2,061 research outputs found

    Colored fused filament fabrication

    Full text link
    Fused filament fabrication is the method of choice for printing 3D models at low cost and is the de-facto standard for hobbyists, makers, and schools. Unfortunately, filament printers cannot truly reproduce colored objects. The best current techniques rely on a form of dithering exploiting occlusion, that was only demonstrated for shades of two base colors and that behaves differently depending on surface slope. We explore a novel approach for 3D printing colored objects, capable of creating controlled gradients of varying sharpness. Our technique exploits off-the-shelves nozzles that are designed to mix multiple filaments in a small melting chamber, obtaining intermediate colors once the mix is stabilized. We apply this property to produce color gradients. We divide each input layer into a set of strata, each having a different constant color. By locally changing the thickness of the stratum, we change the perceived color at a given location. By optimizing the choice of colors of each stratum, we further improve quality and allow the use of different numbers of input filaments. We demonstrate our results by building a functional color printer using low cost, off-the-shelves components. Using our tool a user can paint a 3D model and directly produce its physical counterpart, using any material and color available for fused filament fabrication

    Melt-Extrusion-Based Additive Manufacturing of Transparent Fused Silica Glass

    Get PDF
    In recent years, additive manufacturing (AM) of glass has attracted great interest in academia and industry, yet it is still mostly limited to liquid nanocomposite-based approaches for stereolithography, two-photon polymerization, or direct ink writing. Melt-extrusion-based processes, such as fused deposition modeling (FDM), which will allow facile manufacturing of large thin-walled components or simple multimaterial printing processes, are so far inaccessible for AM of transparent fused silica glass. Here, melt-extrusion-based AM of transparent fused silica is introduced by FDM and fused feedstock deposition (FFD) using thermoplastic silica nanocomposites that are converted to transparent glass using debinding and sintering. This will enable printing of previously inaccessible glass structures like high-aspect-ratio (>480) vessels with wall thicknesses down to 250 µm, delicate parts including overhanging features using polymer support structures, as well as dual extrusion for multicolored glasses

    From 3D Models to 3D Prints: an Overview of the Processing Pipeline

    Get PDF
    Due to the wide diffusion of 3D printing technologies, geometric algorithms for Additive Manufacturing are being invented at an impressive speed. Each single step, in particular along the Process Planning pipeline, can now count on dozens of methods that prepare the 3D model for fabrication, while analysing and optimizing geometry and machine instructions for various objectives. This report provides a classification of this huge state of the art, and elicits the relation between each single algorithm and a list of desirable objectives during Process Planning. The objectives themselves are listed and discussed, along with possible needs for tradeoffs. Additive Manufacturing technologies are broadly categorized to explicitly relate classes of devices and supported features. Finally, this report offers an analysis of the state of the art while discussing open and challenging problems from both an academic and an industrial perspective.Comment: European Union (EU); Horizon 2020; H2020-FoF-2015; RIA - Research and Innovation action; Grant agreement N. 68044

    Solid Freeform Fabrication of Transparent Fused Quartz using a Filament Fed Process

    Get PDF
    Glass is a critical material for many scientific and engineering applications including optics, communications, electronics, and hermetic seals. Despite this technological relevance, there has been minimal research toward Additive Manufacturing (AM) of glass, particularly optically transparent glass. Additive Manufacturing of transparent glass offers potential advantages for lower processing costs for small production volumes, increased design freedom, and the ability to locally vary the optical properties of the part. Compared to common soda lime glass, fused quartz is better for AM since it has lower thermal expansion and higher index homogeneity. This paper presents a study of additive manufacturing of transparent fused quartz by a filament fed process. A CW CO2 laser (10.6 µm) is used to melt glass filaments layer by layer. The laser couples to phononic modes in the glass and is well absorbed. The beam and melt pool are stationary while the work piece is scanned using a standard lab motion system. Representative parts are built to explore the effects of variable laser power on the properties of printed fused quartz. During printing the incandescent emission from the melt pool is measured using a spectrometer. This permits process monitoring and identifies potential chemical changes in the glass during printing. After deposition, the printed parts are polished and the transmission measured to calculate the absorption/scattering coefficient. Finally, a low-order thermal analysis is presented and correlated to experimental results, including an energy balance and finite volume analysis using Fluent. These results suggest that optical quality fused quartz parts with low absorption and high index of refraction uniformity may be printed using the filament-fed process

    One-step volumetric additive manufacturing of complex polymer structures.

    Get PDF
    Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex nonperiodic three-dimensional geometries on a time scale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that low-absorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10 to 100 mW), may be successfully used to build full structures in ~1 to 10 s

    High carbon steel/Inconel 718 bimetallic parts produced via Fused Filament Fabrication and Sintering

    Get PDF
    The possibility of producing high carbon steel/Inconel 718 bimetallic parts via Fused Filament Fabrication and Sintering is explored. Compatibility of the two alloys with particular attention to elements interdiffusion through the interface as well as the effect of the deposition strategy were analyzed. Microstructural features, relative density and parts shrinkage were investigated, as well. Although first-tentative process parameters values were not sufficient to reach an acceptable material densification, a good bonding between Inconel 718 and carbon steel was observed, suggesting the potential to obtain sound bimetallic parts with a great range of material properties. Due to a difference in densification kinetics, sintering temperature was revealed to be the most critical process parameter to optimize to minimize porosity

    Pushing the Limits of 3D Color Printing: Error Diffusion with Translucent Materials

    Full text link
    Accurate color reproduction is important in many applications of 3D printing, from design prototypes to 3D color copies or portraits. Although full color is available via other technologies, multi-jet printers have greater potential for graphical 3D printing, in terms of reproducing complex appearance properties. However, to date these printers cannot produce full color, and doing so poses substantial technical challenges, from the shear amount of data to the translucency of the available color materials. In this paper, we propose an error diffusion halftoning approach to achieve full color with multi-jet printers, which operates on multiple isosurfaces or layers within the object. We propose a novel traversal algorithm for voxel surfaces, which allows the transfer of existing error diffusion algorithms from 2D printing. The resulting prints faithfully reproduce colors, color gradients and fine-scale details.Comment: 15 pages, 14 figures; includes supplemental figure

    Additive manufacturing of glass using a filament fed process

    Get PDF
    There are many scientific and engineering applications of glass including optics, communications, electronics, and hermetic seals, there has been minimal research towards the Additive Manufacturing (AM) of transparent glass parts. The special thermal and optical properties of glasses make them hard to be printed using conventional AM techniques. In this dissertation, two different AM techniques for glass AM were developed, Selective Laser Melting (SLM) and filament fed process. Semi-transparent parts were printed with SLM process. However, the filament fed process was found to be more robust and promising for printing optically transparent glass parts. Therefore, this dissertation is focused on filament fed process for different types of glass, including soda lime glass, fused quartz and borosilicate glass. For soda lime glass, the optical quality of the best printed part was found to be as good as furnace cast glass part using the same type of filaments. Optical defects and refractive index inhomogeneity can be linked to the molten region temperature. Furthermore, the mechanism of bubble formation in soda lime glass printing was also studied. Different regimes of bubble formation were found corresponding with different process parameters. Though the melting temperature of fused quartz is very high (~2300 ⁰C), 3D fully transparent cubes with high index homogeneity were printed. For borosilicate glass, 3D fully transparent parts were printed, and the optical quality of best printed sample is as good as conventionally manufactured borosilicate glass --Abstract, page iv
    corecore