113 research outputs found

    Hamiltonian Cycles on Random Eulerian Triangulations

    Full text link
    A random Eulerian triangulation is a random triangulation where an even number of triangles meet at any given vertex. We argue that the central charge increases by one if the fully packed O(n) model is defined on a random Eulerian triangulation instead of an ordinary random triangulation. Considering the case n -> 0, this implies that the system of random Eulerian triangulations equipped with Hamiltonian cycles describes a c=-1 matter field coupled to 2D quantum gravity as opposed to the system of usual random triangulations equipped with Hamiltonian cycles which has c=-2. Hence, in this case one should see a change in the entropy exponent from the value gamma=-1 to the irrational value gamma=(-1-\sqrt{13})/6=-0.76759... when going from a usual random triangulation to an Eulerian one. A direct enumeration of configurations confirms this change in gamma.Comment: 22 pages, 9 figures, references and a comment adde

    Thoughts on Barnette's Conjecture

    Full text link
    We prove a new sufficient condition for a cubic 3-connected planar graph to be Hamiltonian. This condition is most easily described as a property of the dual graph. Let GG be a planar triangulation. Then the dual G∗G^* is a cubic 3-connected planar graph, and G∗G^* is bipartite if and only if GG is Eulerian. We prove that if the vertices of GG are (improperly) coloured blue and red, such that the blue vertices cover the faces of GG, there is no blue cycle, and every red cycle contains a vertex of degree at most 4, then G∗G^* is Hamiltonian. This result implies the following special case of Barnette's Conjecture: if GG is an Eulerian planar triangulation, whose vertices are properly coloured blue, red and green, such that every red-green cycle contains a vertex of degree 4, then G∗G^* is Hamiltonian. Our final result highlights the limitations of using a proper colouring of GG as a starting point for proving Barnette's Conjecture. We also explain related results on Barnette's Conjecture that were obtained by Kelmans and for which detailed self-contained proofs have not been published.Comment: 12 pages, 7 figure

    Ergodicity of the Wang--Swendsen--Koteck\'y algorithm on several classes of lattices on the torus

    Full text link
    We prove the ergodicity of the Wang--Swendsen--Koteck\'y (WSK) algorithm for the zero-temperature qq-state Potts antiferromagnet on several classes of lattices on the torus. In particular, the WSK algorithm is ergodic for q≥4q\ge 4 on any quadrangulation of the torus of girth ≥4\ge 4. It is also ergodic for q≥5q \ge 5 (resp. q≥3q \ge 3) on any Eulerian triangulation of the torus such that one sublattice consists of degree-4 vertices while the other two sublattices induce a quadrangulation of girth ≥4\ge 4 (resp.~a bipartite quadrangulation) of the torus. These classes include many lattices of interest in statistical mechanics.Comment: 27 pages, pdflatex, and 22 pdf figures. Corrected an error in Remark 4 after Theorem 4.4. Final versio

    Worm Monte Carlo study of the honeycomb-lattice loop model

    Full text link
    We present a Markov-chain Monte Carlo algorithm of "worm"type that correctly simulates the O(n) loop model on any (finite and connected) bipartite cubic graph, for any real n>0, and any edge weight, including the fully-packed limit of infinite edge weight. Furthermore, we prove rigorously that the algorithm is ergodic and has the correct stationary distribution. We emphasize that by using known exact mappings when n=2, this algorithm can be used to simulate a number of zero-temperature Potts antiferromagnets for which the Wang-Swendsen-Kotecky cluster algorithm is non-ergodic, including the 3-state model on the kagome-lattice and the 4-state model on the triangular-lattice. We then use this worm algorithm to perform a systematic study of the honeycomb-lattice loop model as a function of n<2, on the critical line and in the densely-packed and fully-packed phases. By comparing our numerical results with Coulomb gas theory, we identify the exact scaling exponents governing some fundamental geometric and dynamic observables. In particular, we show that for all n<2, the scaling of a certain return time in the worm dynamics is governed by the magnetic dimension of the loop model, thus providing a concrete dynamical interpretation of this exponent. The case n>2 is also considered, and we confirm the existence of a phase transition in the 3-state Potts universality class that was recently observed via numerical transfer matrix calculations.Comment: 33 pages, 12 figure

    Precoloring extension in planar near-Eulerian-triangulations

    Get PDF
    We consider the 4-precoloring extension problem in planar near-Eulerian- triangulations, i.e., plane graphs where all faces except possibly for the outer one have length three, all vertices not incident with the outer face have even degree, and exactly the vertices incident with the outer face are precolored. We give a necessary topological condition for the precoloring to extend, and give a complete characterization when the outer face has length at most five and when all vertices of the outer face have odd degree and are colored using only three colors
    • …
    corecore