851 research outputs found

    Karpinski Score under Digital Investigation: A Fully Automated Segmentation Algorithm to Identify Vascular and Stromal Injury of Donors’ Kidneys

    Get PDF
    In kidney transplantations, the evaluation of the vascular structures and stromal areas is crucial for determining kidney acceptance, which is currently based on the pathologist’s visual evaluation. In this context, an accurate assessment of the vascular and stromal injury is fundamental to assessing the nephron status. In the present paper, the authors present a fully automated algorithm, called RENFAST (Rapid EvaluatioN of Fibrosis And vesselS Thickness), for the segmentation of kidney blood vessels and fibrosis in histopathological images. The proposed method employs a novel strategy based on deep learning to accurately segment blood vessels, while interstitial fibrosis is assessed using an adaptive stain separation method. The RENFAST algorithm is developed and tested on 350 periodic acid–Schiff (PAS) images for blood vessel segmentation and on 300 Massone’s trichrome (TRIC) stained images for the detection of renal fibrosis. In the TEST set, the algorithm exhibits excellent segmentation performance in both blood vessels (accuracy: 0.8936) and fibrosis (accuracy: 0.9227) and outperforms all the compared methods. To the best of our knowledge, the RENFAST algorithm is the first fully automated method capable of detecting both blood vessels and fibrosis in digital histological images. Being very fast (average computational time 2.91 s), this algorithm paves the way for automated, quantitative, and real-time kidney graft assessments

    Karpinski Score under Digital Investigation: A Fully Automated Segmentation Algorithm to Identify Vascular and Stromal Injury of Donors’ Kidneys

    Get PDF
    In kidney transplantations, the evaluation of the vascular structures and stromal areas is crucial for determining kidney acceptance, which is currently based on the pathologist's visual evaluation. In this context, an accurate assessment of the vascular and stromal injury is fundamental to assessing the nephron status. In the present paper, the authors present a fully automated algorithm, called RENFAST (Rapid EvaluatioN of Fibrosis And vesselS Thickness), for the segmentation of kidney blood vessels and fibrosis in histopathological images. The proposed method employs a novel strategy based on deep learning to accurately segment blood vessels, while interstitial fibrosis is assessed using an adaptive stain separation method. The RENFAST algorithm is developed and tested on 350 periodic acid-Schiff (PAS) images for blood vessel segmentation and on 300 Massone's trichrome (TRIC) stained images for the detection of renal fibrosis. In the TEST set, the algorithm exhibits excellent segmentation performance in both blood vessels (accuracy: 0.8936) and fibrosis (accuracy: 0.9227) and outperforms all the compared methods. To the best of our knowledge, the RENFAST algorithm is the first fully automated method capable of detecting both blood vessels and fibrosis in digital histological images. Being very fast (average computational time 2.91 s), this algorithm paves the way for automated, quantitative, and real-time kidney graft assessments

    Optical and hyperspectral image analysis for image-guided surgery

    Get PDF

    Optical and hyperspectral image analysis for image-guided surgery

    Get PDF

    IMPLEMENTASI MASK-RCNN PADA DATASET KECIL CITRA SEL DARAH MERAH BERDASARKAN KRITERIA WARNA SEL

    Get PDF
    Examination of red blood cell morphology is one of the diagnostic aids for several diseases, one of which is anemia. The development of the application of digital image processing technology, artificial intelligence, and computer-assisted diagnosis opens opportunities to solve various problems related to medical images. Red blood cells sticking together or overlapping is a challenge in the red blood cell segmentation process which ultimately affects the results of cell type identification. A method that can perform instance segmentation is needed to overcome this problem. This study aims to implement the Mask-RCNN algorithm on a small red blood cell image dataset and evaluate the prediction results' performance. Based on the research results, the attached red blood cells can be detected individually by the model, and the accuracy of the cell detection results is 68.27%. Mask-RCNN can be used for blood cell segmentation instances and blood cell detection on small datasets, but the model accuracy still needs to be improved. Therefore it is necessary to do further research by increasing the number of datasets used.Pemeriksaan morfologi sel darah merah merupakan salah satu alat bantu penegakan diagnosis pada beberapa penyakit, salah satunya anemia. Perkembangan penerapan teknologi pengolahan citra digital, kecerdasan artifisial dan computer-aided diagnosis membuka peluang untuk menyelesaikan berbagai permasalahan terkait citra medis. Sel darah merah yang saling menempel atau bertumpuk merupakan tantangan dalam proses segmentasi sel darah merah yang pada akhirnya berpengaruh pada hasil pengenalan jenis sel. Metode yang dapat melakukan instance segmentation sangat diperlukan untuk mengatasi masalah tersebut. Penelitian ini bertujuan untuk mengimplementasikan algoritma Mask-RCNN pada dataset kecil citra sel darah merah dan mengevaluasi performa hasil prediksi. Berdasarkan hasil penelitian sel-sel darah merah yang menempel dapat dideteksi secara individual oleh model dan akurasi hasil deteksi sel adalah 68,27%. Mask-RCNN dapat digunakan untuk instance segmentasi sel darah dan deteksi sel darah pada dataset kecil namun akurasi model masih perlu ditingkatkan. oleh sebab itu perlu dilakukan penelitian selanjutnya dengan menambah jumlah dataset yang digunakan

    Automated Thalassemia cell image segmentation using hybrid Fuzzy C-Means and K-Means

    Get PDF
    Thalassemia is a form of hereditary disease. Thalassemia is one of the world's most common illnesses. The morphology of red blood cells is most affected by this disorder. This research proposes a new method of automatically segmenting red blood cells from microscopic blood smear images. The research suggests a novel combination of image processing techniques and extensive preprocessing to achieve superior segmentation performance. In this work, the eleven designated color spaces, with six filters and three contrasts enhancing, Fuzzy c-means and K-means segmentation studied using five evaluation parameters. This evaluation is based on the ground truth image. The Photoshop program performs novel ground truth techniques for multi-object sense (RBC cells). The optimization of all image processing stages was obtained through local image datasets (258 images) obtained from seven thalassemia patients in the Erbil – thalassemia center and five samples of normal blood cells in Children Raparin Teaching Hospital. The image was captured with different light intensities (low, medium, high) and with /without a yellow filter in Biophysics Research lab /Education College / Salahaddin University –Erbil. This study found that the best light intensity for image slide capture utilizing a microscope was medium without using a yellow filter with an accuracy of 0.91± 0.14 and a performance of 95.34%

    A cascaded classification-segmentation reversible system for computer-aided detection and cells counting in microscopic peripheral blood smear basophils and eosinophils images

    Get PDF
    Computer-aided image analysis has a pivotal role in automated counting and classification of white blood cells (WBCs) in peripheral blood images. Due to their different characteristics, our proposed approach is based on investigating the variations between the basophils and eosinophils in terms of their color histogram, size, and shape before performing the segmentation process. Accordingly, we proposed a cascaded system using a classification-based segmentation process, called classification-segmentation reversible system (CSRS). Prior to applying the CSRS system, a Histogram-based Object to Background Disparity (HOBD) metric was deduced to determine the most appropriate color plane for performing the initial WBC detection (first segmentation). Investigating the local histogram features of both classes resulted in a 92.4% initial classification accuracy using the third-degree polynomial support vector machine (SVM) method. Subsequently, in the proposed CSRS approach, transformation-based segmentation algorithms were developed to fit the specific requirements of each of the two predicted classes. The proposed CSRS system is used, where the images from an initial classification process are fed into a second segmentation process for each class separately. The segmentation results demonstrated a similarity index of 94.9% for basophils, and 94.1% for eosinophils. Moreover, an average counting accuracy of 97.4% for both classes was achieved. In addition, a second classification was carried out after applying the CSRS, achieving a 5.2% increase in accuracy compared to the initial classification process

    A lightweight network based on dual-stream feature fusion and dual-domain attention for white blood cells segmentation

    Get PDF
    IntroductionAccurate white blood cells segmentation from cytopathological images is crucial for evaluating leukemia. However, segmentation is difficult in clinical practice. Given the very large numbers of cytopathological images to be processed, diagnosis becomes cumbersome and time consuming, and diagnostic accuracy is also closely related to experts' experience, fatigue and mood and so on. Besides, fully automatic white blood cells segmentation is challenging for several reasons. There exists cell deformation, blurred cell boundaries, and cell color differences, cells overlapping or adhesion.MethodsThe proposed method improves the feature representation capability of the network while reducing parameters and computational redundancy by utilizing the feature reuse of Ghost module to reconstruct a lightweight backbone network. Additionally, a dual-stream feature fusion network (DFFN) based on the feature pyramid network is designed to enhance detailed information acquisition. Furthermore, a dual-domain attention module (DDAM) is developed to extract global features from both frequency and spatial domains simultaneously, resulting in better cell segmentation performance.ResultsExperimental results on ALL-IDB and BCCD datasets demonstrate that our method outperforms existing instance segmentation networks such as Mask R-CNN, PointRend, MS R-CNN, SOLOv2, and YOLACT with an average precision (AP) of 87.41%, while significantly reducing parameters and computational cost.DiscussionOur method is significantly better than the current state-of-the-art single-stage methods in terms of both the number of parameters and FLOPs, and our method has the best performance among all compared methods. However, the performance of our method is still lower than the two-stage instance segmentation algorithms. in future work, how to design a more lightweight network model while ensuring a good accuracy will become an important problem
    • …
    corecore