391 research outputs found

    Perception of Lighting and Reflectance in Real and Synthetic Stimuli

    Get PDF
    The human visual system estimates the proportion of light reflected off of a surface despite variable lighting in a scene, a phenomenon known as lightness constancy. Classically, lightness constancy has been explained as a 'discounting' of the lighting intensity (Helmholtz, 1866), and this continues to be a common view today (e.g., Brainard & Maloney, 2011). However, Logvinenko and Maloney (2006) have made a radically different claim that the human visual system does not have any perceptual access to an estimation of lightness. The experiments described in Chapter 2 use a novel experimental paradigm to test this new theory proposed by Logvinenko and Maloney. We provide evidence against Logvinenko and Maloney's theory of lightness perception while adding to existing evidence that the visual system has good lightness constancy. In Chapter 3, we manipulate screen colour and texture cues to test the realism of computer-generated stimuli. We find that by matching the chromaticity of an LCD screen to the surrounding lighting and using a realistic texture, LCD screens can be made to appear similar to physical paper. Finally, Chapter 4 is an extension of the ideas from Chapter 3, in which the knowledge about how to adjust color and texture cues on an LCD monitor is applied to a lightness matching task. Here, the LCD screen is a small part of a larger physical setup. Additionally, levels of lightness constancy are compared across physical and simulated surfaces in the same novel experimental paradigm in Chapters 2 and 4. We find that physical and simulated surfaced elicit different levels of lightness constancy on the same task

    Contrôle automatique des conditions d'affichage d'une image par un projecteur

    Get PDF
    L'utilisation d'un projecteur dans différentes applications et environnements soulève la nécessité d'adapter et de contrôler l'image affichée en fonction des conditions d'affichage. L'image affichée par exemple dans un environnement éclairé peut apparaître avec des couleurs saturées et un contraste atténué. De même, son apparence peut être affectée par la réflectance et la géométrie de l'écran sur lequel l'image est projetée. Dans ce mémoire, nous proposons une approche pour contrôler l'apparence de l'image affichée par la modélisation des différents facteurs affectants son affichage. Cette approche est basée sur le modèle de formation de l'image perçue et la constance de couleur entre les images observées. L'approche proposée unifie la compensation des effets de la lumière ambiante et de la réflectance de l'écran. Nous argumentons que le modèle proposé est plus général que certains modèles de compensation utilisés pour la constance de couleurs. L'approche proposée estime l'illuminant de l'environnement d'affichage et l'illuminant cible, la réflectance de l'écran utilisé ainsi que la réflectance de l'écran cible. Une opération complémentaire pour la compensation de contraste est dérivée de la loi de Weber. Cette compensation permet d'adapter le contraste de l'image affichée conformément à l'intensité de la lumière ambiante. L'approche proposée est vérifiée expérimentalement dans des environnements éclairés et en utilisant des écrans non blancs. Elle permet de camoufler l'effet de l'écran utilisé dans l'affichage et de simuler les effets d'autres écrans cibles. Notre approche peut être utile dans certains domaines tels que le camouflage et la simulation pour des applications d'art visuel et performatif

    The effect of image size on the color appearance of image reproductions

    Get PDF
    Original and reproduced art are usually viewed under quite different viewing conditions. One of the interesting differences in viewing condition is size difference. The main focus of this research was investigation of the effect of image size on color perception of rendered images. This research had several goals. The first goal was to develop an experimental paradigm for measuring the effect of image size on color appearance. The second goal was to identify the most affected image attributes for changes of image size. The final goal was to design and evaluate algorithms to compensate for the change of visual angle (size). To achieve the first goal, an exploratory experiment was performed using a colorimetrically characterized digital projector and LCD. The projector and LCD were light emitting devices and in this sense were similar soft-copy media. The physical sizes of the reproduced images on the LCD and projector screen could be very different. Additionally, one could benefit from flexibility of soft-copy reproduction devices such as real-time image rendering, which is essential for adjustment experiments. The capability of the experimental paradigm in revealing the change of appearance for a change of visual angle (size) was demonstrated by conducting a paired-comparison experiment. Through contrast matching experiments, achromatic and chromatic contrast and mean luminance of an image were identified as the most affected attributes for changes of image size. Measurement of the extent and trend of changes for each attribute were measured using matching experiments. Proper algorithms to compensate for the image size effect were design and evaluated. The correction algorithms were tested versus traditional colorimetric image rendering using a paired-comparison technique. The paired-comparison results confirmed superiority of the algorithms over the traditional colorimetric image rendering for the size effect compensation

    Perceptual Distortions

    Get PDF
    This research project attempts to quantify the subjective quality of color vision that artists like Josef Albers have explored through their art. It is widely understood by artists and scientists that the appearance of a surface color is affected by its context. However, there are many questions yet to be answered about the specific spatial relationships between colors. This experiment uses an achromatic adjustment task to compare the context effect of colors inside and outside of a grid containing a test square. The results show that the color inside the grid has a greater affect on the appearance of the test square than the color outside the grid. This result was found across observers without exception. The idea that colors affect each other more when placed closer together may seem intuitive, but our results serve to confirm this assumption and to set the groundwork for further studies to develop a general theory of color interaction

    Digital Color Imaging

    Full text link
    This paper surveys current technology and research in the area of digital color imaging. In order to establish the background and lay down terminology, fundamental concepts of color perception and measurement are first presented us-ing vector-space notation and terminology. Present-day color recording and reproduction systems are reviewed along with the common mathematical models used for representing these devices. Algorithms for processing color images for display and communication are surveyed, and a forecast of research trends is attempted. An extensive bibliography is provided

    Laser Pointer Tracking in Projector-Augmented Architectural Environments

    Get PDF
    We present a system that applies a custom-built pan-tilt-zoom camera for laser-pointer tracking in arbitrary real environments. Once placed in a building environment, it carries out a fully automatic self-registration, registrations of projectors, and sampling of surface parameters, such as geometry and reflectivity. After these steps, it can be used for tracking a laser spot on the surface as well as an LED marker in 3D space, using inter-playing fisheye context and controllable detail cameras. The captured surface information can be used for masking out areas that are critical to laser-pointer tracking, and for guiding geometric and radiometric image correction techniques that enable a projector-based augmentation on arbitrary surfaces. We describe a distributed software framework that couples laser-pointer tracking for interaction, projector-based AR as well as video see-through AR for visualizations with the domain specific functionality of existing desktop tools for architectural planning, simulation and building surveying

    Correcciones para la presbicia : implicaciones ópticas, perceptuales y adaptativas

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Óptica y Optometría, leída el 18-05-2016Presbyopia is the physiological inability of the crystalline lens to accommodate for objects at near distance. While accommodative lenses are the ideal solutions for presbyopia, current optical solutions rely on providing an acceptable quality of vision at near and far distances. Optimization of the optical solutions rely on better understanding of how the visual system copes with the visual quality produced by the various optical solutions. The aim of this thesis is to study optical, visual and perceptual performance of different presbyopic corrections such as alternating vision, monovision and simultaneous vision, and to study the effect of adaptation on perceptual performances. Methods: We measured and corrected ocular aberrations using custom developed adaptive optics setup, used images blurred by real aberrations of different orientation and/or magnitude and measured the internal code for blur in eyes with long term differences in blur magnitude or orientation using a classification-image like technique. We later used numerically convolved images of different far/near energy and different near additions to study the short term adaptation to pure simultaneous vision using single stimulus detection and scoring tasks...La presbicia es la incapacidad del cristalino para enfocar objetos cercanos. Mientras que las lentes acomodativas son una buena solución para la presbicia, las soluciones más actuales se basan en una corrección aceptable de la visión cercana y lejana simultáneamente. La optimización de estas soluciones pasa por comprender cómo reacciona el sistema a las diferentes correcciones ópticas. El objetivo de esta tesis es el estudio óptico, visual y perceptual de diferentes correcciones a la presbicia como la visión alternante, la mono visión y la visión simultánea, y el estudio del efecto dela adaptación desde el punto de vista perceptual. MétodosSe han medido y corregido las aberraciones oculares mediante un sistema de óptica adaptativa de construcción propia y se han usado imágenes desenfocadas con aberraciones reales con diferentes magnitudes y/u orientaciones para medir el código interno de emborronamiento en los ojos para los diferentes desenfoques y orientaciones mediante métodos de clasificación de imágenes. Posteriormente se han usado imágenes convolucionadas numéricamente con diferentes proporciones en las energías del enfoque cercano o lejano y con diferentes adiciones para estudiar laadaptación a corto plazo en la visión simultánea pura a través de la detección y valoración de estímulos individuales...Fac. de Óptica y OptometríaTRUEunpu

    The role of chromatic texture and 3D shape in colour discrimination, memory colour, and colour constancy of natural objects

    Get PDF
    The primary goal of this work was to investigate colour perception in a natural environment and to contribute to the understanding of how cues to familiar object identity influence colour appearance. A large number of studies on colour appearance employ 2D uniformly coloured patches, discarding perceptual cues such as binocular disparity, 3D luminance shading, mutual reflection, and glossy highlights are integral part of a natural scene. Moreover, natural objects possess specific cues that help our recognition (shape, surface texture or colour distribution). The aim of the first main experiment presented in this thesis was to understand the effect of shape on (1) memory colour under constant and varying illumination and on (2) colour constancy for uniformly coloured stimuli. The results demonstrated the existence of a range of memory colours associated with a familiar object, the size of which was strongly object-shape-dependent. For all objects, memory retrieval was significantly faster for object-diagnostic shape relative to generic shapes. Based on two successive controls, the author suggests that shape cues to the object identity affect the range of memory colour proportionally to the original object chromatic distribution. The second experiment examined the subject’s accuracy and precision in adjusting a stimulus colour to its typical appearance. Independently on the illuminant, results showed that memory colour accuracy and precision were enhanced by the presence of chromatic textures, diagnostic shapes, or 3D configurations with a strong interaction between diagnosticity and dimensionality of the shape. Hence, more cues to the object identity and more natural stimuli facilitate the observers in accessing their colour information from memory. A direct relationship was demonstrated between chromatic surface representation, object’s physical properties, and identificability and dimensionality of shape on memory colour accuracy, suggesting high-level mechanisms. Chromatic textures facilitated colour constancy. The third and fourth experiments tested the subject’s ability to discriminate between two chromatic stimuli in a simultaneous and successive 2AFC task, respectively. Simultaneous discrimination threshold performances for polychromatic surfaces were only due to low-level mechanism of the stimulus, whereas in the successive discrimination, i.e. when memory is involved, high-level mechanisms were established. The effect of shape was strongly task- dependent and was modulate by the object memory colour. These findings together with the strong interaction between chromatic cues and shape cues to the object identity lead to the conclusion that high level mechanisms linked to object recognition facilitated both tasks. Hence, the current thesis presents new findings on memory colour and colour constancy presented in a natural context and demonstrates the effect of high-level mechanisms in chromatic discrimination as a function of cues to the object identity such as shape and texture. This work contributes to a deeper understanding of colour perception and object recognition in the natural world.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Appearance-based image splitting for HDR display systems

    Get PDF
    High dynamic range displays that incorporate two optically-coupled image planes have recently been developed. This dual image plane design requires that a given HDR input image be split into two complementary standard dynamic range components that drive the coupled systems, therefore there existing image splitting issue. In this research, two types of HDR display systems (hardcopy and softcopy HDR display) are constructed to facilitate the study of HDR image splitting algorithm for building HDR displays. A new HDR image splitting algorithm which incorporates iCAM06 image appearance model is proposed, seeking to create displayed HDR images that can provide better image quality. The new algorithm has potential to improve image details perception, colorfulness and better gamut utilization. Finally, the performance of the new iCAM06-based HDR image splitting algorithm is evaluated and compared with widely spread luminance square root algorithm through psychophysical studies
    • …
    corecore