
Computing the Chromatic Number Using Graph
Decompositions via Matrix Rank

Bart M. P. Jansen1

Eindhoven University of Technology, Eindhoven, The Netherlands
b.m.p.jansen@tue.nl

Jesper Nederlof2

Eindhoven University of Technology, Eindhoven, The Netherlands
j.nederlof@tue.nl

Abstract
Computing the smallest number q such that the vertices of a given graph can be properly q-
colored is one of the oldest and most fundamental problems in combinatorial optimization. The
q-Coloring problem has been studied intensively using the framework of parameterized al-
gorithmics, resulting in a very good understanding of the best-possible algorithms for several
parameterizations based on the structure of the graph. For example, algorithms are known to
solve the problem on graphs of treewidth tw in time O∗(qtw), while a running time of O∗((q−ε)tw)
is impossible assuming the Strong Exponential Time Hypothesis (SETH). While there is an abun-
dance of work for parameterizations based on decompositions of the graph by vertex separators,
almost nothing is known about parameterizations based on edge separators. We fill this gap by
studying q-Coloring parameterized by cutwidth, and parameterized by pathwidth in bounded-
degree graphs. Our research uncovers interesting new ways to exploit small edge separators.

We present two algorithms for q-Coloring parameterized by cutwidth ctw: a deterministic
one that runs in time O∗(2ω·ctw), where ω is the matrix multiplication constant, and a randomized
one with runtime O∗(2ctw). In sharp contrast to earlier work, the running time is independent
of q. The dependence on cutwidth is optimal: we prove that even 3-Coloring cannot be solved
inO∗((2−ε)ctw) time assuming SETH. Our algorithms rely on a new rank bound for a matrix that
describes compatible colorings. Combined with a simple communication protocol for evaluating
a product of two polynomials, this also yields an O∗((bd/2c+ 1)pw) time randomized algorithm
for q-Coloring on graphs of pathwidth pw and maximum degree d. Such a runtime was first
obtained by Björklund, but only for graphs with few proper colorings. We also prove that this
result is optimal in the sense that no O∗((bd/2c+1−ε)pw)-time algorithm exists assuming SETH.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms, Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases Parameterized Complexity, Chromatic Number, Graph Decompositions

Digital Object Identifier 10.4230/LIPIcs.ESA.2018.47

Related Version A full version is available at [28], https://arxiv.org/abs/1806.10501.

1 NWO Veni grant “Frontiers in Parameterized Preprocessing” and NWO Gravitation grant “Networks”
2 NWO Veni grant “Reducing small instances of complex tasks to large instances of simple ones” and

NWO Gravitation grant “Networks”

© Bart M.P. Jansen and Jesper Nederlof;
licensed under Creative Commons License CC-BY

26th Annual European Symposium on Algorithms (ESA 2018).
Editors: Yossi Azar, Hannah Bast, and Grzegorz Herman; Article No. 47; pp. 47:1–47:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b.m.p.jansen@tue.nl
mailto:j.nederlof@tue.nl
http://dx.doi.org/10.4230/LIPIcs.ESA.2018.47
https://arxiv.org/abs/1806.10501
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

47:2 Chromatic Number via Matrix Rank

1 Introduction

Graph coloring is one of the most fundamental combinatorial problems, studied already
in the 1850s. Countless papers (cf. [38]) and several monographs [29, 30, 33] have been
devoted to its combinatorial and algorithmic investigation. Since the graph coloring problem
is NP-complete even in restricted settings such as planar graphs [21], considerable effort has
been invested in finding polynomial-time approximation algorithms and exact algorithms
that beat brute-force search [5, 6].

A systematic study of which characteristics of inputs govern the complexity of the
graph coloring problem has been undertaken using the framework of parameterized algo-
rithmics. The aim in this framework is to obtain algorithms whose running time is of the
form f(k) · nO(1), where k is a parameter that measures the complexity of the instance
and is independent of the number of vertices n in the input graph. Over the past decade,
numerous parameters have been employed that quantify the structure of the underlying
graph. In several settings, algorithms have been obtained that are optimal under the Strong
Exponential Time Hypothesis (SETH) [25, 26]. For example, it has long been known (cf. [10,
Theorem 7.9],[40]) that testing q-colorability on a graph that is provided together with a
tree decomposition of width k can be done in time O(qk · kO(1) · n). Lokshtanov, Marx, and
Saurabh [34] proved a matching lower bound: an algorithm running in time (q − ε)k · nO(1)

for any ε > 0 and integer q ≥ 3 would contradict SETH. Results are also known for graph
coloring parameterized by the vertex cover number [27], pathwidth and the feedback vertex
number [34], cliquewidth [17, 24, 31], twin-cover [20], modular-width [19], and split-matching
width [39]. (See [16, Fig. 1] for relations between these parameters.)

A survey of these algorithmic results for graph coloring results in the following picture
of the complexity landscape: For graph parameters that are defined in terms of the width
of decompositions by vertex separators (pathwidth, treewidth, vertex cover number, etc.),
one can typically obtain a running time of O∗(qk) to test whether a graph that is given
together with a decomposition of width k is q-colorable, but assuming (S)ETH there is no
algorithm with running time O∗(ck) for any constant c independent of q [27, Theorem 11].
(We use O∗(f(k)) as a shorthand for f(k) · nO(1).)

The complexity of graph coloring parameterized by width measures based on vertex
separators is therefore well-understood by now. However, only little attention has been paid
to graph decompositions whose width is measured in terms of the number of edges in a
separator. There is intriguing evidence that separators consisting of few edges (or, equivalently,
consisting of a bounded number of bounded-degree vertices) can be algorithmically exploited
in nontrivial ways when solving q-Coloring. In 2016, Björklund [4] presented a fascinating
algebraic algorithm that decides q-colorability using an algorithmic variation on the Alon-
Tarsi theorem [1]. Given a graph G of maximum degree d, a path decomposition of width k,
and integers q and s, his algorithm runs in time (bd/2c+ 1)knO(1) · s. If the graph is not
q-colorable it always outputs no. If the graph has at most s proper q-colorings, then it
outputs yes with constant probability. Hence when q ≥ (bd/2c+1) and s is small, it improves
over the standard O∗(qk)-time dynamic program by exploiting the bounded-degree vertex
separators encoded in the path decomposition. However, the dependence of the running time
on the number of proper q-colorings in the graph is very undesirable, as that number may be
exponentially large in n.

Björklund’s algorithm hints at the fact that graph decompositions whose width is governed
by the number of edges in a separator may yield an algorithmic advantage over existing
approaches. In this work, we therefore perform a deeper investigation of how decompositions

Bart M. P. Jansen and Jesper Nederlof 47:3

by small edge separators can be exploited when solving q-Coloring. By leveraging a new
rank upper bound for a matrix that describes the compatibility of colorings of subgraphs
on two sides of a small edge separator, we obtain a number of novel algorithmic results. In
particular, we show how to eliminate dependence on the number s of proper colorings.

Our results. We present efficient algorithms for q-Coloring parameterized by the width of
various types of graph decompositions by small edge separators. Our first results are phrased
in terms of the graph parameter cutwidth. A decomposition in this case corresponds to a
linear ordering of the vertices; the cutwidth of this ordering is given by the maximum number
of edges that connect a vertex in a prefix of the ordering to a vertex in the complement (see
Section 2 for formal definitions). Cutwidth is one of the classic graph layout parameters
(cf. [14]). It takes larger values than treewidth [32], and has been the subject of frequent
study [23, 41, 42].

Informally speaking, we prove that interactions of partial solutions on low-cutwidth
graphs are much simpler than interactions of partial solutions on low-pathwidth graphs. The
rank-based approach developed in earlier work [8, 11, 18] can be used by setting up matrices
whose rank determines the complexity of these interactions in low-cutwidth graphs. These
are different from the matrices associated to partial solutions in low-pathwidth graphs, and
admit better rank bounds. This is exploited by two different algorithms: a deterministic
algorithm that employs fast matrix multiplication and therefore has the matrix-multiplication
constant ω in its running time, and a faster randomized Monte Carlo algorithm.

I Theorem 1. There is a deterministic algorithm that, for any q, solves q-Coloring on a
graph G with a given linear layout of cutwidth ctw in O∗(2ω·ctw) time, where ω ≤ 2.373 is
the matrix multiplication constant.

I Theorem 2. There is a randomized Monte Carlo algorithm that, for any q, solves q-
Coloring on a graph G with a given linear layout of cutwidth ctw in O∗(2ctw) time.

These results show a striking difference between cutwidth and parameterizations based on
vertex separators such as treewidth and vertex cover number: we obtain single-exponential
running times where the base of the exponent is independent of the number of colors q, which
(assuming ETH) is impossible even parameterized by vertex cover [27]. The assumption that
a decomposition is given in the input is standard in this line of research [8, 12, 11, 18] and
decouples the complexity of finding a decomposition from that of exploiting a decomposition.

The ideas underlying Theorems 1 and 2 can also be used to eliminate the dependence on
the number of proper colorings from Björklund’s algorithm. We prove the following theorem:

I Theorem 3. There is a randomized Monte Carlo algorithm that, for any q, solves q-
Coloring on a graph G with maximum degree d and given path decomposition of width pw
in O∗((bd/2c+ 1)pw) time.

Our approach uses the first step of the proof of the Alon-Tarsi theorem (i.e. rewrite
the problem into evaluating the graph polynomial) and also relates colorability to certain
orientations, but deviates from the previous algorithm otherwise: to evaluate the appropriate
graph polynomial we extend a fairly simple communication-efficient protocol to evaluate a
product of two polynomials.

We also prove that the randomized algorithms of Theorem 2 and Theorem 3 are condi-
tionally optimal, even when restricted to special cases:

I Theorem 4 (F). Assuming SETH, there is no ε > 0 such that 3-Coloring on a planar
graph G given along with a linear layout of cutwidth ctw can be solved in time O∗((2− ε)ctw).

ESA 2018

47:4 Chromatic Number via Matrix Rank

I Theorem 5 (F). Let d ≥ 5 be an odd integer and let qd := bd/2c+ 1. Assuming SETH,
there is no ε > 0 such that qd-Coloring on a graph of maximum degree d given along with
a path decomposition of pathwidth pw can be solved in time O∗((bd/2c+ 1− ε)pw).

These results are obtained by building on the techniques of Lokshtanov et al. [34] that
propagate ‘partial assignments’ throughout graphs of small cutwidth or pathwidth.

Organization
In Section 2 we provide preliminaries. In Section 3 we present algorithms for graph coloring,
proving Theorems 1, 2, and 3. In Section 4 we give briefly sketch the main ideas of the
proofs of Theorems 4 and 5, showing that our randomized algorithms cannot be improved
significantly assuming SETH. Finally, we provide some conclusions in Section 5. Due to space
restrictions, proofs for statements marked (F) have been deferred to the full version [28].

2 Preliminaries

We use N to denote the natural numbers, including 0. For a positive integer n and a set X
we use

(
X
n

)
to denote the collection of all subsets of X of size n. The power set of X is

denoted 2X . The set {1, . . . , n} is abbreviated as [n]. The O∗ notation suppresses polynomial
factors in the input size n, such that O∗(f(k)) is shorthand for O(f(k)nO(1)). All our
logarithms have base two. For sets S, T we denote by ST the set of vectors indexed by
elements of T whose entries are from S. If T = [n], we use Sn instead of S[n].

We consider finite, simple, and undirected graphs G, consisting of a vertex set V (G) and
edge set E(G) ⊆

(
V (G)

2
)
. The neighbors of a vertex v in G are denoted NG(v). The closed

neighborhood of v is NG[v] := NG(v)∪{v}. The degree d(v) equals |NG(v)| and if X ⊆ E(G),
then dX(v) denotes the number of edges of X incident to v. This notation is extended to
d−(v), d+(v), d−X(v), d+

X(v) for directed graphs in the natural way (e.g. d+
X(v) denotes the

number of w such that (v, w) ∈ X). For a vertex set S ⊆ V (G) the open neighborhood
is NG(S) :=

⋃
v∈S NG(v)\S and the closed neighborhood is NG[S] := NG(S)∪S, while G[S]

denotes the graph induced by S.
A q-coloring of a graph G is a function f : V (G)→ [q]. A coloring is proper if f(u) 6= f(v)

for all edges {u, v} ∈ E(G). For a fixed integer q, the q-Coloring problem asks whether a
given graph G has a proper q-coloring. The q-SAT problem asks whether a given Boolean
formula, in conjunctive normal form with clauses of size at most q, has a satisfying assignment.

I Strong Exponential Time Hypothesis ([25, 26]). For every ε > 0, there is a constant q
such that q-SAT on n variables cannot be solved in time O∗((2− ε)n).

Cutwidth. For an n-vertex graph G, a linear layout of G is a linear ordering of its vertex
set, given by a bijection π : V (G)→ [n]. The cutwidth of G with respect to the layout π is:

ctwπ(G) = max
1≤i<n

∣∣{{u, v} ∈ E(G)
∣∣π(u) ≤ i ∧ π(v) > i

}∣∣,
and the cutwidth ctw(G) of a graph G is the minimum cutwidth attained by any linear
layout. It is well-known (cf. [7]) that ctw(G) ≥ pw(G) ≥ tw(G), where the latter denote the
pathwidth and treewidth of G, respectively. An intuitive way to think about cutwidth is
to consider the vertices as being placed on a horizontal line in the order dictated by the
layout π, with edges drawn as x-monotone curves. For any position i we consider the gap
between vertex π−1(i) and π−1(i+ 1), and count the edges that cross the gap by having one
endpoint at position at most i and the other at position after i. The cutwidth of a layout is
the maximum number of edges crossing any single gap.

Bart M. P. Jansen and Jesper Nederlof 47:5

Pathwidth and path decompositions. A path decomposition of a graph G is a path P

in which each node x has an associated set of vertices Bx ⊆ V (G) (called a bag) such
that

⋃
x∈V (P) Bx = V (G) and the following properties hold:

1. For each edge {u, v} ∈ E(G) there is a node x in P such that u, v ∈ Bx.
2. If v ∈ Bx ∩By then v ∈ Bz for all nodes z on the (unique) path from x to y in P .
The width of P is the size of the largest bag minus one, and the pathwidth of a graph G
is the minimum width over all possible path decompositions of G. Since our focus here is
on dynamic programming over a path decomposition we only mention in passing that the
related notion of treewidth can be defined in the same way, except for letting the nodes of
the decomposition form a tree instead of a path.

It is common for the presentation of dynamic-programming algorithms to use path- and
tree decompositions that are normalized in order to make the description easier to follow.
For an overview of tree decompositions and dynamic programming on tree decompositions
see e.g. [9]. Following [12] we use the following path decompositions:

I Definition 6 (Nice Path Decomposition). A nice path decomposition is a path decomposition
where the underlying path of nodes is ordered from left to right (the predecessor of any node
is its left neighbor) and in which each bag is of one of the following types:

First (leftmost) bag: the bag associated with the leftmost node x is empty, Bx = ∅.
Introduce vertex bag: an internal node x of P with predecessor y such that Bx =
By ∪ {v} for some v /∈ By. This bag is said to introduce v.
Introduce edge bag: an internal node x of P labeled with an edge {u, v} ∈ E(G) with
one predecessor y for which u, v ∈ Bx = By. This bag is said to introduce {u, v}.
Forget bag: an internal node x of P with one predecessor y for which Bx = By \ {v}
for some v ∈ By. This bag is said to forget v.
Last (rightmost) bag: the bag associated with the rightmost node x is empty, Bx = ∅.

It is easy to verify that any given path decomposition of pathwidth pw can be transformed
in time |V (G)| · pwO(1) into a nice path decomposition without increasing the width. Let
B1, . . . , B` be a nice path decomposition of G. We say Bi is before Bj if i ≤ j. We denote
Vi =

⋃i
j=1 Bi and let Ei denote the set of edges introduced in bags before i.

3 Upper bounds for Graph Coloring

In this section we outline algorithms for q-Coloring that run efficiently when given a
graph and either a small-cutwidth layout or a good path decomposition on graphs with
small maximum degree. We assume the input graph has no isolated vertices, as they
are clearly irrelevant. We start by using the ‘rank-based approach’ as proposed in [8] to
obtain deterministic algorithms, and afterward give a randomized algorithm with substantial
speedup. In both approaches the idea is to employ dynamic programming to accumulate
needed information about the existence of partial solutions, but use linear-algebraic methods
to compress this information. Let us remark in passing that our approaches are robust in
the sense that they directly extend to generalizations such as q-List Coloring in which for
every vertex a set of allowed colors is given.3

A key quantity that determines the amount of information needed after compression
in general is the rank of a partial solutions matrix. This matrix has its rows and columns

3 In the deterministic approach we simply avoid partial solutions not satisfying these constraints, and in
the randomized approach we assign sufficiently large weight to disallowed (vertex,color) combinations.

ESA 2018

47:6 Chromatic Number via Matrix Rank

indexed by partial solutions (which could be defined in various ways) and an entry is 1 (or
more generally, non-zero) if the two partial solutions combine to a solution. Previously, this
method proved to be highly useful for connectivity problems parameterized by treewidth [8].
For q-Coloring parameterized by treewidth, partial solutions can naturally be defined as
partial proper colorings of a subgraph whose boundary is formed by some vertex separator.
Two partial colorings combine to a proper complete coloring if and only if the two partial
colorings agree on the coloring of the separator. Unfortunately, the rank-based approach
is not useful here as the partial solution matrices arising have large rank, as witnessed by
induced identity submatrices of dimensions qtw. Indeed, the lower bound under SETH by
Lokshtanov, Marx, and Saurabh [34] shows that no algorithm can solve the problem much
faster than O∗(qpw), where pw denotes the pathwidth of the input graph.

Still, this does not exclude much faster running times parameterized by cutwidth. In our
application of the rank-based approach for q-Coloring of a graph with a given linear layout
of cutwidth ctw, the partial solutions are q-colorings of the first i and last n− i vertices in the
linear order, and clearly only the colors assigned to vertices incident to the edges going over
the cut are relevant. If we let X = Xi, Y = Yi denote the endpoints of these edges occurring
respectively not after and after i, and let H = Hi denote the bipartite graph induced by the
cut and these edges, we are set to study the rank of the following partial solutions matrix
indexed by x ∈ [q]X and y ∈ [q]Y :

MH [x, y] =
{

1, if x ∪ y is a proper q-coloring of H,
0, if otherwise.

Here and below, we slightly abuse notation by viewing elements of V I (i.e. vectors with
values in V that are indexed by I) as sets of pairs in I × V ; that is, if x ∈ V I we also use
x to denote the set {(i, xi)}i∈I . With this notation in mind, note that x ∪ y above can be
interpreted as an element of [q]X∪Y in the natural way as X and Y are disjoint. As the rank
of MH is generally high4 and depends on q, we instead focus on the matrix M ′H defined by

M ′H [x, y] =
∏

(v,w)∈E(H)

(xv − yw), (1)

where all edges are directed from X to Y in E(H). The crux is that the support (e.g. the
set of non-zero entries) of M ′H equals the support of MH :

I Lemma 7. We have M ′H [x, y] 6= 0 if and only if x ∪ y is a proper q-coloring of H.

Proof. If xv = yw for some (v, w) ∈ E(H) then the term (xv − yw) is zero, implying the
entire product on the right hand-side of (1) is zero. If x and y differ at every coordinate,
then M ′H [x, y] is a product of nonzero terms, and therefore non-zero itself. J

In Sections 3.1–3.2 this property will allow us to work with M ′H instead of MH , when
combined with the Isolation Lemma or Gaussian-elimination approach; similarly as in previous
work [8, 11, 12].5

4 For example, if H is a single edge MH is the complement of an identity matrix of dimensions q × q.
5 In the deterministic setting, the observation that one can work with a matrix different from a partial

solution matrix but with the same support as the partial solution matrix was already used by Fomin et
al. [18] in combination with a matrix factorization by Lovász [36].

Bart M. P. Jansen and Jesper Nederlof 47:7

3.1 A deterministic algorithm
We first show that M ′H has rank at most

∏
v∈X(dE(H)(v) + 1) by exhibiting an explicit

factorization. Here we use the shorthand dW (v) for the number of edges in W containing
vertex v. For a bipartite graph H with parts X,Y and edges oriented from X to Y , we have:

M ′H [x, y] =
∏

(v,w)∈E(H)

(xv − yw)

=
∑

W⊆E(H)

(∏
v∈X

xdW (v)
v

)(∏
v∈Y

(−yv)dE(H)\W (v)

)

=
∑

(dv∈{0,...,dE(H)(v)})v∈X

(∏
v∈X

xdv
v

) ∑
W⊆E(H)

∀v∈X:dW (v)=dv

∏
v∈Y

(−yv)dE(H)\W (v)

 , (2)

where the second equality follows by expanding the product and the third equality follows
by grouping the summands on the number of edges incident to vertices in W included in X.

Expression (2) provides us with a matrix factorization M ′H = LH · RH where LH is
indexed by x ∈ [q]X and a sequence s = (dv ∈ {0, . . . , dE(H)(v)})v∈X and RH has columns
indexed by y ∈ [q]Y (one such factorization sets LH [x, s] =

∏
v∈X x

sv
v). As the number of

relevant sequences s is bounded by
∏
v∈X(dE(H)(v)+1), the factorization implies the claimed

rank bound for M ′H .6 The rank bound allows some partial solutions to be pruned from the
dynamic-programming table without changing the answer. The following definition captures
correct reduction steps.

I Definition 8. Fix a bipartite graph H with parts X and Y and let S ⊆ [q]X be a set of
q-colorings of X. We say S ′ ⊆ [q]X H-represents S if S ′ ⊆ S, and for each y ∈ [q]Y we have:

(∃x ∈ S : x∪y is a proper coloring of H)⇔ (∃x′ ∈ S ′ : x′∪y is a proper coloring of H). (3)

Note that the backward direction of (3) is implied by the property that S ′ ⊆ S, but we state
both for clarity. If H is clear from context it will be omitted. For future reference we record
the observation that the transitivity of this relation follows directly from its definition:

I Observation 9. Let H be a bipartite graph with parts X and Y , and let A,B, C ⊆ [q]X . If
A represents B and B represents C, then A represents C.

Given the above matrix factorization, we can directly follow the proof of [8, Theorem 3.7]
to get the following result (note that ω denotes the matrix multiplication constant):

I Lemma 10. There is an algorithm reduce that, given a bipartite graph H with parts X,Y
and a set S ⊆ [q]X , outputs in time

(∏
v∈X(dE(H)(v) + 1)

)ω−1 · |S| · poly(|X|+ |Y |) a set S ′
that represents S and satisfies |S ′| ≤

∏
v∈X(dE(H)(v) + 1).

Proof. The algorithm is as follows: compute explicitly the matrix LH [S, ·] (i.e. the submatrix
of LH induced by all rows in S). As every entry of LH can be computed in polynomial time,
clearly this can be done within the claimed time bound. Subsequently, the algorithm finds a
row basis of this matrix and returns that set as S ′. As the rank of a matrix is at most its

6 This construction (first developed in this paper) has subsequently been used by the second author with
Bansal et al. [3] in the completely different setting of online algorithms; see [3, Footnote 3].

ESA 2018

47:8 Chromatic Number via Matrix Rank

number of columns, |S ′| ≤
∏
v∈X(dE(H)(v) + 1). Using [8, Lemma 3.15], this step also runs

in the promised running time.
To see that S ′ represents S, note that clearly S ′ ⊆ S and thus it remains to prove the

forward implication of (3). To this end, suppose that x ∪ y is a proper q-coloring of H and
x ∈ S. As S ′ is a row basis of LH , there exist x(1), . . . , x(`) ∈ S ′ and λ1, . . . , λ` such that

M ′H [x, y] = LH [x, ·]RH [·, y] =
(∑̀
i=1

λiLH [x(i), ·]
)
RH [·, y] =

∑̀
i=1

λiM
′
H [x(i), y],

where LH [x, ·] and RH [·, y] denote a row of LH and column of RH respectively. As x∪ y is a
proper coloring of H, Lemma 7 implies M ′H [x, y] is non-zero. Therefore there must also exist
x(i) ∈ S ′ such that M ′H [x(i), y] is non-zero and hence x(i) ∪ y is a proper coloring of H. J

Equipped with the algorithm reduce from Lemma 10 we are ready to present the algorithm
for q-Coloring. On a high level, the algorithm uses a naïve dynamic-programming scheme,
but by extensive use of the reduce procedure we efficiently represent sets of partial solutions
and speed up the computation significantly.

First we need to introduce some notation. A vector x ∈ V I is an extension of a vector
x′ ∈ V I′ if I ′ ⊆ I and x′i = xi for every i ∈ I ′. If x ∈ V I and P ⊆ I then the projection x|P
is defined as the unique vector in V P of which x is an extension. Let G be the graph for
which we need to decide whether a proper q-coloring exists and fix an ordering v1, . . . , vn of
V (G). We denote all edges as directed pairs (vi, vj) with i < j. For i = 1, . . . , n, define Vi as
the i’th prefix of this ordering, Ci as the i’th cut in this ordering, and Xi and Yi as the left
and respectively right endpoints of the edges in this cut, i.e.

Vi = {v1, . . . , vi}, Ci = {(vl, vr) ∈ E(G) : l ≤ i < r},
Xi = {vl ∈ V (G) : ∃(vl, vr) ∈ Ci ∧ l < r}, Yi = {vr ∈ V (G) : ∃(vl, vr) ∈ Ci ∧ l < r}.

Note that Xi ⊆ Xi−1 ∪{vi} and Yi−1 ⊆ Yi ∪{vi}. We let Hi denote the bipartite graph with
parts Xi, Yi and edge set Ci. For i = 1, . . . , n, let T [i] ⊆ [q]Xi be the set of all q-colorings of
the vertices in Xi that can be extended to a proper q-coloring of G[Vi]. The following lemma
shows that we can continuously work with a table T ′ that represents a table T :

I Lemma 11. If T ′[i− 1] Hi−1-represents T [i− 1], then T ′[i] Hi-represents T [i], where

T ′[i] =
{

(x ∪ (vi, c))|Xi
: x ∈ T ′[i− 1], c ∈ [q],

(
∀v ∈ N(vi) ∩Xi−1 : xv 6= c

)}
. (4)

Proof. Assuming the hypothesis, we first show that T ′[i] ⊆ T [i]. Let x ∈ T ′[i − 1] and
c ∈ [q] such that ∀v ∈ N(vi) ∩Xi−1 : xv 6= c. As T ′[i− 1] represents T [i− 1], we have that
x ∈ T [i−1]. By definition of T [i−1], there exists a proper coloring w of G[Vi−1] that extends
x. Since all v ∈ N(vi) ∩Xi−1 = N(vi) ∩ Vi−1 satisfy xv 6= c, it follows that w ∪ (vi, c) is a
proper coloring of G[Vi], and thus (x ∪ (vi, c))|Xi

∈ T [i].
Thus, to prove the lemma it remains to show the forward implication of (3). To this end,

let x ∈ T [i] and let w ∈ [q]Vi be a proper coloring of G[Vi] that extends x. Let y ∈ [q]Yi be
such that x∪ y is a proper coloring of Hi. As wvi 6= wvj for neighbors vj ∈ N(vi)∩ Vi−1 and
wvi
6= yvj

for vj ∈ N(vi) \ Vi, it follows that w ∪ y extends a proper coloring of Hi−1.
Therefore w|Xi−1∪(y∪(vi, wvi

))|Yi−1 must be a proper coloring ofHi−1, and w|Xi−1 ∈ T [i−
1] as it can be extended to a proper coloring of Vi, and thus also to a proper coloring of Vi−1.
As T ′[i−1] Hi−1-represents T [i−1], there exists x′ ∈ T ′[i−1] such that x′∪(y∪(vi, wvi))|Yi−1

is a proper coloring of Hi−1.

Bart M. P. Jansen and Jesper Nederlof 47:9

As no neighbor of vi was assigned color wvi by y, it follows that (x′ ∪ (vi, wvi)) ∪ y is an
extension of a proper coloring of Hi. As x′ ∪ (y ∪ (v, wvi

))|Yi−1 is a proper coloring of Hi−1,
no neighbors of vi are assigned color wvi

by x′, and by (4) we have that (x′∪ (vi, wvi
)) ∈ T ′[i],

as required. J

Now we combine Lemma 10 with Lemma 11 to obtain an algorithm to solve q-Coloring.

I Lemma 12. q-Coloring can be solved in time O∗
((

maxi
∏
v∈Xi

(dE(Hi)(v) + 1)
)ω).

Proof. Note T ′[0] = T [0] = {∅} (where ∅ is the 0-dimensional vector). Using Lemma 11, we
can use (4) for i = 1, . . . , n to iteratively compute a set T ′[i] representing T [i] from a set
T ′[i− 1] representing T [i− 1], and replace T ′[i] after each step with reduce(Hi, T

′[i]). By
combining Lemma 11 and Observation 9, we may conclude that G has a q-coloring if and
only if T ′[n] is not empty (that is, it contains a single element which is the empty vector).

The time required for the computation dictated by (4) is clearly |T ′[i]| · poly(n). Since
|T ′[i − 1]| ≤ maxi

∏
v∈Xi

(dE(Hi)(v) + 1), as it is the result of reduce, we have that |T ′[i]|
is bounded by q ·maxi

∏
v∈Xi

(dE(Hi)(v) + 1). Using this upper bound for T ′[i], the time of
reduce will be O∗

((
maxi

∏
v∈Xi

(dE(Hi)(v) + 1)
)ω), which clearly is the bottleneck in the

running time. J

Theorem 1 now follows directly from this more general statement.

Proof of Theorem 1. If v1, . . . , vn is a layout of cutwidth k, then |E(Hi)| ≤ k for every i,
and the term

∏
v∈Xi

(dE(Hi)(v) + 1) is upper bounded by 2k by the AM-GM inequality. Thus
the theorem follows from Lemma 12. J

3.2 A randomized algorithm
In this section we use an idea similar to the idea from the matrix factorization of the previous
section to obtain faster randomized algorithms. Specifically, our main technical result is as
follows (recall that Ei denotes the set of edges introduced in bags before Bi).

I Theorem 13. There is a Monte Carlo algorithm for q-Coloring that, given a graph G
and a nice path decomposition B1, . . . , B`, runs in time O∗(maxi

∏
v∈Bi

(min{dEi
(v), d(v)−

dEi
(v)} + 1)). The algorithm does not give false-positives and returns the correct answer

with high probability.

Let V (G) = V = {v1, . . . , vn} be ordered arbitrarily, and direct every edge {vi, vj} as (vi, vj)
with i < j. Define the graph polynomial fG as fG(x1, . . . , xn) =

∏
(u,v)∈E(G)(xu − xv). This

polynomial has been studied intensively (cf. [2, 13, 35]), for example in the context of the
Alon-Tarsi theorem [1]. Define PG =

∑
x∈[q]V fG(x). Similarly as in Lemma 7 we see that if

PG 6= 0 then G has a proper q-coloring, and if G has a unique q-coloring then PG 6= 0 as it is
the product of non-zero values. This is useful if the graph is guaranteed to have at most one
proper q-coloring. To this end, we use a standard technique based on the Isolation Lemma,
which we state now.

I Definition 14. A function ω : U → Z isolates a set family F ⊆ 2U if there is a unique
S′ ∈ F with ω(S′) = minS∈F ω(S), where ω(S′) :=

∑
v∈S′ ω(v).

I Lemma 15 (Isolation Lemma, [37]). Let F ⊆ 2U be a non-empty set family over universe U .
For each u ∈ U , choose a weight ω(u) ∈ {1, 2, . . . ,W} uniformly and independently at random.
Then Pr[ω isolates F] ≥ 1− |U |/W .

ESA 2018

47:10 Chromatic Number via Matrix Rank

We will apply Lemma 15 to isolate the set of proper colorings of G. To this end,
we use the set V (G) × [q] of vertex/color pairs as our universe U , and consider a weight
function ω : V (G)× [q]→ Z.

I Definition 16. A q-coloring of G is a vector x ∈ [q]n, and it is proper if xi 6= xj for every
(i, j) ∈ E(G). The weight of x is ω(x) =

∑n
i=1 ω((i, xi)).

Let ω : V (G) × [q] → [2nq] be a random weight function, i.e. for every v ∈ V (G) and
c ∈ [q] we pick an integer from [2nq] uniformly and independently at random. For every
integer z we associate a number PG(z) with G, as follows:

PG(z) =
∑
x∈[q]n

ω(x)=z

∏
(i,j)∈E(G)

(xi − xj) . (5)

If G has no proper q-coloring, then PG(z) = 0 since for every q-coloring x there will be an edge
(i, j) ∈ E for which xi = xj and therefore the product in (5) vanishes. We claim that if G has a
proper q-coloring, then with probability at least 1/2 there exists z ≤ 2nq such that PG(z) 6= 0,
which means we get a correct algorithm with high probability by repeating a polynomial
in n number of times. Let F = {{(i, xi)}i∈V : x is a proper q-coloring of G} ⊆ 2U . As F is
non-empty, we may apply Lemma 15 to obtain that ω isolates F with probability at least
1/2. Conditioned on this event, there must exist an integer w such that there is exactly one
proper q-coloring x of G satisfying ω(x) = z. In this case, x is the only summand in (5) that
can have a non-zero contribution. Moreover, as it is a proper coloring, its contribution is
a product of non-zero entries and therefore non-zero itself. Thus PG(z) is non-zero with
probability at least 1/2.

We now continue by showing how to compute PG(z) for all z ≤ 2nq quickly using dynamic
programming. Note that by expanding the product in (5) we have:

PG(z) =
∑
x∈[q]n

ω(x)=z

∑
W⊆E(G)

 ∏
(u,v)∈W

xu

 ∏
(u,v)∈E(G)\W

−xv

 . (6)

If Bi is a bag of a path decomposition (Section 2), we need to define table entries Ti containing
all information about the graph (Vi, Ei) needed to compute PG(z). Before we describe these
table entries we make a small deviation to convey intuition about our approach. Specifically,
we may interpret PG(z) as a polynomial in variables xv for v ∈ Bi. Now suppose for simplicity
that |Bi| = 1. Then the amount of information about Ei needed to compute PG(z) may be
studied via a simple communication-complexity game that we now outline.

A One-way Communication Protocol. Alice has a univariate polynomial PA(x) of degree
dA, and Bob has a univariate polynomial PB(x) of degree dB . Both parties know dA, dB and
an additional integer q. Alice needs to send as few bits as possible to Bob after which Bob
needs to output the quantity

∑
x∈[q] PA(x)PB(x), where q ∈ N is known to both.

An easy strategy is that Alice sends the dA + 1 coefficients of her polynomial to Bob. An
alternative strategy for Alice is based on partial evaluations, which is useful when dB < dA.
By expanding Bob’s polynomial in coefficient form we can rewrite

∑
x∈[q] PA(x)PB(x) into∑

x∈[q]

PA(x)(c0x
0 + c1x

1 + . . .+ cdB
xdB) = c0

∑
x∈[q]

PA(x)x0 + . . .+ cdB

∑
x∈[q]

PA(x)xdB ,

Bart M. P. Jansen and Jesper Nederlof 47:11

so as second strategy Alice may send the dB + 1 values
∑
x∈[q] PA(x)xi for i = 0, . . . , dB . So

she can always send at most min{dA, dB}+ 1 integers.
In our setting for defining table entries Ti for evaluating PG(z), we think of dA(v) as the

number of edges in Ei incident to v and of dB(v) as the number of edges incident to v not in
Ei. Roughly speaking, the running time of Theorem 13 is obtained by defining table entries
storing Alice’s message, in which she chooses the best of the two strategies independently for
every vertex.

Definition of the Table Entries. An orientation O of a subset X ⊆ E(G) of edges is a
set of directed pairs such that for every {u, v} ∈ X, either (u, v) ∈ O or (v, u) ∈ O. If O
is an orientation of X, we also say O orients X. The number of reversals rev(O) of O is
the number of (v, u) ∈ O such that u is introduced in a bag before the bag in which v is
introduced. An orientation is even if its number of reversals is even, and it is odd otherwise.

For a fixed path decomposition B1, . . . , B` of the input graph G, let Li ⊆ Bi consist of
all vertices in Bi of which at most half of their incident edges are already introduced in Bi or
a bag before Bi, and let Ri = Bi \ Li. Let li be the vector indexed by Li such that for every
v ∈ Li the value liv denotes the number of edges incident to v already introduced before or
at bag Bi. Similarly, let ri be the vector indexed by Ri such that for every v ∈ Ri the value
riv denotes the number of edges incident to v introduced after bag Bi. So for every i we have
d(v) = liv + riv.

If b ∈ NI≥0 is a vector, we denote P(b) for the set of vectors a in NI≥0 such that a � b.
Here a � b denotes that av ≤ bv for every v ∈ I. For d ∈ P(li) and e ∈ P(ri), define:

T zi [d, e] =
∑

x∈[q]Vi\Li

ω(x)=z

∑
O orients Ei

∀u∈Li:d+
O

(u)=du

(−1)rev(O)

 ∏
u∈Vi\Li

x
d+

O
(u)

u

(∏
u∈Ri

xeu
u

)
. (7)

Intuitively, this could be seen as a partial evaluation of PG(z). Note we sum over all
possible xv ∈ [q] for v ∈ Vi \ Li, but let the values xv for v ∈ Li be undetermined and
store the coefficient in the obtained polynomial of a certain monomial

∏
u∈Ri

xeu
u . Indeed,

it is easily seen that PG(z) equals T z` [∅, ∅], where ∅ is the unique 0-dimensional vector. By
combining the appropriate recurrence for all values T zi [d, e] with dynamic programming, the
following lemma is proved in the full version [28].

I Lemma 17 (F). All values T zi [d, e] can be computed in time poly(n) ·
∑`
i=1 Ti, where

Ti = |P(li)| · |P(ri)| =
∏
v∈Bi

(min{dEi
(v), d(v)− dEi

(v)}+ 1).

Thus PG(z) can be computed in the time stated in Theorem 13. As discussed, PG(z) = 0
if G has no proper q-coloring. Otherwise, ω isolates the set of proper q-colorings of G with
probability at least 1/2. Conditioned on this event we have PG(z) 6= 0, where z is the weight
of the unique minimum-weight q-coloring. Therefore we output yes if PG(z) 6= 0 for some z
and obtain the claimed probabilistic guarantee. This concludes the proof of Theorem 13.

As special cases of Theorem 13 we obtain Theorems 2 and 3.

Proof of Theorem 2. Given a linear layout v1, . . . , vn of cutwidth k, define a nice path
decomposition in which vertices are introduced in the order of the layout. After vi is
introduced, its incident edges to vj with j < i are introduced in arbitrary order. Forget vi
directly after the series of edge introductions that introduced its last incident edge.

ESA 2018

47:12 Chromatic Number via Matrix Rank

As v1, . . . , vn has cutwidth at most k, for any bag Bi of this path decomposition the
number of edges between Vi and V \ Vi is at most k. Together with the edges incident on the
most-recently introduced vertex vj , these k edges are the only edges incident on Bi that are
not in Ei. Consider the term

∏
v∈Bi

(min{dEi(v), d(v)− dEi(v)}+ 1). Vertex vj contributes
at most one factor n. For the remaining vertices in Bi, the only incident edges not in Ei
are those in the cut of size at most k. By the AM-GM inequality, their contribution to
the product is maximized when they are all incident to distinct vertices, in which case the
algorithm of Theorem 13 runs in time O∗(2k). J

Proof of Theorem 3. Follows from Theorem 13: min{dEi
(v), d(v)−dEi

(v)} ≤ bd(v)/2c. J

4 Lower Bounds for Graph Coloring

In this section we discuss the main ideas behind our lower bounds, whose proofs are deferred
to the full version [28]. We first start with Theorem 4, which rules out algorithms for solving
3-Coloring in time O∗((2− ε)ctw), even on planar graphs. (We remark that a companion
paper [22] was the first to present lower bounds for planar graphs of bounded cutwidth.)
The overall approach is based on the framework by Lokshtanov et al. [34]. We prove that an
n-variable instance of CNF-SAT can be transformed in polynomial time into an equivalent
instance of 3-Coloring on a planar graph G with a linear layout of cutwidth n + O(1).
Consequently, saving ε in the base of the exponent when solving graph coloring would
violate SETH. By employing clause-checking gadgets in the form of a path [27], crossover
gadgets [21], and a carefully constructed ordering of the graph, we get the desired reduction.

The second lower bound, Theorem 5, rules out algorithms with running time O∗((bd/2c+
1− ε)pw) for solving q-Coloring for q := bd/2c+ 1 on graphs of maximum degree d and
pathwidth pw, for any odd integer d ≥ 5. The reduction employs chains of cliques to
propagate assignments throughout a bounded-pathwidth graph. A t-chain of q-cliques is the
graph obtained from a sequence of t vertex-disjoint q-cliques by selecting a distinguished
terminal vertex in each clique and connecting it to the (q − 1) non-terminals in the previous
clique. Any proper q-coloring of a chain assigns all terminals the same color, and terminals
have 2(q−1) neighbors in the chain. Therefore, we can propagate a choice with q possibilities
throughout a path decomposition. We encode truth assignments to variables of a CNF-SAT
instance through colors given to the terminals of such chains. We enforce that the encoded
truth assignment satisfies a clause, by enforcing that an assignment that does not satisfy
the clause, is not the one encoded by the coloring. To check this, we take one terminal from
each chain and connect it to a partner on a path gadget that forbids a specific coloring.
Hence each vertex on a chain will receive at most one more neighbor, giving a maximum
degree of d := 2(q − 1) + 1 = 2q − 1 to represent a q-Coloring instance. Then solving this
q-Coloring instance in O∗((bd/2c+ 1− ε)pw) = O∗(((q− 1) + 1− ε)pw) time will contradict
SETH for the same reason as in the earlier construction [34] showing the impossibility
of O∗((q − ε)pw)-time algorithms.

5 Conclusion

We showed how graph decompositions using small edge separators can be used to solve
q-Coloring. The exponential parts of the running times of our algorithms are independent
of q, which is a significant difference compared to algorithms for parameterizations based on
vertex separators. The deterministic O∗(2ω·ctw) algorithm of Theorem 1 for the cutwidth
parameterization follows cleanly from the bound on the rank of the partial solutions matrix.

Bart M. P. Jansen and Jesper Nederlof 47:13

It may serve as an insightful new illustration of the rank-based approach for dynamic-
programming algorithms in the spirit of [8, 11, 12, 18].

One of the main take-away messages from this work from a practical viewpoint is the
following. Suppose H is a subgraph of G connected to the remainder of the graph by k edges.
Then any set of partial colorings S of H can be reduced to a subset S ′ of size 2k, with the
guarantee that if some coloring in S could be extended to a proper coloring of G, then this
still holds for S ′. The reduction can be achieved by an application of Gaussian elimination,
which has experimentally been shown to work well for speeding up dynamic programming
for other problems [15]. We therefore believe the table-reduction steps presented here may
also be useful when solving graph coloring over tree- or path decompositions, and can be
applied whenever processing a separator consisting of few edges.

References
1 Noga Alon and Michael Tarsi. Colorings and orientations of graphs. Combinatorica,

12(2):125–134, 1992. doi:10.1007/BF01204715.
2 Noga Alon and Michael Tarsi. A note on graph colorings and graph polynomials. J. Comb.

Theory, Ser. B, 70(1):197–201, 1997. doi:10.1006/jctb.1997.1753.
3 Nikhil Bansal, Marek Eliás, Grigorios Koumoutsos, and Jesper Nederlof. Competitive

algorithms for generalized k-server in uniform metrics. In Proc. 29th SODA, pages 992–
1001, 2018. doi:10.1137/1.9781611975031.64.

4 Andreas Björklund. Coloring graphs having few colorings over path decompositions. In
Proc. 15th SWAT, volume 53 of LIPIcs, pages 13:1–13:9, 2016. doi:10.4230/LIPIcs.SWAT.
2016.13.

5 Andreas Björklund and Thore Husfeldt. Exact graph coloring using inclusion-exclusion.
In Ming-Yang Kao, editor, Encyclopedia of Algorithms. Springer, 2008. doi:10.1007/
978-0-387-30162-4_134.

6 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-
exclusion. SIAM J. Comput., 39(2):546–563, 2009. doi:10.1137/070683933.

7 Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth. Theor.
Comput. Sci., 209(1-2):1–45, 1998. doi:10.1016/S0304-3975(97)00228-4.

8 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth.
Inf. Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

9 Hans L. Bodlaender and Arie M. C. A. Koster. Combinatorial optimization on graphs of
bounded treewidth. Comput. J., 51(3):255–269, 2008. doi:10.1093/comjnl/bxm037.

10 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

11 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases
of perfect matchings. In Proc. 45th STOC, pages 301–310. ACM, 2013. doi:10.1145/
2488608.2488646.

12 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michal Pilipczuk, Johan M. M. van
Rooij, and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by
treewidth in single exponential time. In Proc. 52nd FOCS, pages 150–159, 2011. doi:
10.1109/FOCS.2011.23.

13 J. A. de Loera. Gröbner bases and graph colorings. Contributions to Algebra and Geometry,
35(1):89–96, 1995.

14 Josep Díaz, Jordi Petit, and Maria J. Serna. A survey of graph layout problems. ACM
Comput. Surv., 34(3):313–356, 2002. doi:10.1145/568522.568523.

ESA 2018

http://dx.doi.org/10.1007/BF01204715
http://dx.doi.org/10.1006/jctb.1997.1753
http://dx.doi.org/10.1137/1.9781611975031.64
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.13
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.13
http://dx.doi.org/10.1007/978-0-387-30162-4_134
http://dx.doi.org/10.1007/978-0-387-30162-4_134
http://dx.doi.org/10.1137/070683933
http://dx.doi.org/10.1016/S0304-3975(97)00228-4
http://dx.doi.org/10.1016/j.ic.2014.12.008
http://dx.doi.org/10.1093/comjnl/bxm037
http://dx.doi.org/10.1007/978-3-319-21275-3
http://dx.doi.org/10.1145/2488608.2488646
http://dx.doi.org/10.1145/2488608.2488646
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.1109/FOCS.2011.23
http://dx.doi.org/10.1145/568522.568523

47:14 Chromatic Number via Matrix Rank

15 Stefan Fafianie, Hans L. Bodlaender, and Jesper Nederlof. Speeding up dynamic
programming with representative sets: An experimental evaluation of algorithms for
Steiner tree on tree decompositions. Algorithmica, 71(3):636–660, 2015. doi:10.1007/
s00453-014-9934-0.

16 Michael R. Fellows, Bart M. P. Jansen, and Frances Rosamond. Towards fully multivari-
ate algorithmics: Parameter ecology and the deconstruction of computational complexity.
European J. Combin., 34(3):541–566, 2013. doi:10.1016/j.ejc.2012.04.008.

17 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, and Saket Saurabh. Intractability of
clique-width parameterizations. SIAM J. Comput., 39(5):1941–1956, 2010. doi:10.1137/
080742270.

18 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient compu-
tation of representative families with applications in parameterized and exact algorithms.
J. ACM, 63(4):29:1–29:60, 2016. doi:10.1145/2886094.

19 Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algorithms for
modular-width. In Proc. 8th IPEC, volume 8246 of Lecture Notes in Computer Science,
pages 163–176. Springer, 2013. doi:10.1007/978-3-319-03898-8_15.

20 Robert Ganian. Twin-cover: Beyond vertex cover in parameterized algorithmics. In Dániel
Marx and Peter Rossmanith, editors, Proc. 6th IPEC, volume 7112 of Lecture Notes in
Computer Science, pages 259–271. Springer, 2011. doi:10.1007/978-3-642-28050-4_21.

21 M.R. Garey, D.S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph prob-
lems. Theoretical Computer Science, 1(3):237–267, 1976. doi:10.1016/0304-3975(76)
90059-1.

22 Bas A.M. van Geffen, Bart M.P. Jansen, Arnoud A.W.M. de Kroon, and Rolf Morel. Lower
bounds for dynamic programming on planar graphs of bounded cutwidth. CoRR, 2018.
arXiv:1806.10513.

23 Archontia C. Giannopoulou, Michal Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thi-
likos, and Marcin Wrochna. Cutwidth: Obstructions and algorithmic aspects. In Proc. 11th
IPEC, volume 63 of LIPIcs, pages 15:1–15:13, 2016. doi:10.4230/LIPIcs.IPEC.2016.15.

24 Petr A. Golovach, Daniel Lokshtanov, Saket Saurabh, and Meirav Zehavi. Cliquewidth III:
The odd case of graph coloring parameterized by cliquewidth. In Proc. 29th SODA, pages
262–273, 2018. doi:10.1137/1.9781611975031.19.

25 Russel Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

26 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.
2001.1774.

27 Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis of
graph coloring problems. In Proc. 10th CIAC, Lecture Notes in Computer Science, pages
345–356, 2017. doi:10.1007/978-3-319-57586-5_29.

28 Bart M. P. Jansen and Jesper Nederlof. Computing the chromatic number using graph
decompositions via matrix rank. CoRR, 2018. arXiv:1806.10501.

29 T.R. Jensen and B. Toft. Graph Coloring Problems. Wiley interscience publication. Wiley,
1995.

30 David S. Johnson, Anuj Mehrotra, and Michael A. Trick. Special issue on computa-
tional methods for graph coloring and its generalizations. Discrete Applied Mathematics,
156(2):145–146, 2008. doi:10.1016/j.dam.2007.10.007.

31 Daniel Kobler and Udi Rotics. Edge dominating set and colorings on graphs with
fixed clique-width. Discrete Applied Mathematics, 126(2-3):197–221, 2003. doi:10.1016/
S0166-218X(02)00198-1.

http://dx.doi.org/10.1007/s00453-014-9934-0
http://dx.doi.org/10.1007/s00453-014-9934-0
http://dx.doi.org/10.1016/j.ejc.2012.04.008
http://dx.doi.org/10.1137/080742270
http://dx.doi.org/10.1137/080742270
http://dx.doi.org/10.1145/2886094
http://dx.doi.org/10.1007/978-3-319-03898-8_15
http://dx.doi.org/10.1007/978-3-642-28050-4_21
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://arxiv.org/abs/1806.10513
http://dx.doi.org/10.4230/LIPIcs.IPEC.2016.15
http://dx.doi.org/10.1137/1.9781611975031.19
http://dx.doi.org/10.1006/jcss.2000.1727
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1006/jcss.2001.1774
http://dx.doi.org/10.1007/978-3-319-57586-5_29
http://arxiv.org/abs/1806.10501
http://dx.doi.org/10.1016/j.dam.2007.10.007
http://dx.doi.org/10.1016/S0166-218X(02)00198-1
http://dx.doi.org/10.1016/S0166-218X(02)00198-1

Bart M. P. Jansen and Jesper Nederlof 47:15

32 Ephraim Korach and Nir Solel. Tree-width, path-width, and cutwidth. Discrete Applied
Mathematics, 43(1):97–101, 1993. doi:10.1016/0166-218X(93)90171-J.

33 R.M. R. Lewis. A Guide to Graph Colouring: Algorithms and Applications. Springer
Publishing Company, 2015.

34 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. In Proc. 22nd SODA, pages 777–789, 2011. doi:
10.1137/1.9781611973082.61.

35 L. Lovász. Bounding the independence number of a graph. In Achim Bachem, Martin
Grötschel, and Bemhard Korte, editors, Bonn Workshop on Combinatorial Optimization,
volume 66, pages 213–223. North-Holland, 1982. doi:10.1016/S0304-0208(08)72453-8.

36 László Lovász. Flats in matroids and geometric graphs. In Combinatorial surveys (Proc.
Sixth British Combinatorial Conf.), pages 45–86. Academic Press London, 1977.

37 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as easy as matrix
inversion. Combinatorica, 7(1):105–113, 1987. doi:10.1007/BF02579206.

38 P.M. Pardalos, T. Mavridou, and J. Xue. The graph coloring problem: A bibliographic
survey, volume 2, pages 331–395. Kluwer Academic Publishers, Boston, 1998.

39 Sigve Hortemo Sæther and Jan Arne Telle. Between treewidth and clique-width. Algorith-
mica, 75(1):218–253, 2016. doi:10.1007/s00453-015-0033-7.

40 Jan Arne Telle and Andrzej Proskurowski. Algorithms for vertex partitioning prob-
lems on partial k-trees. SIAM J. Discrete Math., 10(4):529–550, 1997. doi:10.1137/
S0895480194275825.

41 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth I: A linear time
fixed parameter algorithm. J. Algorithms, 56(1):1–24, 2005. doi:10.1016/j.jalgor.2004.
12.001.

42 Dimitrios M. Thilikos, Maria J. Serna, and Hans L. Bodlaender. Cutwidth II: algorithms
for partial w-trees of bounded degree. J. Algorithms, 56(1):25–49, 2005. doi:10.1016/j.
jalgor.2004.12.003.

ESA 2018

http://dx.doi.org/10.1016/0166-218X(93)90171-J
http://dx.doi.org/10.1137/1.9781611973082.61
http://dx.doi.org/10.1137/1.9781611973082.61
http://dx.doi.org/10.1016/S0304-0208(08)72453-8
http://dx.doi.org/10.1007/BF02579206
http://dx.doi.org/10.1007/s00453-015-0033-7
http://dx.doi.org/10.1137/S0895480194275825
http://dx.doi.org/10.1137/S0895480194275825
http://dx.doi.org/10.1016/j.jalgor.2004.12.001
http://dx.doi.org/10.1016/j.jalgor.2004.12.001
http://dx.doi.org/10.1016/j.jalgor.2004.12.003
http://dx.doi.org/10.1016/j.jalgor.2004.12.003

	Introduction
	Preliminaries
	Upper bounds for Graph Coloring
	A deterministic algorithm
	A randomized algorithm

	Lower Bounds for Graph Coloring
	Conclusion

