5 research outputs found

    Coloring Graphs having Few Colorings over Path Decompositions

    Full text link
    Lokshtanov, Marx, and Saurabh SODA 2011 proved that there is no (kϵ)pw(G)poly(n)(k-\epsilon)^{\operatorname{pw}(G)}\operatorname{poly}(n) time algorithm for deciding if an nn-vertex graph GG with pathwidth pw(G)\operatorname{pw}(G) admits a proper vertex coloring with kk colors unless the Strong Exponential Time Hypothesis (SETH) is false. We show here that nevertheless, when k>Δ/2+1k>\lfloor \Delta/2 \rfloor + 1, where Δ\Delta is the maximum degree in the graph GG, there is a better algorithm, at least when there are few colorings. We present a Monte Carlo algorithm that given a graph GG along with a path decomposition of GG with pathwidth pw(G)\operatorname{pw}(G) runs in (Δ/2+1)pw(G)poly(n)s(\lfloor \Delta/2 \rfloor + 1)^{\operatorname{pw}(G)}\operatorname{poly}(n)s time, that distinguishes between kk-colorable graphs having at most ss proper kk-colorings and non-kk-colorable graphs. We also show how to obtain a kk-coloring in the same asymptotic running time. Our algorithm avoids violating SETH for one since high degree vertices still cost too much and the mentioned hardness construction uses a lot of them. We exploit a new variation of the famous Alon--Tarsi theorem that has an algorithmic advantage over the original form. The original theorem shows a graph has an orientation with outdegree less than kk at every vertex, with a different number of odd and even Eulerian subgraphs only if the graph is kk-colorable, but there is no known way of efficiently finding such an orientation. Our new form shows that if we instead count another difference of even and odd subgraphs meeting modular degree constraints at every vertex picked uniformly at random, we have a fair chance of getting a non-zero value if the graph has few kk-colorings. Yet every non-kk-colorable graph gives a zero difference, so a random set of constraints stands a good chance of being useful for separating the two cases.Comment: Strengthened result from uniquely kk-colorable graphs to graphs with few kk-colorings. Also improved running tim

    Coloring Graphs Having Few Colorings Over Path Decompositions

    Get PDF
    Lokshtanov, Marx, and Saurabh SODA 2011 proved that there is no (k-epsilon)^pw(G)poly(n) time algorithm for deciding if an n-vertex graph G with pathwidth pw admits a proper vertex coloring with k colors unless the Strong Exponential Time Hypothesis (SETH) is false, for any constant epsilon>0. We show here that nevertheless, when k>lfloor Delta/2 rfloor + 1, where Delta is the maximum degree in the graph G, there is a better algorithm, at least when there are few colorings. We present a Monte Carlo algorithm that given a graph G along with a path decomposition of G with pathwidth pw(G) runs in (lfloor Delta/2 rfloor + 1)^pw(G)poly(n)s time, that distinguishes between k-colorable graphs having at most s proper k-colorings and non-k-colorable graphs. We also show how to obtain a k-coloring in the same asymptotic running time. Our algorithm avoids violating SETH for one since high degree vertices still cost too much and the mentioned hardness construction uses a lot of them. We exploit a new variation of the famous Alon--Tarsi theorem that has an algorithmic advantage over the original form. The original theorem shows a graph has an orientation with outdegree less than k at every vertex, with a different number of odd and even Eulerian subgraphs only if the graph is k-colorable, but there is no known way of efficiently finding such an orientation. Our new form shows that if we instead count another difference of even and odd subgraphs meeting modular degree constraints at every vertex picked uniformly at random, we have a fair chance of getting a non-zero value if the graph has few k-colorings. Yet every non-k-colorable graph gives a zero difference, so a random set of constraints stands a good chance of being useful for separating the two cases

    Computing the Chromatic Number Using Graph Decompositions via Matrix Rank

    Get PDF
    Computing the smallest number qq such that the vertices of a given graph can be properly qq-colored is one of the oldest and most fundamental problems in combinatorial optimization. The qq-Coloring problem has been studied intensively using the framework of parameterized algorithmics, resulting in a very good understanding of the best-possible algorithms for several parameterizations based on the structure of the graph. While there is an abundance of work for parameterizations based on decompositions of the graph by vertex separators, almost nothing is known about parameterizations based on edge separators. We fill this gap by studying qq-Coloring parameterized by cutwidth, and parameterized by pathwidth in bounded-degree graphs. Our research uncovers interesting new ways to exploit small edge separators. We present two algorithms for qq-Coloring parameterized by cutwidth cutwcutw: a deterministic one that runs in time O(2ωcutw)O^*(2^{\omega \cdot cutw}), where ω\omega is the matrix multiplication constant, and a randomized one with runtime O(2cutw)O^*(2^{cutw}). In sharp contrast to earlier work, the running time is independent of qq. The dependence on cutwidth is optimal: we prove that even 3-Coloring cannot be solved in O((2ε)cutw)O^*((2-\varepsilon)^{cutw}) time assuming the Strong Exponential Time Hypothesis (SETH). Our algorithms rely on a new rank bound for a matrix that describes compatible colorings. Combined with a simple communication protocol for evaluating a product of two polynomials, this also yields an O((d/2+1)pw)O^*((\lfloor d/2\rfloor+1)^{pw}) time randomized algorithm for qq-Coloring on graphs of pathwidth pwpw and maximum degree dd. Such a runtime was first obtained by Bj\"orklund, but only for graphs with few proper colorings. We also prove that this result is optimal in the sense that no O((d/2+1ε)pw)O^*((\lfloor d/2\rfloor+1-\varepsilon)^{pw})-time algorithm exists assuming SETH.Comment: 29 pages. An extended abstract appears in the proceedings of the 26th Annual European Symposium on Algorithms, ESA 201

    Coloring Graphs Having Few Colorings Over Path Decompositions

    No full text
    Lokshtanov, Marx, and Saurabh SODA 2011 proved that there is no (k-epsilon)^pw(G)poly(n) time algorithm for deciding if an n-vertex graph G with pathwidth pw admits a proper vertex coloring with k colors unless the Strong Exponential Time Hypothesis (SETH) is false, for any constant epsilon>0. We show here that nevertheless, when k>lfloor Delta/2 rfloor + 1, where Delta is the maximum degree in the graph G, there is a better algorithm, at least when there are few colorings. We present a Monte Carlo algorithm that given a graph G along with a path decomposition of G with pathwidth pw(G) runs in (lfloor Delta/2 rfloor + 1)^pw(G)poly(n)s time, that distinguishes between k-colorable graphs having at most s proper k-colorings and non-k-colorable graphs. We also show how to obtain a k-coloring in the same asymptotic running time. Our algorithm avoids violating SETH for one since high degree vertices still cost too much and the mentioned hardness construction uses a lot of them. We exploit a new variation of the famous Alon--Tarsi theorem that has an algorithmic advantage over the original form. The original theorem shows a graph has an orientation with outdegree less than k at every vertex, with a different number of odd and even Eulerian subgraphs only if the graph is k-colorable, but there is no known way of efficiently finding such an orientation. Our new form shows that if we instead count another difference of even and odd subgraphs meeting modular degree constraints at every vertex picked uniformly at random, we have a fair chance of getting a non-zero value if the graph has few k-colorings. Yet every non-k-colorable graph gives a zero difference, so a random set of constraints stands a good chance of being useful for separating the two cases

    15th Scandinavian Symposium and Workshops on Algorithm Theory: SWAT 2016, June 22-24, 2016, Reykjavik, Iceland

    Get PDF
    corecore