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Abstract
Lokshtanov, Marx, and Saurabh SODA 2011 proved that there is no (k − ε)pw(G) poly(n) time
algorithm for deciding if an n-vertex graph G with pathwidth pw(G) admits a proper vertex
coloring with k colors unless the Strong Exponential Time Hypothesis (SETH) is false, for any
constant ε > 0. We show here that nevertheless, when k > b∆/2c+ 1, where ∆ is the maximum
degree in the graph G, there is a better algorithm, at least when there are few colorings. We
present a Monte Carlo algorithm that given a graph G along with a path decomposition of G with
pathwidth pw(G) runs in (b∆/2c+ 1)pw(G) poly(n)s time, that distinguishes between k-colorable
graphs having at most s proper k-colorings and non-k-colorable graphs. We also show how to
obtain a k-coloring in the same asymptotic running time. Our algorithm avoids violating SETH
for one since high degree vertices still cost too much and the mentioned hardness construction
uses a lot of them.

We exploit a new variation of the famous Alon–Tarsi theorem that has an algorithmic advant-
age over the original form. The original theorem shows a graph has an orientation with outdegree
less than k at every vertex, with a different number of odd and even Eulerian subgraphs only if
the graph is k-colorable, but there is no known way of efficiently finding such an orientation. Our
new form shows that if we instead count another difference of even and odd subgraphs meeting
modular degree constraints at every vertex picked uniformly at random, we have a fair chance
of getting a non-zero value if the graph has few k-colorings. Yet every non-k-colorable graph
gives a zero difference, so a random set of constraints stands a good chance of being useful for
separating the two cases.
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1 Introduction

One of the classical NP-hard problems on graphs is proper vertex k-coloring [14]: can you
color the vertices from a palette of k colors such that each pair of vertices connected by an
edge are colored differently? The problem has numerous applications in both theory and
practice, for instance to model resource allocation.

A well-known algorithmic technique to attack such a challenging task for many graphs is
to use dynamic programming over a graph decomposition. In this paper we consider one of
the most common ones, namely the path decomposition introduced in the seminal work on
graph minors by Robertson and Seymour [17]. Lokshtanov, Marx, and Saurabh [15] proved
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that there cannot exist a (k − ε)pw(G) poly(n) time algorithm for deciding if an n-vertex
graph G with pathwidth pw(G) admits a proper vertex k-coloring for any ε > 0 unless the
Strong Exponential Time Hypothesis is false. Actually, they state their result in terms of
the more general concept treewidth, but the result holds as well for pathwidth as pointed
out in their Theorem 6.1 1. The Strong Exponential Time Hypothesis (SETH) [12] says that
s∞ = 1, where sk is the infimum of all real values r for which there exists a O(2rn) time
algorithm that solves any n-variate k-SAT given in conjunctive normal form. In recent years
many problems have been proven having known algorithms that are optimal under SETH,
see e.g. [1, 3, 8, 15].

Indeed, for k-coloring nothing better than the natural kpw(G) poly(n) time algorithm
that explicitly keeps track of all ways to color the presently active vertices is known for
general graphs. However, the hardness construction from the result mentioned above uses
many vertices of high degree and it would be interesting to understand to what extent
this is necessary to enforce such strong lower bounds. To be precise, we believe that the
conditional lower bound is strong evidence that there are no general k-coloring algorithm
running significantly faster than the natural algorithm. Still, given that graph coloring is
such an important topic that there are whole books devoted to the subject, e.g. [13], even
small algorithmic improvements where none were found for decades may be worth noting.

To this end we consider coloring bounded degree graphs with many colors. If the maximum
degree in the graph is ∆, it is trivial to find a (∆ + 1)-coloring by just coloring the vertices
greedily in an arbitrary order. By Brook’s theorem [6], one can also decide if there is a
∆-coloring in polynomial time. Reed [16] goes even further and shows that for large enough
∆, whenever there is no ∆-clique, there is a (∆ − 1)-coloring. In general though, this is
already a difficult coloring problem as it is NP-hard to 3-color a graph of maximum degree 4
(follows from taking the line graph of the construction in [11]).

We present in this paper an algorithm that is faster than the natural one when the
number of colors k ≥ b∆/2c+ 1. However, we also need that the number of k-colorings isn’t
too large as our algorithm gets slower the more solutions there are. This counterintuitive
behavior is symptomatic for the type of algorithm we use: we indirectly compute a fixed
linear combination of all solutions and see if the result is non-zero. As the number of
solutions increases, the number of ways that the solutions can annihilate each other also
grows. Another example of such an algorithm (for directed Hamiltonian cycles) was recently
given in [5].

Still, already the class of uniquely k-colorable graphs is a rich and interesting one [18].
One might suspect that it could be easier to find unique solutions. However, there are
parsimonious reductions from Satisfiability to 3-coloring [4] (up to permutations of the
colors), and we know that unique Satisfiability isn’t easier than the general case [7], so it
cannot be too much easier. In particular, we still should expect it to take exponential time.

[10] uses ideas related to the present work to algebraically classify uniquely colorable
graphs. The proposed means to solve for them though involve computations of Gröbner bases,
which are known to be very slow in the worst case, and the paper does not discuss worst
case computational efficiency. Our contribution here is to find a variation of the Alon-Tarsi
theorem [2], reusing the idea from [10] to look at the graph polynomial in points of powers
of a primitive k:th root of unity, to get an efficient algorithm for solving a promise few
k-coloring problem in bounded degree graphs. Our main theorem says:

1 The Theorem says (3 − ε)pw(G) but it is a misprint, it should be (q − ε)pw(G) in their notation.
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I Theorem 1. For every undirected graph G, and path decomposition of G of pathwidth
pw(G), there is a (b∆/2c+ 1)pw(G) poly(n)s time Monte Carlo algorithm that outputs Yes
with constant non-zero probability if G is k-colorable but has at most s proper k-colorings,
and always outputs No if G is non-k-colorable.

This means that for k > b∆/2c + 1 and small s we improve exponentially over the
natural kpw(G) poly(n) time algorithm. Still it does not violate the Strong Exponential Time
Hypothesis lower bound from [15], since that construction uses Ω(n/ log k) vertices of degree
much larger than 2k.

By a simple self-reduction argument, we can also obtain a witness coloring for the
k-colorable graphs:

I Corollary 2. For every k-colorable graph G with s proper k-colorings, and a path decom-
position of G of pathwidth pw(G), we can find a k-coloring in (b∆/2c + 1)pw(G) poly(n)s
time, with constant non-zero probability.

1.1 The Alon–Tarsi theorem
Let G = (V,E) be an undirected graph, and let k be a positive integer. An orientation
of G is a directed graph D = (V,A) in which each edge uv ∈ E is given an orientation,
i.e. either uv or vu is in A but not both. Denote by δ+(A, v) and δ−(A, v) the out- and
indegree of the vertex v, respectively. A Eulerian subgraph of D is a subset A′ ⊆ A such
that δ+(A′, v) = δ−(A′, v) for all v ∈ V . Note that the notion of Eulerian here is somewhat
non-standard as it does not require the subgraph to be connected. The subgraph is even if
|A′| is even and odd otherwise. The theorem of Alon and Tarsi says

I Theorem 3 ([2]). If there is an orientation D = (V,A) of a graph G such that δ+(A, v) < k

for all vertices v ∈ V for some integer k, and the number of even and odd Eulerian subgraphs
of D differ, then G is k-colorable.

The theorem gives no promise in the other direction though, but Hefetz [9] proved that if G
is uniquely k-colorable with a minimal number of edges then there also exist orientations
meeting the criteria of the theorem. However, there are as far as we know no known ways
of efficiently finding such an orientation for a general uniquely k-colorable graph and hence
any successful algorithm for k-coloring based on computing the difference of the number of
even and odd Eulerian subgraphs for a fixed orientation seems aloof. Still, this is what our
algorithm does, albeit after relaxing Eulerian subgraphs to something broader.

1.2 Our Approach
We denote by [k] the set {0, 1, · · · , k − 1}. Let δ(A′, v) = δ+(A′, v)− δ−(A′, v), i.e. be equal
to the number of arcs in A′ outgoing from v minus the arcs incoming to v. For a vector
w ∈ [k]n, which we also think of as a function V → [k], a w-mod-k subgraph is a subgraph
with arc set A′ ⊆ A such that for all vertices v ∈ V , δ(A′, v) ≡ w(v)( mod k).

Our algorithm is centered around a quantity κk,w(A) that we define as the difference of
the number of even w-mod-k subgraphs and the number of odd ones.

Our main technical lemma that may be of independent combinatorial interest says:

I Lemma 4. Let an n-vertex graph G and positive integer k be given. If G has s proper
k-colorings, then for any fixed orientation A of the edges and a vector w ∈ [k]n chosen
uniformly at random, it holds that:

SWAT 2016
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1. P(κk,w(A) 6= 0) = 0 if s = 0,
2. P(κk,w(A) 6= 0) ≥ s−1 if s > 0.

Note that in this broad form the poor dependency on s is best possible: the empty
n-vertex graph has s = kn proper k-colorings but κk,w(∅) 6= 0 only for w = 0. Also note that
for a uniquely k-colorable graph s = k!, so this is the smallest non-zero s we can get.

We will prove the Lemma in Section 2. It immediately suggests an algorithm for separating
k-colorable graphs with few colorings from non-k-colorable graphs that we will use to prove
Theorem 1. The proof is in Section 3. The algorithm is:

Decide-k-Colorable
1. Pick any orientation A of the edges.
2. Repeat p(n, k)s times
3. Pick a vector w ∈ [k]n uniformly at random.
4. Compute κk,w(A).
5. Output yes if κk,w(A) 6= 0 for any w, otherwise output no.

The function p(n, k) depends on wether we just want to decide k-colorability or we also
want to use the algorithm as a subroutine to find a k-coloring. The values of the function are
set in Sec. 3.2 and 3.3, respectively. In step 4 we compute κk,w(A) over a path decomposition.
The key insight that makes this a faster algorithm than the natural one, is that we need to
keep a much smaller state space when we count the w-mod-k subgraphs than if we were to
keep track of all colors explicitly. For a fixed orientation and decomposition, the edges are
considered in a certain predetermined order during the execution of a path decomposition
dynamic programming. Hence we only need to store states that we know will stand the chance
to result in a w-mod-k subgraph. To exemplify, say we are to count w-mod-5 subgraphs and
a certain vertex v has w(v) = 1 and three incoming arcs and three outgoing arcs, and they
are considered in order + +−+−−, where + indicates an outgoing arc and − an incoming.
Now, when we have processed the first four of these, we only need to remember the partial
solutions A′ ⊆ A that has δ(A′, v) ∈ {1, 2, 3}. It is possible to form partial solutions with
δ(A′, v) ∈ {−1, 0} as well, but the remaining two incoming arcs could never compensate for
this imbalance to end up in a δ(A′′, v) ≡ 1(mod 5) final state for some A′′ ⊇ A′.

2 The Proof of Lemma 4

Let ω be a primitive k:th root of unity over the complex numbers. Consider an undirected
graph G = (V,E) on n vertices. For any directed graph D = (V,B) where uv ∈ E implies at
least one of uv and vu to be in B, and uv ∈ B implies uv ∈ E, we define a graph function
on any vertex coloring c : V → [k] as

fB(c) =
∏
uv∈B

(1− ωc(u)−c(v)).

Note that fB(c) 6= 0 if and only if c is a proper k-coloring of G. Our previously defined
difference κk,w(B) of w-mod-k subgraphs are related to fB through

I Lemma 5.

κk,w(B) = 1
kn

∑
c∈[k]n

(∏
v∈V

ω−w(v)c(v)

)
fB(c). (1)
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Proof. We first observe that the right side of Eq. 1 can be rewritten as a summation over
subgraphs by expanding the inner product, i.e.

1
kn

∑
c:V→[k]

∏
v∈V

ω−w(v)c(v)
∏
uv∈B

(1−ωc(u)−c(v)) = 1
kn

∑
B′⊆B

(−1)|B
′|
∑

c:V→[k]

∏
v∈V

ω(δ(B′,v)−w(v))c(v).

Consider a fixed subgraph B′ ⊆ B. It contributes the term

1
kn

(−1)|B
′|
∑

c:V→[k]

∏
v∈V

ω(δ(B′,v)−w(v))c(v).

First observe that if there is a u such that k6 |(δ(B′, u)− w(u)), then we can factor out u
from the expression to get

1
kn

(−1)|B
′|
∑
cu∈[k]

ω(δ(B′,u)−w(u))cu

∑
c:V \{u}→[k]

∏
v∈V \{u}

ω(δ(B′,v)−w(v))c(v).

Let l = δ(B′, u) − w(u) and note that (
∑
cu∈[k] ω

lcu)(1 − ωl) = (1 − ωlk) = 0. Since ω is
primitive and k6 |l we have that (1− ωl) is non-zero. We conclude that

∑
cu∈[k] ω

lcu = 0 and
that such B′ contributes zero to the right hand expression of Eq. 1.

Second when k|(δ(B′, v) − w(v)) for all v ∈ V , then the term
∏
v∈V ω

(δ(B′,v)−w(v))c(v)

equals 1 regardless of c since ω is a k:th root of unity. Hence such subgraphs B′ contributes
the value (−1)|B′| after the division by the factor kn to the right hand expression of Eq. 1.
We are left with

∑
w -mod- k subgraphB′⊆B(−1)|B′| as claimed. J

In particular it follows from the above lemma that if G is non-k-colorable, κk,w(B) = 0
for every w ∈ [k]n because fB(c) ≡ 0 in this case. Hence with B = A we have proved item a
in Lemma 4.

To prove item b of the Lemma, we will associate three directed graphs on n vertices with
G. First, let A be the fixed orientation of the edges in E in the formulation of the Lemma.
Second, let A be the reversal of A, i.e. for each arc uv ∈ A, vu ∈ A. Finally, let C = A ∪A.

I Lemma 6.

κk,0(C) =
∑

w∈[k]n

κk,w(A)2.

Proof. We first note that

κk,0(C) =
∑

w∈[k]n

κk,w(A)κk,−w(A).

This is true because any even 0-mod-k graph in C is either composed of an even w-mod-k
subgraph in A and an even (−w)-mod-k subgraph in A for some w, or is composed by two
odd ones. Similarly, an odd 0-mod-k subgraph in C is composed by an even-odd or odd-even
pair in A and A respectively for some w. Summing over all w we count all subgraphs. Next
we note that κk,w(A) = κk,−w(A) because δ(A, v) ≡ −δ(A, v)( mod k) for all v ∈ V . J

We will next use Lemma 5 to bound |κk,0(C)| and |κk,w(A)|. We have

I Lemma 7.

κk,0(C) = 1
kn

∑
c∈[k]n

|fA(c)|2.

SWAT 2016
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Proof. From Lemma 5 we have

κk,0(C) = 1
kn

∑
c∈[k]n

fC(c).

Since fC(c) = fA(c)fA(c) and fA(c) = fA(c), we have that fC(c) = |fA(c)|2 and the Lemma
follows. J

I Lemma 8.

|κk,w(A)| ≤ 1
kn

∑
c∈[k]n

|fA(c)|.

Proof. From Lemma 5 we have

|κk,w(A)| = 1
kn

∣∣∣∣∣∣
∑
c∈[k]n

(∏
v∈V

ω−w(v)c(v)

)
fA(c)

∣∣∣∣∣∣ .
Since∣∣∣∣∣∣

∑
c∈[k]n

(∏
v∈V

ω−w(v)c(v)

)
fA(c)

∣∣∣∣∣∣ ≤
∑
c∈[k]n

(∏
v∈V
|ω−w(v)c(v)|

)
|fA(c)|,

and |ω−w(v)c(v)| = 1 for every w(v), c(v), the Lemma follows. J

Combining Lemmas 6, 7, and 8, we get

1
kn

∑
c∈S
|fA(c)|2 ≤

∑
w∈T

(
1
kn

∑
c∈S
|fA(c)|

)2

.

Here S ⊆ [k]n is the set of proper k-colorings and T ⊆ [k]n is the set of good w’s, i.e. w ∈ T
if and only if κk,w(A) 6= 0. By assuming that s > 0 we can rewrite the above inequality as

|T | ≥
1
kn

∑
c∈S |fA(c)|2

1
k2n (

∑
c∈S |fA(c)|)2 ≥

kn

|S|
,

where the last inequality follows from Jensen’s inequality, ψ(
∑t
i=1 xi/t) ≤

∑t
i=1 ψ(xi)/t for

a convex function ψ. Dividing |T | by kn gives the claimed probability bound in item b of
Lemma 4. This concludes the proof of our main Lemma.

3 Details of the Algorithm

We will prove Theorem 1. We will first describe an algorithm that computes κk,w(A) efficiently
over a path decomposition and argue its correctness. Then we will prove Corollary 2 by
showing how one with polynomial overhead can obtain a witness k-coloring.

3.1 The Path Decomposition Algorithm
Given a directed graph H = (V,A) a path decomposition of H is a path graph P = (U,F )
where the vertices U = {u1, . . . , up} represent subsets of V called bags, and the edges F
simply connect ui with ui+1 for every i < p. Every vertex v ∈ V is associated with an
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interval Iv on {1, . . . , p} such that v ∈ ui iff i ∈ Iv. Furthermore, for each arc ab ∈ A, there
exists an i such that {a, b} ⊆ ui. We set r(ab) = i for the smallest such i. The pathwidth,
denoted pw(H), is the minimum over all path decompositions of G of maxi(|ui| − 1). In a
nice path decomposition, either a new vertex is added to ui to form ui+1, in which case we
call ui+1 an introduce bag, or a vertex is removed, in which case we call ui+1 a forget bag.
We can assume w.l.o.g. that we have a nice path decomposition since it is straightforward to
make any path decomposition nice by simply extending the path with enough bags.

We will see how one can compute κk,w(A) for a fixed orientation A over a path decompos-
ition in step 4 in the algorithm Decide-k-Colorable. We impose an ordering of the m arcs,
such that arc ai precedes ai+1 if r(ai) < r(ai+1) or r(ai) = r(ai+1) and ai is lexicographically
before ai+1. We will loop over the arcs in the above order, virtually moving over the bags
from u1 to up monotonically as necessary. For arc ai, we let Di,v for every vertex v ∈ ur(ai)
denote every possible modular degree difference δ(A′, v) mod k a vertex v can have in a
subgraph A′ ⊆ {aj : j ≤ i} such that there still are enough arcs in {aj : j > i} to form a
subgraph A′′, A ⊇ A′′ ⊇ A′ with k|(δ(A′′, v)−w(v)). In particular, every w-mod-k subgraph
A∗ must have δ(A∗ ∩ {aj : j ≤ i}, v) ∈ Di,v for every v ∈ ur(ai) and i.

I Lemma 9. For all i and v ∈ ur(ai),

|Di,v| ≤ b∆/2c+ 1.

Proof. Let Dbefore
i,v be the set of possible modular difference degrees δ(A′, v) mod k for

any A′ ⊆ {aj : j ≤ i}, and let Dafter
i,v be the set of possible negated difference degrees

(w(v)− δ(A′′, v)) mod k for any A′′ ⊆ {aj : j > i}. Observe that Di,v = Dbefore
i,v ∩Dafter

i,v . If
the number of arcs incident to v in {aj : j ≤ i} is dbefore

v , and the ones in {aj : j > i} is dafter
v ,

we have that |Dbefore
i,v | ≤ dbefore + 1 and |Dafter

i,v | ≤ dafter + 1 . Since ∆ ≥ dbefore
v + dafter

v , the
bound follows. J

Our algorithm tabulates for each possible modular degree difference in Di,v for each
v ∈ ur(ai), the difference of the number of even and odd subgraphs in {aj : j ≤ i} matching
the degree constraints on those vertices, while having modular degree difference equal to w(v)
on every vertex v that are forgotten by the algorithm, i.e. vertices v that were abandoned
in a forget bag uj for j < r(ai). That is, the complete state is described by a function
si : Di,v1 × · · · ×Di,vl

→ Z, where {v1, . . . , vl} = ur(ai), and where si for a specific difference
degree vector holds the above difference of the number of even and odd subgraphs. It is
easy to compute si+1 from si, since each point in si+1 depends on at most two points of si
(either we use the arc ai+1 in our partial w-mod-k subgraph, or we do not). To compute
the new value we just subtract the two old in reversed order, i.e. with an abuse of notation
si+1(d) = si(d) − si(d − ai+1). We initialize s0 to all-zero except for s0(0) = 1 since the
empty subgraph is an even 0-mod-k subgraph. We store si in an array sorted after the
lexicographically order on the (Cartesian product) keys which allows for quick access when
we construct si+1. We only need to precompute Di,v for all i and v which is easily done in
polynomial time, in order to see what modular degree differences to consider for si+1 and
what is stored in the previous function table si. Once we have computed sm, we can read off
κk,w(A) from sm(w).

3.2 Runtime and Correctness Analysis
We finish the proof of Theorem 1. It follows from the bound in Lemma 9 that step 4 of the
algorithm takes (b∆/2c+ 1)pw(G) poly(n) time. It is executed p(n, k)s times so that we in

SWAT 2016
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expectation sample p(n, k) good w’s for which κk,w(A) 6= 0 for k-colorable graphs having at
most s proper k-colorings, as seen from item b in Lemma 4. From Markov’s inequality, the
probability of false negatives is at most 1

p(n,k) . Thus already p(n, k) = 2 will do. From item
a in Lemma 4 the probability of false positives is zero.

3.3 Coloring a Graph
We proceed with the proof of Corollary 2. The idea for recovering a witness k-coloring is to
use self-reduction, i.e. to use algorithm Decide-k-Colorable many times for several graphs
obtained by modifying G so as to gradually learn more and more of the vertices’ colors. We
will learn a coloring one color a time. That is, we will find a maximal subset of the vertices
that can be colored in one color so that the remaining graph can be colored by the remaining
k − 1 colors.

For every subset S ⊆ V of the vertices that form an independent set in G, we let GS be
the graph obtained by collapsing all vertices in S into a single supervertex vS that retain all
edges that goes to S in the original graph. Note that the number of colorings cannot increase
by the contraction, and the degree is only increased for the newly formed vertex vS , the rest
of the graph is intact. Also note that the path width increases by at most one, since removing
vS from the graph leaves a subgraph of G. We use algorithm Decide-k-Colorable on GS
as a subroutine and note that the runtime is at most a factor k larger than it was on G due
to the supervertex vS that now may be in all bags and we need to keep track of all modular
degree differences for this vertex. Our algorithm for extracting a color class is:

Find-Maximal-Color-Class
1. Let S = v1.
2. For every vertex u ∈ V \ v1,
3. If S ∪ u is an independent set and Decide-k-Colorable(GS∪{u}) returns Yes,
4. Let S = S ∪ {u}.
5. Return S.

With p(n, k) = 2nk we get the true verdict on all queried graphs with probability at
least 1 − 1

2k . Once we have found a maximal color class S, we can continue coloring the
induced subgraph G[V \ S] which is (k − 1)-colorable by extracting a second color class and
so on. We note that neither the maximum degree, pathwidth, or number of proper colorings
can increase in an induced subgraph. In particular, a path decomposition for G[V \ S] of
pathwidth at most pw(G) can be readily obtained from the given path decomposition for G
by just omitting the removed vertices and edges. By the union bound, with probability at
least 1

2 we correctly extract all k color classes.

4 Improvements and Limitations

The striking dependence on s in Theorem 1 is at least in part due to the poor uniform
sampling employed. For many w’s κk,w(A) is zero for a trivial reason, namely that there are
no w-mod-k subgraphs at all. A better idea would be to try to sample uniformly over all w’s
that has at least one w-mod-k-subgraph. We don’t know how to do that, but it is probably
still better to sample non-uniformly over this subset of good w’s by uniformly picking a
subgraph of G, and letting w be given by the degree differences of that subgraph. However,
we can give an example of graphs where even a uniform sampling over the attainable w’s will
require running time that grows with s. Our construction is very simple, we just consider the
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graph consisting of n/3 disjoint triangles. Let A be an orientation such that each vertex has
one incoming and one outgoing arc. Then, the number of attainable w’s is 7n/3 since every
non-empty subset of the three arcs in a triangle gives a unique modular degree difference. The
number of w’s that give a non-zero κ3,w(A) is just 6n/3 which can be seen by inspecting each
of the 7 attainable w’s for a triangle, and noting that κk,w(A′ ∪ A”) = κk,w′(A′)κk,w”(A”)
for vertex-disjoint arc subsets A′ and A”. The number of 3-colorings s is also 6n/3, so with
probability s−0.086 we pick a w that has κ3,w(A) 6= 0. While being a great improvement over
s−1, it still demonstrates a severe limitation of the technique presented in this paper when
there are many solutions.
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