. Kernelised Gaussian Random Projection (KGRP)

In the KGRP method, the hyperplanes are generated from the standard

Gaussian distribution N (0, I). Each hyperplane ri ∈ H is assumed to be235

spanned by a group of data points randomly selected. To this end, first a

subset S containing p points {φ(X1), . . . , φ(Xp)} is randomly chosen from the

entire dataset, φ(Xi) is the representation of manifold points Xi in the RKHS.

Each data point φ(Xi) from the subset is considered as a vector generated from

a particular distribution D with unknown mean µ and unknown covariance Σ.240

Thanks to the Central Limit Theorem (CLT) [47], one can still produce stan-

dard Gaussian distribution data points from these data. More precisely, the

CLT states that when the number of data points grows larger, the difference

between the population mean and the sample mean approximates the normal

distribution N (0,Σ). As such, we first randomly select t, t < p, data points245

from S and let these points be the set S1 ⊂ S. Let zt = 1
t

∑
i∈S1 φ(Xi) be the

10

sample mean over S1. By applying the CLT and the Whitening transform [48],

the vector ri = Σ−
1
2
√
t(zt − µ) can be considered as the point generated from

a standard Gaussian distribution; thus ri could be used as a random projection

hyperplane. Therefore, we denote our embedding function that projects data250

points in the RKHS to the random projection space by:

f(φ(Xi)) = φ(Xi)
TΣ−

1
2

√
t(zt − µ) . (10)

The mean is implicitly estimated as µ = 1
p

∑p
i=1 φ(Xi), and the covariance

matrix Σ is also formed over the p data points. In order to compute Eqn. 10,

one could use a similar approach to that of Kernel Principal Component Anal-

ysis (KPCA) [49]. Specifically, let the Eigen-decomposition of the covariance255

matrix Σ and the kernel matrix over p data points KS , be V ΛV > and UΘU>

respectively. Based on the fact that the non-zero eigenvalues of V are equal to

the non-zero eigenvalues of Θ, Kulis-Grauman [50] proved that Eqn. 10 is the

same as:

∑p

i=1
w(i)(φ(Xi)

Tφ(X)) , (11)

where

w(i) =
1

t

p∑
j=1

∑
l∈S1

Kij
− 3

2Kjl . (12)

Note that S1 is the set of t points which are randomly selected from S. Further,260

defining e as a vector of all ones, and eS1 as a zero vector with ones in the

entries corresponding to the indices of S1, the expression in Eqn. 12 can be

further simplified to:

w =

√
p− 1

t
K
− 1

2

S eS1 . (13)

We note that the above formulation was first described for developing the ker-

nelise locality sensitive hashing method in Euclidean scenarios [50]. We then265

adapted the method in our previous work [20] to perform random projection

on SPD manifolds for classification purposes. Here we apply the method for

clustering on Riemannian manifold problems. The pseudo code for KGRP is

summarised in Algorithm 1.

We note that the total computational complexity of the KGRP algorithm is270

O(np+p3 +np2 + `nmp). Specifically, there are four factors contributing to the

computational complexity:

11

Algorithm 1 Kernelised Gaussian Random Projection (KGRP)

Input: the entire dataset: a set of manifold-valued data points {Xi}ni=1, Xi ∈
M; the size of S : p; the desired projected space dimensionality : b

Output: {xi}ni=1, xi ∈ Rp the data points in the projected space

1: Randomly select p points {Xi}pi=1 from the entire dataset

2: Compute the Kernel Gram matrix KS over points {Xi}pi=1, KS =

φ(Xi)
> φ(Xj), ∀Xi,∀Xj ∈ {Xi}pi=1, let S = {φ(Xi)}pi=1 denote the rep-

resentations for these p points in the RKHS

3: Compute the projection matrix W = {w1, ...,wb}, ∀wi ∈ Rp

4: for i = 1→ b do

5: S1 ← Randomly select t data points from S
6: eS = [∆1, ...,∆p] if φ(Xi) ∈ S1, ∆i = 1; otherwise ∆i = 0

7: wi =
√

p−1
t K

− 1
2

S eS

8: end for

9: Project each point Xi into the random projection space: xi = K̃W , where

K̃ is the Gram matrix between Xi and the points {Xi}pi=1

1. Computing the kernel Gram matrix Kn,p between n points and p selected

points which requires O(np) operations (p << n);

2. Generating the random hyperplanes, necessitates calculation of the kernel275

matrix K
−1/2
S for the p points in S which requires O(p3) operations;

3. Projecting all of the data points into the random projection space which

requires O(np2) operations;

4. Applying K-means to get the clustering results which requires O(`nmp)

operations (` is the number of iterations of K-means, m is the number of280

clusters and b is the dimension of the projected space).

3.2.2. Kernelised Orthonormal Random Projection (KORP)

In the second method, we generate orthonormal random hyperplanes (i.e. the

first property). We first present the following Lemma that relates the JL-Lemma

to the margin of the linear hyperplane in supervised learning settings [51].285

Lemma 3.3. Consider any distribution over labelled examples in Euclidean

space such that there exists a linear separator w> · x = 0 with margin λ. If

12

we draw d ≥ 8
ε

[
1
λ2 ln 1

δ

]
examples z1, · · · , zd iid from this distribution, with

probability ≥ 1− δ, there exists a vector w′ in span (z1, · · · , zd) that has error

at most ε at margin λ
2 [51].290

Proof. We refer the readers to [51] for the proof of this Lemma.

Remarks. Lemma 3.3 essentially states that, with a high probability, the margin

is still well preserved (with error at most ε) when the hyperplane w′ is selected

from the space spanned by a subset of the data points. Note that, as suggested

in [52], when the margin is well preserved, then the angle and distance between295

points are also well preserved.

This Lemma can also be applied for cases where the data points are in

the RKHS. This is because the RKHS is essentially an infinite-dimensional Eu-

clidean space [51]. Given a set of points which are linearly separable with

margin λ under a particular kernel function, we draw d random examples300

x1, · · · ,xd from the same distribution. Then, according to Lemma 3.3, with

probability ≥ 1 − δ, there exists a separator in RKHS w′ ∈ H and w′ =

α1φ(x1) + · · · + αdφ(xd) with error rate at most ε. Note that as w′> · φ(x)

= α1 K(x,x1) + ... + αd K(x,xd), we then can simply consider the vector of

[K(x,x1) · · ·K(x,xd)] as the feature representation of x in the space spanned305

by {φ(xi)}di=1. In other words, the K(x,xi) is considered as the i-th feature of

x. We can further formalise this observation with the following Corollary [51].

Corollary 3.4. If distribution P has margin λ in the RKHS, then with prob-

ability ≥ 1 − δ, if x1, · · · ,xd are drawn from the same distribution, for d =

8
ε

[
1
λ2 ln 1

δ

]
, the mapping F1(x) = [K(x,x1) · · ·K(x,xd)] produces a distribution310

F1(P) on labelled examples in Rd that is linearly separable with error at most

ε [51].

Remarks. The above Corollary suggests the following points: (1) one could

generate random projection hyperplanes by randomly selecting a subset of data

points in RKHS and then projecting a point into this space by using F1(x);315

(2) this projection is a JL-Type projection.

In light of these facts, for our case, we randomly select p points, here de-

note S = {φ(X1), · · · , φ(Xp)} as the implicit representations of the p points

in RKHS. However, as it is possible that some hyperplanes are not linearly in-

dependent, then the hyperplanes could be highly correlated. To that end, one320

13

needs to orthogonalise the hyperplane set S [51]. In this work, we apply QR de-

composition [44] to construct a set of orthonormal basis from the original basis

spanning the same subspace. Let us arrange the original basis {φ(Xi)}pi=1 into

a matrix A. Then the matrix A can be decomposed into Q and R̃ as follows:

A = [φ(X1), · · · , φ(Xp)] = QR̃ , (14)

where Q is the orthonormal basis and R̃ is the upper triangular matrix. Assum-325

ing that we have the orthonormal basis Q, then we can observe the following

when a data point φ(X) is projected into the orthonormal basis Q:

φ(X)>Q = φ(X)
>
QR̃R̃

−1

= φ(X)>[φ(X1), ..., φ(Xp)]R̃
−1

= [φ(X)> φ(X1), ..., φ(X)> φ(Xp)]R̃
−1

= [K(X,X1), ...,K(X,Xp)]R̃
−1

.

(15)

In other words, one only needs to determine the upper triangular R̃ in order

to do the projection. We note that as the original basis {φ(Xi)}pi=1 are in the

RKHS then it is not trivial to apply the QR decomposition to matrix A. To330

that end, we first multiply the matrix A by its transpose. By doing this, we

will get the kernel matrix KS , where KS(i, j) = φ(Xi)
> φ(Xj), ∀φ(Xi) and

∀φ(Xj) ∈ S. Thus:

KS = A>A

= (QR̃)>QR̃

= R̃
>
Q>QR̃

= R̃
>
R̃ .

(16)

We can employ the Cholesky Factorisation [44] on the kernel matrix KS , in

order to compute the upper triangular R̃. Algorithm 2 outlines the algorithm335

for the proposed Kernelised Orthonormal Random Projection (KORP).

The computational complexity of KORP depends on the following steps:

1. Computing the kernel Gram matrix between the entire dataset and the

subset S which requires O(np) operations;

14

Algorithm 2 Kernelised Orthonormal Random Projection (KORP)

Input: the entire dataset: a set of manifold-valued data points {Xi}ni=1, Xi ∈
M; the desired projected space dimensionality : p

Output: {xi}ni=1, xi ∈ Rp the data points in the projected space

1: Randomly select p points {Xi}pi=1 from the entire dataset

2: Compute the kernel Gram matrix KS over points {Xi}pi=1 KS =

φ(Xi)
> φ(Xj), ∀Xi,∀Xj ∈ {Xi}pi=1

3: Apply Cholesky Factorisation to the kernel matrix KS = R̃R̃
>

4: Project each point Xi into the random projection space: xi = K̃R̃
−1

,

where K̃ is the Gram matrix between Xi and the points {Xi}pi=1,

2. Applying Cholesky Factorisation on the kernel Gram matrix of the p points340

in S which requires O(p3) operations;

3. Applying the matrix inverse of the right triangular matrix R̃ which de-

mands O(p3) operations;

4. Projecting all of the data points into the orthonormal space with O(np2)

operations;345

5. Applying K-means to get the clustering results which demands O(`nmp)

operations (` is the number of iterations of K-means, m is the number of

clusters).

Hence, the total computational complexity is O(np+ p3 + np2 + `nmp).

3.3. KPCA-based Random Projection (KPCA-RP)350

Inspired by the previous method, one can derive orthonormal projections

using the Kernel PCA (KPCA). More precisely, after generating random pro-

jection hyperplanes by randomly selecting the subset S, one can obtain the

principal components of the data points in S by applying the KPCA. The prin-

cipal components of S are then considered as the set of orthogonal random355

projection hyperplanes. Finally, following Eqn. 9, the entire data points can be

projected into the random projection space using the hyperplanes.

15

Let us suppose C is the covariance matrix of the points in S which have

been centred:

C =
1

p

p∑
i=1

φ(Xi)φ(Xi)
>. (17)

To apply KPCA, one needs to solve the generalised eigen-decomposition prob-360

lem:

τV = CV . (18)

Following the same argument as KPCA [49], the eigenvectors of the covariance

matrix C lie in the span of φ(X1), φ(X2), .., φ(Xp):

V k =

p∑
i=1

αki φ(Xi) , (19)

where the set {αki }
p
i=1 can be determined by solving the following equation:

pτα = KSα , (20)

where α = [α1 · · ·αk] is a matrix wherein each column represents the vector365

αk = [αk1 · · ·αkp]> whose elements are the linear combination coefficients pre-

sented in Eqn. 19 and KS is the kernel matrix of the set S. Note that the above

equation suggests that the vector αk is one of the eigenvectors of KS .

Let {V k}pk=1 be the set of principal components extracted from Eqn. 18. To

project a point into the principal component V k, we perform:370

φ(X)> · V k =

p∑
i=1

αki φ(X)>φ(Xi) . (21)

In the following, we present a theorem that guarantees that projections into the

principal components of the subset S achieves JL-Type projection.

Theorem 3.5. If a set of points can be separated by a margin λ in the RKHS,

then with probability ≥ 1− δ, if S = {φ(X1), ..., φ(Xp)}, Xi ∈M, φ(Xi) ∈ H

are drawn from the same distribution for p = 8
ε

[
1
λ2 ln 1

δ

]
, the mapping F2(x) =375

F1(x)[α1 · · ·αp], where αk is the k-th eigenvector of KS , achieves JL-Type

projection with error at most ε.

16

Proof. As presented in Corollary 3.4, F1(x) is the function that maps a point

into a random projection space wherein the set of hyperplanes S is randomly

selected from a set of given points. It is known that principal components380

of S represent the orthonormal bases spanning the subspace spanned by S.

Henceforth, computing the principal components of S can be considered as

orthogonalisation of the hyperplanes.

Remarks. The above theorem states that applying KPCA on S means orthog-

onalising the hyperplanes in S. Therefore, the difference between KPCA-RP385

and KORP is related to how the hyperplanes are orthogonalised. We present

the KPCA-RP pseudo code in Algorithm 3.

Algorithm 3 KPCA-based Random Projection (KPCA-RP)

Input: the entire dataset: a set of manifold-valued data points {Xi}ni=1, Xi ∈
M; the desired projected space dimensionality : p

Output: {xi}ni=1 the data points in the projected space

1: Randomly select p points {Xi}pi=1 from the entire dataset

2: Compute the kernel Gram matrix KS over points {Xi}pi=1 KS =

φ(Xi)
> φ(Xj), ∀Xi,∀Xj ∈ {Xi}pi=1

3: Apply KPCA to kernel matrix KS to obtain the eigenvectors α.

4: Project each point Xi into the random projection space: xi = K̃α, where

K̃ is the Gram matrix between Xi and the {Xi}pi=1

In terms of calculating the computational complexity of the KPCA-RP al-

gorithm, one needs to consider four factors:

1. Computing the kernel Gram matrix between the entire dataset and the390

subset S, which requires O(np) operations;

2. Applying KPCA on the kernel Gram matrix of subset S, which requires

O(p3) operations;

3. Projecting all of the data points into the orthonormal space, which requires

O(np2) operations;395

4. Applying K-means to get the clustering results, which requires O(`nmp)

operations (` is the number of iterations of K-means, m is the number of

clusters).

Hence, the total computational complexity is O(np+ p3 + np2 + `nmp).

17

4. Experimental Results400

We evaluate our proposal using six benchmark datasets: (1) Ballet dataset [53];

(2) UCSD traffic dataset [54]; (3) UCF101 Human actions dataset [55]; (4) Bro-

datz texture dataset [56]; (5) KTH-TIPS2b material dataset [57] and (6) HEp-2

Cell ICIP2013 dataset [58].

In our evaluation, we consider each video of the first three datasets (i.e. Bal-405

let, UCSD and UCF101) as an image set which can be effectively modelled

as a point on Grassmannian manifolds. In addition, we use SPD manifold to

model images of the latter three datasets (i.e. Brodatz, KTH-TIPS2b and HEp-

2 Cell ICIP2013). To demonstrate the efficacy of our framework, we report the

clustering performance and the run time.410

4.1. Datasets and Feature Extraction

Ballet action dataset (Ballet) [53] - The Ballet dataset presents sequences

of videos of ballet actions. More precisely, it comprises 44 sequences with 8

different actions: R-L presenting, L-R presenting, Presenting, Jump & swing,

Jump, Turn, Step, and Stand still (see Figure 3a for examples). These ballet415

actions were performed by two men and one woman, resulting in significant

intra-class variations such as speed, clothing and movements. In this evaluation,

each video is considered as an image set. We then represent each image set as

a point in the Grassmannian manifold. To that end, all the videos are down

sampled to 16 × 16 pixels. A Grassmannian point is extracted for every 6420

consecutive frames. Technically, we first vectorise each frame into a column

vector and arrange them into a 256 × 6 tall matrix (i.e. 256 = 16 × 16). The

matrix can be considered as a subspace and the orthonormal bases spanning

the subspace can be determined by applying the Singular Value Decomposition

(SVD). The set of orthonormal bases is considered as a Grassmannian point [21].425

We use the projection kernel (see Eqn. 6) in this evaluation.

UCSD traffic dataset (UCSD) [54] - The UCSD traffic dataset consists of

254 video sequences collected from the highway traffic over two days in Seat-

tle (see Figure 3b for examples). It contains a variety of traffic patterns and

weather conditions (i.e. overcast, raining, sunny). In total, there are 44 se-430

quences of heavy traffic (slow, stop and go speeds), 45 sequences of medium

traffic (reduced speed), and 165 sequences of light traffic (normal speed). To

extract a Grassmannian point, we first randomly select half the number of frames

18

from each video. Each frame in each sequence is downsized to 140× 161 pixels

and further normalised by subtracting the mean frame and dividing the variance.435

Then, we apply the two dimensional Discrete Cosine Transform (DCT) on the

frame and use the DCT coefficients as the feature vector for each frame. SVD

is applied on the feature vectors of the frames to obtain the set of orthonormal

bases. We also choose the projection kernel (see Eqn. 6) for this dataset.

UCF101 Human Actions dataset (UCF101) [55] - This dataset consists440

of 13, 320 videos that belong to 101 categories. For example, Applying Eye

Makeup, Blow Dry Hair and Mixing Batter (refer to Figure 3c). For each

video, we first extract the normalised pixel intensities as features for all the

frames. Then the SVD is applied on these features of each video to obtain the

Grassmannian manifold point. Thus, in this dataset, there are 13, 320 manifold445

points in total. Projection kernel (see Eqn. 6) is used.

Brodatz texture dataset (Brodatz) [56] - For the Brodatz dataset (refer

to Figure 4a for examples) we follow the protocol presented in [59]. The protocol

includes 3 subsets with different numbers of classes: 5-class-texture (5c, 5m, 5v,

5v2, 5v3), 10-class-texture (10, 10v) and 16-class-texture (16c, 16v). Each image450

is down-sampled to 256×256 pixels and divided into 64 32×32 pixel size regions.

A feature vector F (x, y) for each pixel is calculated using the grayscale intensities

and absolute values of the first- and second-order derivatives of spatial feature

vectors. It can be illustrated as: F (x, y) =
[
I (x, y) ,

∣∣ ∂I
∂x

∣∣ , ∣∣∣ ∂I∂y ∣∣∣ , ∣∣∣ ∂2I
∂x2

∣∣∣ , ∣∣∣ ∂2I
∂y2

∣∣∣].
Each region is represented by a covariance matrix (SPD matrix) formed from455

these feature vectors. The Gaussian Kernel with Log-Euclidean distance (see

Eqn. 3) is used for this dataset.

KTH-TIPS2b material dataset (KTH-TIPS2b) [57] - This dataset con-

tains 11 material categories captured under 4 different illuminations, in 3 poses

and at 9 scales (refer to Figure 4b). Thus, there are 3 × 4 × 9 = 108 images

for each sample in one category, with 4 samples per material. We extract a

20-dimensional feature vector for each pixel in the image:

[I(x, y),Y (x, y),Cb(x, y),Cr(x, y), F 1
(x,y)(Y) · · ·F 16

(x,y)(Y)], (22)

where I(x, y) is the image grey level value at location (x, y); Y , Cb and Cr

are the perceptually uniform CIELab colour space; The filter banks F i con-

sist of different of offset Gaussians applied on the luminance channel Y [60].460

The covariance matrix is computed once the feature vectors are extracted from

19

(a) (b) (c)

Figure 3: Examples from (a) Ballet action dataset [53] (b) UCSD traffic dataset [54] and

(c) UCF101 dataset [55]

every pixel location. This becomes the image representation over a SPD man-

ifold. For the manifold kernel in this dataset, we use Gaussian kernel with the

Stein Divergence (see Eqn. 4) as this has been shown to be effective in various

classification problem domains [20, 61].465

HEp-2 Cell ICIP2013 dataset [58] - This dataset contains 13, 596 cell im-

ages that include six cell patterns namely Centromere, Golgi, Homogeneous, Nu-

cleolar, Nuclear Membrane, and Speckled (refer to Figure 4c). The cell boundary

of every cell image is described by a mask image of the same size. For each cell

image, we first extract the following feature vector of each pixel that belongs to470

the cell content: F (x, y) =
[∣∣ ∂I
∂x

∣∣ , ∣∣∣ ∂I∂y ∣∣∣ , I (x, y) ,
∣∣∣ ∂2I
∂x2

∣∣∣ , ∣∣∣ ∂2I
∂y2

∣∣∣ , arctan(
∣∣ ∂I
∂x

∣∣ / ∣∣∣ ∂I∂y ∣∣∣)].
Then, the covariance matrix (SPD matrix) is formed from these feature vectors

extracted from each image. We also use Gaussian kernel with the Stein Diver-

gence (see Eqn. 4) for the evaluation on this dataset.

4.2. Experimental Settings475

As illustrated in Figure 1, we first randomly project the points and then

apply K-means. As such, for each dataset, we first run each proposed projection

method 10 times to generate 10 different random projection representations.

Then, for each representation, we run the K-means algorithm 10 times, resulting

(a) (b) (c)

Figure 4: Examples from (a) BRODATZ texture dataset [56], (b) KTH-TIPS2b material

dataset [57] and (c) HEp-2 Cell ICIP2013 dataset [58].

20

in each method being repeated 100 times for each evaluation. The average of480

clustering performance and run time were reported. As the source of variation

for the other approaches is predominantly on the initial cluster seeds of K-

means, we only repeat the experiment 10 times to obtain the average clustering

performance and run time.

All of the approaches are tuned to give the best performance. We find the485

optimum size of set S as follows: (1) Ballet: 100; (2) UCSD: 90; (3) UCF101:

101; (4) Brodatz: 100; (5) KTH-TIPS2b: 48 and (6) HEp-2 Cell ICIP2013: 60.

In addition, for KGRP, we set the number of dimensionality, b, to 300.

To measure the clustering quality, there are two main types of metrics: inter-

nal metrics based on the distances between data points in the space, and external490

metrics based on the labels of the data [62]. The clustering task in our proposed

framework is performed in a transformed space which may have different scale

to other spaces used by comparable methods such as LogE (see below for fur-

ther discussion on LogE). This may make the internal metrics such as Dunn

Index unsuitable in our case. Thus, we choose four external metrics to measure495

the clustering quality: Rand Index (RI), Cluster Purity (CP), F-Measure and

Normalized Mutual Information (NMI). Interested readers are referred to [62]

for further explanation of each metric. In addition, we also measure the run

time (in seconds) of each approach on every evaluation. The run time is mea-

sured from the kernel matrix computation until the completion of the clustering500

process. Finally, we report the average run time of the approaches.

Our proposal is contrasted to six approaches: (1) Intrinsic K-means [5];

(2) Log-Euclidean K-means [13]; (3) Kernel K-means [2, 15]; (4) KPCA K-

means [49, 15]; (5) Sigma set K-means [63] and (6) Grassmanian clustering [21].

The following is the brief description of each approach.505

Intrinsic K-means (Intrinsic): To cluster a set of manifold points, Intrinsic

K-means works directly on the manifold space using the appropriate geodesic

distance [5]. We note that as the intrinsic approach is generally very slow, we

stop the Intrinsic K-means after 100 iterations.

Log-Euclidean K-means (LogE): We first project all of the manifold points510

into the tangent space at the identity [18]. Once projected, each point will be

vectorised into a column vector. As for SPD manifolds, we follow the work in [9]

that uses only the upper triangular elements. This trick will reduce the final rep-

resentation dimensionality, markedly reducing the run time on the subsequent

21

Table 2: The clustering quality with variance (in %) measured by Rand Index (RI), Cluster

Purity (CP), F-Measure and Normalized Mutual Information (NMI) on Ballet dataset. The

best performance is in bold. We refer to Section 4.2 for further explanation of each approach.

Methods/Measurements RI CP F-Measure NMI

Intrinsic [5] 73.68±0.00 34.92±0.00 33.81± 0.00 21.73± 0.00

LogE [13] 78.23±0.15 20.85±2.66 14.81± 0.37 3.91± 0.81

G-clustering [21] 76.41±0.07 18.63±0.58 16.39± 0.25 3.51± 0.47

Kernel K-means [2, 15] 79.89±0.80 40.86±3.06 32.92± 3.21 32.00± 2.73

KPCA [49, 15] 78.62±2.14 42.30±3.33 36.27± 2.68 34.80± 3.48

KGRP 78.02±1.79 41.89±2.43 37.98± 2.79 34.05± 2.41

KORP 78.28±1.68 42.54±2.37 38.68± 2.81 35.30± 2.80

KPCA-RP 77.81±1.94 41.90±2.31 38.23± 3.11 34.64± 2.75

process. Unfortunately the trick cannot be used on Grassmannian manifolds515

since the representation for a point on the Grassmannian manifold is not a sym-

metric matrix. In this case, all the elements are used in the final representation.

This could adversely affect the overall run time when the manifold dimension-

ality is high. In the final step, K-means algorithm is applied. Log-Euclidean

k-means has been used for clustering large amount of manifold data [13].520

Kernel K-means: This approach embeds manifold points into RKHS. Then

Kernel K-means is applied to perform clustering [2, 15].

KPCA K-means (KPCA): All manifold points are first embedded into RKHS.

Then, KPCA is used for projecting the points in RKHS into the space spanned

by the principal components [49, 15]. Finally, the K-means is applied.525

Sigma set K-means (SIS): Hong et al. [63] proposed a novel descriptor for

SPD manifolds which simplifies the computations of distance and mean. Using

their proposed descriptors, we apply K-means with novel efficient computations

of mean and distance.

Grassmanian clustering (G-clustering) Shirazi et al. [21] proposed a clus-530

tering method for Grassmanian manifolds which use the eigenvectors of the

normalised projection kernel matrix as the new features of Grassmanian points.

4.3. Comparative Analysis on Clustering Quality

Tables 2, 3, 4, 5, 6 and 7 report the average clustering quality of each in-

dividual approach applied on each dataset. In general, our proposed methods535

perform reasonably well and show a close match to KPCA K-means and Kernel

22

Table 3: The clustering quality with variance (in %) measured by Rand Index (RI), Cluster

Purity (CP), F-Measure and Normalized Mutual Information (NMI) on UCSD dataset. The

best performance is in bold. We refer to Section 4.2 for further explanation of each approach.

Methods/Measurements RI CP F-Measure NMI

Intrinsic [5] 73.26±0.00 74.70±0.00 75.15± 0.00 36.18± 0.00

LogE [13] 55.24±3.25 67.23±2.66 40.39± 2.81 19.11± 3.59

G-clustering [21] 50.68±0.11 64.82±0.00 34.31± 0.12 0.92± 0.29

Kernel K-means [2, 15] 69.98±7.06 77.96±4.77 57.34± 10.22 45.50± 9.71

KPCA [49, 15] 77.90±5.97 80.08±2.96 69.29± 7.56 51.31± 6.09

KGRP 75.61±3.48 79.64±2.07 66.97± 5.17 48.29± 3.80

KORP 77.25±1.25 80.18±0.74 68.99± 1.62 50.58± 1.67

KPCA-RP 76.46±2.79 79.64±1.68 68.60± 3.50 49.74± 3.02

Table 4: The clustering quality with variance (in %) measured by Rand Index (RI), Cluster

Purity (CP), F-Measure and Normalized Mutual Information (NMI) on UCF101 dataset. The

best performance is in bold. We refer to Section 4.2 for further explanation of each approach.

Methods/Measurements RI CP F-Measure NMI

Intrinsic [5] 97.53± 0.00 12.94± 0.00 7.43± 0.00 27.65± 0.00

LogE [13] 97.89± 0.02 8.21± 0.15 3.62± 0.06 18.68± 0.07

Kernel K-means [2, 15] 97.71± 0.06 15.97± 0.48 8.80± 0.35 32.35± 0.31

KPCA [49, 15] 97.69± 0.02 17.66± 0.33 9.47± 0.19 33.66± 0.18

KGRP 97.90± 0.03 15.38± 0.28 7.40± 0.15 30.96± 0.21

KORP 97.90± 0.02 15.69± 0.28 7.62± 0.17 31.47± 0.17

KPCA-RP 97.89± 0.03 15.66± 0.33 7.59± 0.17 31.38± 0.23

Table 5: The clustering quality with variance (in %) measured by Rand Index (RI), Cluster

Purity (CP), F-Measure and Normalized Mutual Information (NMI) on BRODATZ dataset.

The best performance is in bold. We refer to Section 4.2 for further explanation of each

approach.

Methods/Measurements RI CP F-Measure NMI

Intrinsic [5] 92.29±0.00 79.05±0.00 74.20± 0.00 75.94± 0.00

SIS [63] 91.42±0.00 76.99±0.00 69.68± 0.00 72.84± 0.00

LogE [13] 92.04±0.78 78.34±2.34 74.10± 2.10 76.13± 1.45

Kernel K-means [2, 15] 93.15±0.95 81.40±2.75 75.62± 2.13 78.19± 1.83

KPCA [49, 15] 93.89±0.22 82.60±1.14 76.64± 0.66 79.44± 0.57

KGRP 93.47±0.78 82.22±2.34 75.84± 1.82 78.49± 1.49

KORP 93.66±0.77 82.58±2.32 76.30± 1.81 79.11± 1.50

KPCA-RP 93.77±0.84 82.81±2.49 76.39± 1.93 79.16± 1.56

23

Table 6: The clustering quality with variance (in %) measured by Rand Index (RI), Cluster

Purity (CP), F-Measure and Normalized Mutual Information (NMI) on KTH-TIPS2b dataset.

The best performance is in bold. We refer to Section 4.2 for further explanation of each

approach.

Methods/Measurements RI CP F-Measure NMI

Intrinsic [5] 86.99±0.00 49.45±0.00 36.19± 0.00 44.20± 0.00

SIS [63] 80.81±0.00 41.62±0.00 44.45± 0.00 40.47± 0.00

LogE [13] 85.94±0.60 45.19±1.32 33.48± 1.01 40.69± 0.82

Kernel K-means [2, 15] 88.35±0.35 52.59±1.37 41.11± 1.01 51.08± 0.82

KPCA [49, 15] 88.48±0.40 53.38±1.53 41.22± 1.35 50.97± 0.90

KGRP 88.41±0.42 53.15±1.34 40.48± 0.99 49.87± 1.01

KORP 88.36±0.39 53.04±1.10 40.61± 0.93 50.06± 0.92

KPCA-RP 88.35±0.44 53.45±1.35 40.21± 0.91 49.97± 1.09

Table 7: The clustering quality with variance (in %) measured by Rand Index (RI), Cluster

Purity (CP), F-Measure and Normalized Mutual Information (NMI) on HEp-2 Cell ICIP2013

dataset. The best performance is in bold. We refer to Section 4.2 for further explanation of

each approach.

Methods/Measurements RI CP F-Measure NMI

Intrinsic [5] 73.96± 0.00 44.02± 0.00 35.69± 0.00 22.65± 0.00

SIS [63] 74.50± 0.00 39.50± 0.00 27.32± 0.00 18.01± 0.00

LogE [13] 74.80± 0.95 46.00± 2.37 34.75± 0.86 23.64± 1.29

Kernel K-means [2, 15] 73.96± 2.14 46.45± 3.30 37.29± 3.29 24.29± 1.95

KPCA [49, 15] 75.74± 2.87 48.48± 1.94 34.23± 2.20 25.29± 0.00

KGRP 75.72± 0.31 49.05± 1.10 34.83± 0.84 25.74± 0.82

KORP 75.63± 0.62 48.70± 2.34 34.73± 1.67 25.49± 1.72

KPCA-RP 75.72± 0.41 48.70± 2.56 34.48± 1.74 25.46± 1.93

K-means. Also, the performance of the proposed approaches is similar to each

other. These factors suggest that the proposed projection approaches possess

the JL-Type projection properties. Furthermore, we find that the proposed

approaches in some cases have markedly better performance than the Kernel K-540

means. One of the possible reasons could be that the random projection reduces

the eccentricity of original Gaussian-distributed clusters and make clusters in

projected spaces more spherical [64].

Intrinsic K-means gives us reasonable results as it directly works on manifold

space. Compared to the intrinsic approach, LogE has a worse performance in545

24

0

10

20

30

40

50

60

70

80

90

0.25 0.5 2 8 32 128 256 512 1024

C
lu

st
er

in
g

p
er

fo
rm

an
ce

 (
in

 %
)

Values of β

RI CP F-Measure NMI

Figure 5: Clustering quality of the proposed KPCA-RP when the kernel parameter β was

varied on the Ballet dataset. The clustering quality is measured by: Rand Index (RI), Cluster

Purity (CP), F-Measure and Normalized Mutual Information (NMI).

most of datasets. An exception is on the Ballet dataset where the intrinsic

approach has a worse Rand Index than the LogE. We conjecture that this is

caused by the failure of the intrinsic algorithm to converge in 100 iterations.

Nevertheless, the other performance metrics such as CP, F-Measure and NMI

for the intrinsic approach in this dataset still show reasonable performance.550

The worse performance for LogE is due to significant distortion of the pairwise

distance produced when the points are projected into a tangent space. The

G-clustering has a better Rand Index than the intrinsic approach in the Ballet

dataset, which is a similar conclusion drawn in the original work proposing

the approach [21]. Note that the measurements for clustering performance are555

different from that in [21]. In most cases, the G-clustering is not robust as the

performance of G-clustering measured by CP, F-measure and NMI is usually

low. In addition, we do not report the G-clustering results for the UCF101

dataset, as the K-means does not converge within a specified amount of time.

We found the performance of our proposed methods does not change signif-560

icantly, when the parameters are varied. Figures 5 and 6 show two examples

of the clustering results of KPCA-RP and KORP with different parameters on

the Ballet and HEp-2 Cell ICIP2013 dataset, respectively. We note that the

results on the other datasets also exhibit similar trends. This suggests that the

issue raised in [23], where different parameters may adversely alter the kernel565

space, may not have significant effect on our work. We conjecture that this

25

0

10

20

30

40

50

60

70

80

0.5 1 1.5 2 2.5

C
lu

st
er

in
g

p
er

fo
rm

an
ce

 (
in

 %
)

Values of β
RI CP F-Measure NMI

Figure 6: Clustering quality of the proposed KORP when the parameter β is varied on the

HEp-2 Cell ICIP2013 dataset. The clustering quality is measured by: Rand Index (RI),

Cluster Purity (CP), F-Measure and Normalized Mutual Information (NMI).

might be due to the selected manifold kernels crafted to capture the manifold

intrinsic structure. However, if in the case where the parameter choice of the

manifold kernel significantly contributes to the clustering results, one could use

a randomly selected small subset of data to perform the parameter search.570

The evaluation has clearly shown that our proposal has similar performance

to the kernel methods such as KPCA K-means and Kernel K-means. Indeed,

these results alone do not give us much advantage over the other methods.

However, we now present the main advantage of our proposal which is a direct

consequence of applying random projection.575

4.4. Run Time Comparative Analysis

Table 8 presents the average run time of the individual approach on each

dataset. One of the striking observations from this table is that our proposed ap-

proaches have very fast run times. In some cases (i.e. Ballet, UCSD and UCF101

datasets) they outperform the LogE which is expected to be the fastest method.580

The bottleneck suffered by LogE in these datasets is from the high dimension-

ality of the feature vectors significantly slowing the K-means algorithm. Note

that, although the run time of LogE on Brodatz, KTH-TIPS2b and HEp-2 Cell

ICIP2013 dataset is quicker than our proposed methods, the clustering quality

shown in Tables 5, 6 and 7 is much worse than that of ours.585

26

Table 8: The run time (in seconds) of the approaches on each dataset. Lower run time is

better. As in each iteration of K-means, the run time is extremely similar, we report the

average run time of each approach without variance. The datasets presented in the first three

columns (i.e. Ballet, UCSD and UCF101) are modelled in Grassmannian manifolds, whilst

the other three (i.e. Brodatz, KTH-TIPS2b and HEp-2 Cell ICIP2013 (shorten as Cell)) are

modelled in SPD manifolds. The last three rows are the proposed approaches. SIS and G-

clustering are only applicable for SPD manifolds and Grassmannian manifolds, respectively.

We refer to Section 4.2 for further explanation of each approach.

Methods/Dataset Ballet UCSD UCF101 Brodatz KTH-TIPS2b Cell

Intrinsic [5] 3966.49 1990.02 1.64× 105 24.63 938.95 564.49

SIS [63] N/A N/A N/A 4.77 60.43 185.81

LogE [13] 3.35 1.55 9088.11 0.15 4.85 2.32

G-clustering [21] 2.81 0.74 N/A N/A N/A N/A

Kernel K-means [2, 15] 1.06 0.70 2019.55 22.57 675.75 2172.87

KPCA [49, 15] 1.47 0.73 6.11× 104 22.42 699.34 2881.10

KGRP 0.51 0.53 238.64 7.08 14.61 21.95

KORP 0.58 0.49 101.87 7.03 11.75 17.73

KPCA-RP 0.60 0.49 102.79 7.75 12.28 17.73

The proposed approaches are considerably faster than the kernel approaches

such as KPCA K-means and Kernel K-means. This is because the proposed

approaches only compute the kernel matrix on a small subset of data points.

The benefit will become more pronounced for large datasets such as KTH-

TIPS2b, UCF101 and HEp-2 Cell ICIP2013 datasets where our proposed ap-590

proach achieves 57.5 (i.e. 675.75
11.75 ≈ 57.5), 19.8 (i.e. 2019.55

101.87 ≈ 19.8) and 122.5 times

(i.e. 2172.87
17.73 ≈ 112.5) speed up, respectively. Thus, the proposed approaches will

contribute significantly to the clustering of large amount of images or video data

for practical applications.

The speed up gained by the proposed approaches is attributed to the effect595

of applying random projection into a reduced projection space. The proposed

approaches also have additional advantages over the kernel approaches as they

do not need to compute the kernel matrix on the entire dataset.

In addition, we analyse the computational complexity of each method in

Table 9. In general, each method has two main steps: (1) Data pre-processing600

and (2) K-means steps. Data pre-processing may include kernel computation

and/or projection. Whilst, K-means step comprises cluster membership and

cluster mean computations. In Intrinsic K-means, the pre-processing step is

not required. To calculate mean of each cluster, one need to use the intrinsic

27

Table 9: Computational Complexity of the approaches on each dataset. The dimensionality

of SPD and Grassmannian points is d× d and q × d, respectively. For convenience, G is used

to represent Grassmannian manifold in this table. Note that: n is the number of points; m

is the number of clusters; ` is the number of iterations of K-means; `kar is the number of

iterations of Karcher mean; b is the dimensionality of the random projection space generated

by KGRP and p is the dimensionality of the random projection space generated by KORP

and KPCA-RP (p = |S|).

Compute Compute Compute Compute Overall

Kernel Projection Mean Membership Complexity

Intrinsic(SPD) [5] N/A N/A O(``karnd
3) O(`nmd3) O(``karnd

3 + `nmd3)

Intrinsic(G) [5] N/A N/A O(``karn(qd2 + d3)) O(`nm(qd2 + d3)) O((``karn+ `nm)(qd2 + d3))

SIS [63] N/A O(nd3) O(`nd2) O(`nmd3) O(`nmd3)

LogE(SPD) [13] N/A O(nd3) O(`nd2) O(`nmd2) O(nd3 + `nmd2)

LogE(G) [13] N/A O(nqd2) O(`nqd) O(`nmqd) O(nqd2 + `nmqd)

G-clustering [21] O(n2) O(n3) O(`n2) O(`n2m) O(n3 + `n2m)

Kernel K-means [2, 15] O(n2) N/A N/A O(`n2m) O(`n2m)

KPCA [49, 15] O(n2) O(n3) O(`n2) O(`n2m) O(n3 + `n2m)

KGRP O(np) O(p3 + np2) O(`npb) O(`nmb) O(np+ p3 + np2 + `nmb)

KORP O(np) O(p3 + np2) O(`np) O(`nmp) O(np+ p3 + np2 + `nmp)

KPCA-RP O(np) O(p3 + np2) O(`np) O(`nmp) O(np+ p3 + np2 + `nmp)

mean, denoted Karcher mean [10] that requires multiple iterations to converge.605

The intrinsic distance is also used for membership computation. For LogE,

each manifold point needs to be projected onto the Log-Euclidean space. This

projection is done once. Then, K-means is applied in the Log-Euclidean space.

The computational complexity of KPCA and Kernel K-means follows quadratic

and cubic growth, respectively. However, our proposed methods have linear610

growth, as the number of data points, n, is much bigger than the size of subset,

p. This further corroborates the results presented in Table 8.

4.5. Further Analysis

In this section, we analyse the parameters contributing to the performance

and run time of the proposed methods. Due to space limitations, we only show615

the performance measured by RI and CP. Note that the performance measured

by F-Measure and NMI also follows the same trends. An obvious parameter

is the projected space dimensionality, k. When k is small, each data point

will be represented in a much smaller feature vector, resulting in faster K-

means clustering processes. Another parameter is |S|, the size of set S which620

determines the run time of the kernel matrix computation. As |S| gets larger,

it takes longer to compute the kernel matrix. Smaller |S| gives more advantage

to the proposed methods over the kernel approaches such as Kernel K-means

28

81

82

83

84

85

86

87

88

89

0.1 0.2 0.4 0.6 1.0 2.0 5.0 10.0 20.0 40.0 80.0 100.0

R
an

dK
In

de
xK

Gi
nK

b
C

SizeKofKSKinKproportionKtoKtheKentireKKTH-TIPS2bKdatasetKGinKbC

KORP KGRP KPCA-RP

Figure 7: The Rand Index (in %) of the proposed approaches when the size of set S is

progressively increased on the KTH-TIPS2b dataset. KGRP: Kernelised Gaussian Random

Projection; KORP: Kernelised Orthonormal Random Projection; KPCA-RP: Kernel PCA

based Random Projection.

0

10

20

30

40

50

60

0.1 0.2 0.4 0.6 1.0 2.0 5.0 10.0 20.0 40.0 80.0 100.0

C
lu

st
er

TP
ur

ity
TR

in
Td

G

SizeTofTSTinTproportionTtoTtheTentireTKTH-TIPS2bTdatasetTRinTdG

KORP KGRP KPCA-RP

Figure 8: The Cluster Purity (in %) of the proposed approaches when the size of set S is

progressively increased on the KTH-TIPS2b dataset. KGRP: Kernelised Gaussian Random

Projection; KORP: Kernelised Orthonormal Random Projection; KPCA-RP: Kernel PCA

based Random Projection.

and KPCA that require kernel computation on the entire data points. We note

that k and |S| have an interesting relationship. More precisely, for KORP and625

KPCA-RP, |S| determines the projected space dimensionality, k. Therefore, it

is desirable to make |S| as small as possible whilst still preserving as much of

the pairwise distance.

29

In contrast to KORP and KPCA-RP, KGRP separates the projected space

dimensionality to |S|. Nevertheless, we found that |S| still plays an important630

role in the overall system performance. To verify this, we vary |S| on the KTH-

TIPS2b. As we can see from Figures 7 and 8, the performance of the proposed

approaches increases as |S| is progressively increased. The performance increase

stops when |S| reaches a particular value. In this analysis we also found that

the performance of KORP and KPCA-RP is markedly better than KGRP when635

|S| is considerably small. A possible reason is that the CLT requires the set

S to have a minimum number of elements (normally 30) in order to make the

theorem applicable.

The above observation suggests the following facts about |S|: (1) |S| de-

termines the run time for all the proposed approaches (i.e. on the kernel com-640

putation); (2) |S| also contributes to the K-means run time for KORP and

KPCA-RP; (3) the lower bound of |S| in the KGRP is related to the lower

bound of the CLT and (4) the lower bound of |S| for KORP and KPCA-RP is

related to the lower bound of k.

The JL-Lemma relates k to the total number of data points, n (refer to645

Lemma 3.1). This relationship seems unfavourable for KORP and KPCA-RP

as this would mean |S| increases as n increases. Fortunately, Lemma 3.3 and

Theorem 3.5 suggest that k is related to the margin between classes. This

means that we now need only consider the separating margin to select |S|.
To further corroborate this empirically, we apply the proposed approaches by650

varying the dataset size of the KTH-TIPS2b. We assume that the margin

is relatively unchanged though the dataset size is varied. More precisely, we

first fix |S| for each proposed approach. Then we randomly select the data

points from the KTH-TIPS2b to create a smaller version of the dataset. The

proposed approaches are applied on these smaller subsets of the dataset. Note655

that although |S| is fixed, we still select the elements of S from the given subset.

The results shown in Figures 9 and 10 suggest that the proposed approaches

still have on par performance with both Kernel K-means and KPCA K-means,

suggesting that |S| relates to the margin separation between classes.

5. Conclusions and Future Directions660

Clustering over Riemannian manifolds plays an important role in the auto-

matic analysis of images and videos [5, 21]. As discussed before, in general, the

30

84

86

88

90

92

94

96

110 550 1100 2200 3300 4752

R
an

d
sI

n
d

ex
sO

in
sC

)

Numbersofsdataspoints

KernelsK-means KPCA KGRP KORP KPCA-RP

Figure 9: The Rand Index (in %) of the proposed approaches, Kernel K-Means and KPCA

applied on subsets of KTH-TIPS2b with various sizes. We fix |S| for all subsets.

0

10

20

30

40

50

60

70

80

90

110 550 1100 2200 3300 4752

C
lu

st
er

aP
u

ri
ty

a(
in

aG
)

Numberaofadataapoints

KernelaK-means KPCA KGRP KORP KPCA-RP

Figure 10: The Cluster Purity (in %) of the proposed approaches, Kernel K-Means and KPCA

applied on subsets of KTH-TIPS2b with various sizes. We fix |S| for all subsets.

existing methods suffer from either poor performance or high computational

complexity. In this paper, we propose a novel framework with random pro-

jection to tackle the clustering problems over Riemannian manifolds. Based665

on the framework, we present three random projection methods for manifold

points: KGRP, KORP and KPCA-RP. Through experiments on several com-

puter vision applications, we demonstrate that our proposed framework achieves

significant speed increases while maintaining clustering performance in compar-

ison to the other conventional methods such Kernel K-means. Furthermore,670

we analyse the parameters that impact the performance and run time of our

proposed methods.

In the proposed framework, we carry out random projection for manifold

31

points with the aid of RKHS. In other words, we first project manifold points

into RKHS. One promising future direction is to study the intrinsic random675

projection, which directly maps manifold points into the random projection

space. To this end, one needs to define the notions of projection and hyperplane

generation process in the manifold space.

Acknowledgements

The authors thank Danny Smith for his helpful suggestions and comments to680

improve the paper. They also thank the anonymous reviewers for their insight

and guidance on improving this manuscript. This research was partly funded by

Sullivan Nicolaides Pathology, Australia and the Australian Research Council

(ARC) Linkage Projects Grant LP130100230.

References685

[1] A. K. Jain, Data clustering: 50 years beyond k-means, Pattern Recognition Let-

ters (PRL) 31 (8) (2010) 651–666.

[2] I. S. Dhillon, Y. Guan, B. Kulis, Kernel k-means: spectral clustering and normal-

ized cuts, in: Proceedings of the tenth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, 2004, pp. 551–556.690

[3] J. Bullas, 48 significant social media facts, figures and statistics plus 7

infographics, http://www.jeffbullas.com/2012/04/23/48-significant-social-media-

facts-figures-and-statistics-plus-7-infographics/ (2012).

[4] https://www.youtube.com/yt/press/statistics.html, accessed on 2nd Nov. 2014.

[5] P. Turaga, A. Veeraraghavan, A. Srivastava, R. Chellappa, Statistical compu-695

tations on grassmann and stiefel manifolds for image and video-based recogni-

tion, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)

33 (2011) 2273–2286.

[6] M. T. Harandi, C. Sanderson, S. Shirazi, B. C. Lovell, Kernel analysis on grass-

mann manifolds for action recognition, PRL 34 (15) (2013) 1906–1915.700

[7] O. Tuzel, F. Porikli, P. Meer, Pedestrian detection via classification on riemannian

manifolds, PAMI 30 (10) (2008) 1713–1727.

[8] M. Filippone, F. Camastra, F. Masulli, S. Rovetta, A survey of kernel and spectral

methods for clustering, Pattern Recognition (PR) 41 (1) (2008) 176–190.

32

[9] X. Pennec, P. Fillard, N. Ayache, A riemannian framework for tensor computing,705

International Journal of Computer Vision (IJCV) 66 (1) (2006) 41–66.

[10] X. Pennec, Intrinsic statistics on riemannian manifolds: Basic tools for geometric

measurements, Journal of Mathematical Imaging and Vision 25 (1) (2006) 127–

154.

[11] C. H. Suryanto, H. Saigo, K. Fukui, Protein clustering on a grassmann manifold,710

in: Pattern Recognition in Bioinformatics, 2012, pp. 71–81.

[12] M. Faraki, M. Palhang, C. Sanderson, Log-euclidean bag of words for human

action recognition, in: IET Computer Vision(in press), 2014.

[13] M. Faraki, M. T. Harandi, A. Wiliem, B. C. Lovell, Fisher tensors for classifying

human epithelial cells, PR 47 (7) (2014) 2348–2359.715

[14] C. Yuan, W. Hu, X. Li, S. Maybank, G. Luo, Human action recognition under log-

euclidean riemannian metric, in: Asian Conference on Computer Vision (ACCV),

2010, pp. 343–353.

[15] S. Jayasumana, R. Hartley, M. Salzmann, H. Li, M. Harandi, Kernel methods on

the riemannian manifold of symmetric positive definite matrices, in: Computer720

Vision and Pattern Recognition (CVPR), 2013, pp. 73–80.

[16] S. Jayasumana, M. Salzmann, H. Li, M. Harandi, A framework for shape analysis

via hilbert space embedding, in: International Conference on Computer Vision

(ICCV), 2013, pp. 1249–1256.

[17] M. T. Harandi, M. Salzmann, S. Jayasumana, R. Hartley, H. Li, Expanding725

the family of grassmannian kernels: An embedding perspective, in: European

Conference Computer Vision (ECCV), 2014, pp. 408–423.

[18] V. Arsigny, P. Fillard, X. Pennec, N. Ayache, Log-euclidean metrics for fast

and simple calculus on diffusion tensors, Magnetic Resonance in Medicine 56 (2)

(2006) 411–421.730

[19] J. Shawe-Taylor, N. Cristianini, Kernel methods for pattern analysis, Cambridge

University Press, 2004.

[20] A. Alavi, A. Wiliem, K. Zhao, B. C. Lovell, C. Sanderson, Random projections

on manifolds of symmetric positive definite matrices for image classification, in:

IEEE Winter Conference on the Applications of Computer Vision (WACV), 2014,735

pp. 301–308.

33

[21] S. Shirazi, M. T. Harandi, C. Sanderson, A. Alavi, B. C. Lovell, Clustering on

grassmann manifolds via kernel embedding with application to action analysis,

in: International Conference on Image Processing (ICIP), 2012, pp. 781–784.

[22] R. Caseiro, P. Martins, J. F. Henriques, F. S. Leite, J. Batista, Rolling riemannian740

manifolds to solve the multi-class classification problem, in: CVPR, 2013, pp. 41–

48.

[23] N. R. Pal, K. Sarkar, What and when can we gain from the kernel versions of

c-means algorithm?, IEEE Transactions on Fuzzy Systems 22 (2) (2014) 363–379.

[24] E. Bingham, H. Mannila, Random projection in dimensionality reduction: appli-745

cations to image and text data, in: Proceedings of the seventh ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2001, pp.

245–250.

[25] E. Kushilevitz, R. Ostrovsky, Y. Rabani, Efficient search for approximate nearest

neighbor in high dimensional spaces, SIAM Journal on Computing 30 (2) (2000)750

457–474.

[26] N. Goel, G. Bebis, A. Nefian, Face recognition experiments with random projec-

tion, in: Defense and Security, International Society for Optics and Photonics,

2005, pp. 426–437.

[27] D. Achlioptas, Database-friendly random projections: Johnson-lindenstrauss with755

binary coins, Journal of Computer and System Sciences 66 (4) (2003) 671–687.

[28] E. Elhamifar, R. Vidal, Sparse manifold clustering and embedding, in: Advances

in Neural Information Processing Systems, 2011, pp. 55–63.

[29] T. Lin, H. Zha, S. U. Lee, Riemannian manifold learning for nonlinear dimen-

sionality reduction, in: ECCV, 2006, pp. 44–55.760

[30] L. W. Tu, An introduction to manifolds, Vol. 200, Springer, 2008.

[31] J. Jost, J. Jost, Riemannian geometry and geometric analysis, Vol. 42005,

Springer, 2008.

[32] O. Tuzel, F. Porikli, P. Meer, Region covariance: A fast descriptor for detection

and classification, in: (ECCV), 2006, pp. 589–600.765

[33] S. Sra, Positive definite matrices and the s-divergence, in: SIAM Journal on

Matrix Analysis and Applications (SIMAX), 2013.

34

[34] Z. Wang, B. C. Vemuri, An affine invariant tensor dissimilarity measure and its

applications to tensor-valued image segmentation, in: CVPR, Vol. 1, 2004, pp.

I–228.770

[35] P.-A. Absil, R. Mahony, R. Sepulchre, Riemannian geometry of grassmann man-

ifolds with a view on algorithmic computation, Acta Applicandae Mathematica

80 (2) (2004) 199–220.

[36] J. Hamm, D. D. Lee, Grassmann discriminant analysis: a unifying view on

subspace-based learning, in: Proceedings of the 25th International Conference775

on Machine Learning (ICML), 2008, pp. 376–383.

[37] R. Vemulapalli, J. K. Pillai, R. Chellappa, Kernel learning for extrinsic classifi-

cation of manifold features, in: CVPR, 2013, pp. 1782–1789.

[38] S. S. Vempala, The random projection method, Vol. 65, American Mathematical

Soc., 2004.780

[39] A. Salaheldin, S. Maher, M. El Helw, Robust real-time tracking with diverse

ensembles and random projections, in: International Conference on Computer

Vision Workshops (ICCVW), 2013, pp. 112–120.

[40] W. B. Johnson, J. Lindenstrauss, Extensions of lipschitz mappings into a hilbert

space, Contemporary Mathematics 26 (189-206) (1984) 1.785

[41] P. Frankl, H. Maehara, The johnson-lindenstrauss lemma and the sphericity of

some graphs, Journal of Combinatorial Theory, Series B 44 (3) (1988) 355–362.

[42] R. I. Arriaga, S. Vempala, An algorithmic theory of learning: Robust concepts

and random projection, in: Proceedings of the 40th Annual Symposium on Foun-

dations of Computer Science, 1999, pp. 616–623.790

[43] P. Li, T. J. Hastie, K. W. Church, Very sparse random projections, in: Proceed-

ings of the 12th ACM SIGKDD International Conference on Knowledge Discovery

and Data mining, 2006, pp. 287–296.

[44] D. S. Watkins, Fundamentals of matrix computations, Vol. 64, John Wiley &

Sons, 2004.795

[45] C. Boutsidis, A. Zouzias, P. Drineas, Random projections for k-means clustering,

in: Advances in Neural Information Processing Systems, 2010, pp. 298–306.

[46] T. Sakai, A. Imiya, Fast spectral clustering with random projection and sampling,

in: Machine Learning and Data Mining in Pattern Recognition, 2009, pp. 372–

384.800

35

[47] J. Rice, Mathematical statistics and data analysis, Cengage Learning, 2006.

[48] R. O. Duda, P. E. Hart, D. G. Stork, Pattern classification, John Wiley & Sons,

2012.

[49] B. Schölkopf, A. Smola, K.-R. Müller, Nonlinear component analysis as a kernel

eigenvalue problem, Neural Computation 10 (5) (1998) 1299–1319.805

[50] B. Kulis, K. Grauman, Kernelized locality-sensitive hashing, PAMI 34 (6) (2012)

1092–1104.

[51] A. Blum, Random projection, margins, kernels, and feature-selection, in: Sub-

space, Latent Structure and Feature Selection, Springer, 2006, pp. 52–68.

[52] Q. Shi, S. Shen, R. Hill, A. van den Hengel, Is margin preserved after random810

projection?, in: ICML, 2012, pp. 591–598.

[53] Y. Wang, G. Mori, Human action recognition by semilatent topic models, PAMI

31 (10) (2009) 1762–1774.

[54] A. B. Chan, N. Vasconcelos, Probabilistic kernels for the classification of auto-

regressive visual processes, in: CVPR, Vol. 1, 2005, pp. 846–851.815

[55] K. Soomro, A. R. Zamir, M. Shah, Ucf101: A dataset of 101 human actions

classes from videos in the wild, CRCV-TR-12-01, 2012.

[56] T. Randen, J. H. Husoy, Filtering for texture classification: A comparative study,

PAMI 21 (4) (1999) 291–310.

[57] B. Caputo, E. Hayman, P. Mallikarjuna, Class-specific material categorisation,820

in: ICCV, Vol. 2, 2005, pp. 1597–1604.

[58] P. Hobson, B. C. Lovell, G. Percannella, M. Vento, A. Wiliem, Benchmarking

human epithelial type 2 interphase cells classification methods on a very large

dataset, Artificial Intelligence in Medicine, 2015.

[59] R. Sivalingam, D. Boley, V. Morellas, N. Papanikolopoulos, Tensor sparse coding825

for region covariances, in: ECCV, 2010, pp. 722–735.

[60] D. Tosato, M. Spera, M. Cristani, V. Murino, Characterizing humans on rieman-

nian manifolds, PAMI 35 (8) (2013) 1972–1984.

[61] A. Alavi, Y. Yang, M. Harandi, C. Sanderson, Multi-shot person re-identification

via relational stein divergence, in: ICIP, 2013, pp. 3542– 3546.830

36

[62] C. D. Manning, P. Raghavan, H. Schütze, Introduction to information retrieval,

Vol. 1, Cambridge University Press, 2008.

[63] X. Hong, H. Chang, S. Shan, X. Chen, W. Gao, Sigma set: A small second order

statistical region descriptor, in: CVPR, 2009, pp. 1802–1809.

[64] S. Dasgupta, Experiments with random projection, in: Proceedings of the Six-835

teenth conference on Uncertainty in artificial intelligence, 2000, pp. 143–151.

Kun Zhao received her MSc from University of Electronic Science and Technology

of China in 2013. Currently, she is a PhD student in The University of Queensland

(UQ). Her research interests are in the areas of computer vision, machine learning and

pattern recognition.840

Azadeh Alavi currently is a research fellow at University of Maryland. She

received her PhD from UQ in 2014. She obtained her Bachelor of Applied Mathematics

degree in 2002 and worked in industries for about 2 years before commencing her

Master of IT-advanced program (Research Stream) at Griffith University. Currently,

she is a research fellow at University of Maryland. Her interests are in the areas of845

machine learning, pattern recognition and image processing.

Arnold Wiliem is a research fellow at UQ. He received his PhD in 2010 from

Queensland University of Technology. He is a member of the IEEE and served as

reviewer in various computer vision venues. His current research interests are in the

areas of statistical methods in non-linear manifolds, machine learning and pattern850

recognition.

Brian Lovell received his PhD in 1991 from UQ. Professor Lovell is Director

of the Advanced Surveillance Group at UQ. He was President of the International

Association for Pattern Recognition (IAPR) [2008-2010], and is Fellow of the IAPR,

Senior Member of the IEEE. His interests include Biometrics, Nonlinear Manifold855

Learning, and Pattern Recognition.

37

