16,356 research outputs found

    Courbet, incommensurate and emergent

    Get PDF

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    On the origin of the B-stars in the Galactic center

    Full text link
    We present a new directly-observable statistic which uses sky position and proper motion of stars near the Galactic center massive black hole to identify populations with high orbital eccentricities. It is most useful for stars with large orbital periods for which dynamical accelerations are difficult to determine. We apply this statistic to a data set of B-stars with projected radii 0."1 < p < 25" (~0.004 - 1 pc) from the massive black hole in the Galactic center. We compare the results with those from N-body simulations to distinguish between scenarios for their formation. We find that the scenarios favored by the data correlate strongly with particular K-magnitude intervals, corresponding to different zero-age main-sequence (MS) masses and lifetimes. Stars with 14 < mK < 15 (15 - 20 solar masses, t_{MS} = 8-13 Myr) match well to a disk formation origin, while those with mK > 15 (13 Myr), if isotropically distributed, form a population that is more eccentric than thermal, which suggests a Hills binary-disruption origin.Comment: Updated paper. 21 pages, 28 figures, 6 tables, ApJ accepte

    Designing a training tool for imaging mental models

    Get PDF
    The training process can be conceptualized as the student acquiring an evolutionary sequence of classification-problem solving mental models. For example a physician learns (1) classification systems for patient symptoms, diagnostic procedures, diseases, and therapeutic interventions and (2) interrelationships among these classifications (e.g., how to use diagnostic procedures to collect data about a patient's symptoms in order to identify the disease so that therapeutic measures can be taken. This project developed functional specifications for a computer-based tool, Mental Link, that allows the evaluative imaging of such mental models. The fundamental design approach underlying this representational medium is traversal of virtual cognition space. Typically intangible cognitive entities and links among them are visible as a three-dimensional web that represents a knowledge structure. The tool has a high degree of flexibility and customizability to allow extension to other types of uses, such a front-end to an intelligent tutoring system, knowledge base, hypermedia system, or semantic network

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Temporal Dynamics of Binocular Display Processing with Corticogeniculate Interactions

    Full text link
    A neural model of binocular vision is developed to simulate psychophysical and neurobiological data concerning the dynamics of binocular disparity processing. The model shows how feedforward and feedback interactions among LGN ON and OFF cells and cortical simple, complex, and hypercomplex cells can simulate binocular summation, the Pulfrich effect, and the fusion of delayed anticorrelated stereograms. Model retinal ON and OFF cells are linked by an opponent process capable of generating antagonistic rebounds from OFF cells after offset of an ON cell input. Spatially displaced ON and OFF cells excite simple cells. Opposite polarity simple cells compete before their half-wave rectified outputs excite complex cells. Complex cells binocularly match like-polarity simple cell outputs before pooling half-wave rectified signals frorn opposite polarities. Competitive feedback among complex cells leads to sharpening of disparity selectivity and normalizes cell activity. Slow inhibitory interneurons help to reset complex cells after input offset. The Pulfrich effect occurs because the delayed input from the one eye fuses with the present input from the other eye to create a disparity. Binocular summation occurs for stimuli of brief duration or of low contrast because competitive normalization takes time, and cannot occur for very brief or weak stimuli. At brief SOAs, anticorrelatecd stereograms can be fused because the rebound mechanism ensures that the present image to one eye can fuse with the afterimage from a previous image to the other eye. Corticogeniculate feedback embodies a matching process that enhances the speed and temporal accuracy of complex cell disparity tuning. Model mechanisms interact to control the stable development of sharp disparity tuning.Air Force Office of Scientific Research (F19620-92-J-0499, F49620-92-J-0334, F49620-92-J-0225); Office of Naval Research (N00014-95-1-0409, N00014-95-l-0657, N00014-92-J-1015, N00014-91-J-4100

    Measuring snow cover using satellite imagery during 1973 and 1974 melt season: North Santiam, Boise, and Upper Snake Basins, phase 1

    Get PDF
    Measurements are examined of snow coverage during the snow-melt season in 1973 and 1974 from LANDSAT imagery for the three Columbia River Subbasins. Satellite derived snow cover inventories for the three test basins were obtained as an alternative to inventories performed with the current operational practice of using small aircraft flights over selected snow fields. The accuracy and precision versus cost for several different interactive image analysis procedures was investigated using a display device, the Electronic Satellite Image Analysis Console. Single-band radiance thresholding was the principal technique employed in the snow detection, although this technique was supplemented by an editing procedure involving reference to hand-generated elevation contours. For each data and view measured, a binary thematic map or "mask" depicting the snow cover was generated by a combination of objective and subjective procedures. Photographs of data analysis equipment (displays) are shown
    corecore