12,227 research outputs found

    Universal targets for homomorphisms of edge-colored graphs

    Full text link
    A kk-edge-colored graph is a finite, simple graph with edges labeled by numbers 1,
,k1,\ldots,k. A function from the vertex set of one kk-edge-colored graph to another is a homomorphism if the endpoints of any edge are mapped to two different vertices connected by an edge of the same color. Given a class F\mathcal{F} of graphs, a kk-edge-colored graph H\mathbb{H} (not necessarily with the underlying graph in F\mathcal{F}) is kk-universal for F\mathcal{F} when any kk-edge-colored graph with the underlying graph in F\mathcal{F} admits a homomorphism to H\mathbb{H}. We characterize graph classes that admit kk-universal graphs. For such classes, we establish asymptotically almost tight bounds on the size of the smallest universal graph. For a nonempty graph GG, the density of GG is the maximum ratio of the number of edges to the number of vertices ranging over all nonempty subgraphs of GG. For a nonempty class F\mathcal{F} of graphs, D(F)D(\mathcal{F}) denotes the density of F\mathcal{F}, that is the supremum of densities of graphs in F\mathcal{F}. The main results are the following. The class F\mathcal{F} admits kk-universal graphs for k≄2k\geq2 if and only if there is an absolute constant that bounds the acyclic chromatic number of any graph in F\mathcal{F}. For any such class, there exists a constant cc, such that for any k≄2k \geq 2, the size of the smallest kk-universal graph is between kD(F)k^{D(\mathcal{F})} and ck⌈D(F)⌉ck^{\lceil D(\mathcal{F})\rceil}. A connection between the acyclic coloring and the existence of universal graphs was first observed by Alon and Marshall (Journal of Algebraic Combinatorics, 8(1):5-13, 1998). One of their results is that for planar graphs, the size of the smallest kk-universal graph is between k3+3k^3+3 and 5k45k^4. Our results yield that there exists a constant cc such that for all kk, this size is bounded from above by ck3ck^3

    Computing Homomorphisms in Hereditary Graph Classes: The Peculiar Case of the 5-Wheel and Graphs with No Long Claws

    Get PDF
    For graphs G and H, an H-coloring of G is an edge-preserving mapping from V(G) to V(H). In the H-Coloring problem the graph H is fixed and we ask whether an instance graph G admits an H-coloring. A generalization of this problem is H-ColoringExt, where some vertices of G are already mapped to vertices of H and we ask if this partial mapping can be extended to an H-coloring. We study the complexity of variants of H-Coloring in F-free graphs, i.e., graphs excluding a fixed graph F as an induced subgraph. For integers a,b,c ? 1, by S_{a,b,c} we denote the graph obtained by identifying one endvertex of three paths on a+1, b+1, and c+1 vertices, respectively. For odd k ? 5, by W_k we denote the graph obtained from the k-cycle by adding a universal vertex. As our main algorithmic result we show that W_5-ColoringExt is polynomial-time solvable in S_{2,1,1}-free graphs. This result exhibits an interesting non-monotonicity of H-ColoringExt with respect to taking induced subgraphs of H. Indeed, W_5 contains a triangle, and K_3-Coloring, i.e., classical 3-coloring, is NP-hard already in claw-free (i.e., S_{1,1,1}-free) graphs. Our algorithm is based on two main observations: 1) W_5-ColoringExt in S_{2,1,1}-free graphs can be in polynomial time reduced to a variant of the problem of finding an independent set intersecting all triangles, and 2) the latter problem can be solved in polynomial time in S_{2,1,1}-free graphs. We complement this algorithmic result with several negative ones. In particular, we show that W_5-Coloring is NP-hard in P_t-free graphs for some constant t and W_5-ColoringExt is NP-hard in S_{3,3,3}-free graphs of bounded degree. This is again uncommon, as usually problems that are NP-hard in S_{a,b,c}-free graphs for some constant a,b,c are already hard in claw-free graph

    Some Problems in Graph Coloring: Methods, Extensions and Results

    Get PDF
    The « Habilitation à Diriger des Recherches » is the occasion to look back on my research work since the end of my PhD thesis in 2006. I will not present all my results in this manuscript but a selection of them: this will be an overview of eleven papers which have been published in international journals or are submitted and which are included in annexes. These papers have been done with different coauthors: Marthe Bonamy, Daniel Gonçalves, Benjamin Lévêque, Amanda Montejano, Mickaël Montassier, Pascal Ochem, André Raspaud, Sagnik Sen and Éric Sopena. I would like to thanks them without whom this work would never have been possible. I also take this opportunity to thank all my other co-authors: Luigi Addario-Berry, François Dross, Louis Esperet, Frédéric Havet, Ross Kang, Daniel Král’, Colin McDiarmid, Michaël Rao, Jean-Sébastien Sereni and Stéphan Thomassé. Working with you is always a pleasure !Since the beginning of my PhD, I have been interested in various fields of graph theory, but the main topic that I work on is the graph coloring. In particular, I have studied problems such as the oriented coloring, the acyclic coloring, the signed coloring, the square coloring, . . . It is then natural that this manuscript gathers results on graph coloring. It is divided into three chapters. Each chapter is dedicated to a method of proof that I have been led to use for my research works and that has given results described in this manuscript. We will present each method, some extensions and the related results. The lemmas, theorems, and others which I took part are shaded in this manuscript.# The entropy compression method.In the first chapter, we present a recent tool dubbed the entropy compression method which is based on the Lovász Local Lemma. The Lovász Local Lemma was introduced in the 70’s to prove results on 3-chromatic hypergraphs [EL75]. It is a remarkably powerful probabilistic method to prove the existence of combinatorial objects satisfying a set of constraints expressed as a set of bad events which must not occur. However, one of the weakness of the Lovász Local Lemma is that it does not indicate how to efficiently avoid the bad events in practice.A recent breakthrough by Moser and Tardos [MT10] provides algorithmic version of the Lovász Local Lemma in quite general circumstances. To do so, they used a new species of monotonicity argument dubbed the entropy compression method. This Moser and Tardos’ result was really inspiring and Grytczuk, Kozik and Micek [GKM13] adapted the technique for a problem on combi- natorics on words. This nice adaptation seems to be applicable to coloring problems, but not only, whenever the Lovász Local Lemma is, with the benefits of providing better bounds. For example, the entropy compression method has been used to get bounds on non-repetitive coloring [DJKW14] that improve previous results using the Lovász Local Lemma and on acyclic-edge coloring [EP13].In this context, we developed a general framework that can be applied to most of coloring problems. We then applied this framework and we get the best known bounds, up to now, for the acyclic chromatic number of graphs with bounded degree, non-repetitive chromatic number of graphs with bounded degree, facial Thue chromatic index of planar graphs, ... We also applied the entropy compression method to problems on combinatorics on words: we recently solved an old conjecture on pattern avoidance.# Graph homomorphisms and graph coloringsIn this chapter, we present some notions of graph colorings from the point of view of graph homomorphisms. It is well-known that a proper k-coloring of a simple graph G corresponds to a homomorphism of G to Kk. Considering homomorphisms from a more general context, we get a natural extension of the classical notion of coloring. We present in this chapter the notion of homomorphism of (n,m)-colored mixed graphs (graphs with arcs of n different types and edges of m different types) and the related notions of coloring. This has been introduced by Nešetřil and Raspaud [NR00] in 2000 as a generalization of the classical notion of homomorphism. We then present two special cases, namely homomorphisms of (1, 0)-colored mixed graphs (which are known as oriented homomorphisms) and homomorphisms of (0,2)-colored mixed graphs (which are known as signed homomorphisms).While dealing with homomorphisms of graphs, one of the important tools is the notion of universal graphs: given a graph family F, a graph H is F-universal if each member of F admits a homomorphism to H. When H is F-universal, then the chromatic number of any member of F is upper-bounded by the number of vertices of H. We study some well-known families of universal graphs and we list their structural properties. Using these properties, we give some results on graph families such as bounded degree graphs, forests, partial k-trees, maximum average degree bounded graphs, planar graphs (with given girth), outerplanar graphs (with given girth), . . .Among others, we will present the Tromp construction which defines well known families of oriented and signed universal graphs. One of our major contributions is to study the properties of Tromp graphs and use them to get upper bounds for the oriented chromatic number and the signed chromatic number. In particular, up to now, we get the best upper bounds for the oriented chromatic number of planar graphs with girth 4 and 5: we get these bounds by showing that every graph of these two families admits an oriented homomorphism to some Tromp graph. We also get tight bounds for the signed chromatic number of several graph families, among which the family of partial 3-trees which admits a signed homomorphism to some Tromp graph.# Coloring the square of graphs with bounded maximum average degree using the discharging methodThe discharging method was introduced in the early 20th century, and is essentially known for being used by Appel, Haken and Kock [AH77, AHK77] in 1977 in order to prove the Four- Color-Theorem. More precisely, this technique is usually used to prove statements in structural graph theory, and it is commonly applied in the context of planar graphs and graphs with bounded maximum average degree.The principle is the following. Suppose that, given a set S of configurations, we want to prove that a graph G necessarily contains one of the configuration of S. We assign a charge ω to some elements of G. Using global information on the structure of G, we are able to compute the total sum of the charges ω(G). Then, assuming G does not contain any configuration from S, the discharging method redistributes the charges following some discharging rules (the discharging process ensures that no charge is lost and no charge is created). After the discharging process, we are able to compute the total sum of the new charges ω∗(G). We then get a contradiction by showing that ω(G) Ìž= ω∗(G).Initially, the discharging method was used as a local discharging method. This means that the discharging rules was designed so that an element redistributes its charge in its neighborhood. However, in certain cases, the whole graph contains enough charge but this charge can be arbitrarily far away from the elements that are negative. In the last decade, the global discharging method has been designed. This notion of global discharging was introduced by Borodin, Ivanova and Kostochka [BIK07]. A discharging method is global when we consider arbitrarily large structures and make some charges travel arbitrarily far along those structures. In some sense, these techniques of global discharging can be viewed as the start of the “second generation” of the discharging method, expanding its use to more difficult problems.The aim of this chapter is to present this method, in particular some progresses from the last decade, i.e. global discharging. To illustrate these progresses, we will consider the coloring of the square of graphs with bounded maximum average degree for which we obtained new results using the global discharging method. Coloring the square of a graph G consists to color its vertices so that two vertices at distance at most 2 get distinct colors (i.e. two adjacent vertices get distinct colors and two vertices sharing a common neighbor get distinct colors). This clearly corresponds to a proper coloring of the square of G. This coloring is called a 2-distance coloring. It is clear that we need at least ∆ + 1 colors for any 2-distance coloring since a vertex of degree ∆ together with its ∆ neighbors form a set of ∆ + 1 vertices which must get distinct colors. We investigate this coloring notion for graphs with bounded maximum average degree and we characterize two thresholds. We prove that, for sufficiently large ∆, graphs with maximum degree ∆ and maximum average degree less that 3 − epsilon (for any epsilon > 0) admit a 2-distance coloring with ∆ + 1 colors. For maximum average degree less that 4 − epsilon, we prove that ∆ + C colors are enough (where C is a constant not depending on ∆). Finally, for maximum average degree at least 4, it is already known that Câ€Č∆ colors are enough. Therefore, thresholds of 3 − epsilon and 4 − epsilon are tight

    Clique-cutsets beyond chordal graphs

    Get PDF
    Truemper configurations (thetas, pyramids, prisms, and wheels) have played an important role in the study of complex hereditary graph classes (eg, the class of perfect graphs and the class of even‐hole‐free graphs), appearing both as excluded configurations, and as configurations around which graphs can be decomposed. In this paper, we study the structure of graphs that contain (as induced subgraphs) no Truemper configurations other than (possibly) universal wheels and twin wheels. We also study several subclasses of this class. We use our structural results to analyze the complexity of the recognition, maximum weight clique, maximum weight stable set, and optimal vertex coloring problems for these classes. Furthermore, we obtain polynomial x-bounding functions for these classes

    An on-line competitive algorithm for coloring bipartite graphs without long induced paths

    Get PDF
    The existence of an on-line competitive algorithm for coloring bipartite graphs remains a tantalizing open problem. So far there are only partial positive results for bipartite graphs with certain small forbidden graphs as induced subgraphs. We propose a new on-line competitive coloring algorithm for P9P_9-free bipartite graphs
    • 

    corecore