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Introduction: Accurate white blood cells segmentation from cytopathological

images is crucial for evaluating leukemia. However, segmentation is difficult in

clinical practice. Given the very large numbers of cytopathological images to be

processed, diagnosis becomes cumbersome and time consuming, and

diagnostic accuracy is also closely related to experts' experience, fatigue and

mood and so on. Besides, fully automatic white blood cells segmentation is

challenging for several reasons. There exists cell deformation, blurred cell

boundaries, and cell color differences, cells overlapping or adhesion.

Methods: The proposed method improves the feature representation capability

of the network while reducing parameters and computational redundancy by

utilizing the feature reuse of Ghost module to reconstruct a lightweight

backbone network. Additionally, a dual-stream feature fusion network (DFFN)

based on the feature pyramid network is designed to enhance detailed

information acquisition. Furthermore, a dual-domain attention module (DDAM)

is developed to extract global features from both frequency and spatial domains

simultaneously, resulting in better cell segmentation performance.

Results: Experimental results on ALL-IDB and BCCD datasets demonstrate that

our method outperforms existing instance segmentation networks such as Mask

R-CNN, PointRend, MS R-CNN, SOLOv2, and YOLACT with an average precision

(AP) of 87.41%, while significantly reducing parameters and computational cost.

Discussion: Our method is significantly better than the current state-of-the-art

single-stage methods in terms of both the number of parameters and FLOPs, and

our method has the best performance among all compared methods. However,

the performance of our method is still lower than the two-stage instance

segmentation algorithms. in future work, how to design a more lightweight

networkmodel while ensuring a good accuracywill become an important problem.

KEYWORDS

white blood cells segmentation, instance segmentation, YOLACT-CIS, dual-stream
feature fusion network (DFFN), dual-domain attention module (DDAM)
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1 Introduction

Blood Cancer is a major killer worldwide. Leukemia is the most

common blood cancer and a liquid malignancy (1). Among the top

10 cancer deaths in China, about 60000 people died of leukemia

every year (2).

Early diagnosis of leukemia can greatly improve the survival

rate. The early diagnosis of leukemia is usually made by doctors

observing the morphology and structure of bone marrow and blood

cells under a microscope, such as microscopic examination of bone

marrow aspiration and blood smears (3). Given the very large

numbers of cytopathological images to be processed, diagnosis

becomes cumbersome and time consuming for doctors, and

diagnostic accuracy is also closely related to experts’ experience,

fatigue and mood and so on. In view of the facts many researchers

have proposed some methods (4–13) for diagnosis of leukemia. The

critical step of which is segmentation. Thus, there is an increasing

requirement for a reproducible fully automatic white blood cells

segmentation method to accelerate and ease the process of

diagnosis, therapy and treatment.

Fully automatic white blood cells segmentation is challenging

for several reasons. First, cytopathological image datasets are

usually collected by hospitals through different equipment under

different lighting and staining conditions. Second, the influence of

human in the process of making cell smears or slices leads to

occurrences of cell deformation, blurred cell boundaries, and cell

color differences. Third, in a cytopathological image, there are many

cells and the shape and structure of cells are complex, which makes

the size and shape of different cells vary greatly, leading to some

cells overlapping or adhesion (14–16). Nowadays, white blood cells

segmentation is still an open problem, attracting much interest and

stimulating the further development of automatic segmentation

methods. Up to now, a wide range of cell segmentation methods has

been proposed, including region growing methods (17), hough

transform methods (18), filtering methods (19), thresholding

methods (20–24), watershed methods (25, 26), clustering methods

(27–29), SVM methods (30, 31), edge methods (32–35) and other

methods (36, 37). Although the above traditional segmentation

methods have achieved acceptable results, there are still some

limitations and challenges. Because the understanding and

analysis of complex images usually requires high-level semantic

information, the traditional segmentation methods need hand-

crafted feature extraction, and can only extract low-level

information. In light of the complex cell morphology, these

methods have poor robustness, especially for the cell adhesion

and blurred cell boundaries they have poor segmentation ability.

In recent years, the performance of convolutional neural

networks (CNNs) in the ImageNet large scale visual recognition

challenge (38) has merited the description state-of-the-art.

Shelhamer et al. (39) substituted the convolution layer for the

fully connected layer of CNN, and thus constructed a fully

convolutional network (FCN) to achieve automatic semantic

segmentation of images. Based on FCN, Ronneberger et al. (40)

proposed a U-net, using the idea of spanning connection, which

enabled the network to acquire information from both shallow and

deep layers at the same time. Compared with traditional methods,
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in which segmentation is based on manually identified features,

CNNs can automatically extract the most intricate semantic

features resulting in improved white blood cells segmentation

(41–43).

In 2018, Tran et al. (44) used SegNet (45) to achieve cell

segmentation in blood smears, but overlapping cells could not be

effectively separated. Guerrero-Pena et al. (14) proposed a multi-

class weighted loss function for cell instance segmentation. The loss

function was used to adjust the category imbalance, and thus the cell

contour was focused on. By increasing the weight of adhesive cell

boundaries, the network can more accurately capture the adhesive

boundaries. Schmidt et al. (15) proposed a STARDIST. According

to characteristics of cell shape that are similar to a circle, they used

polygons to detect and segment cells. This method showed excellent

performance in dealing with the dense cell adhesion problem. In

2019, Daniel et al. (46) proposed a single stage instance algorithm

YOLACT, which multiplied the prototypes and the mask generated

by the semantic segmentation network to produce instance masks.

Therefore, the YOLACT had extremely fast speed and can meet the

requirements of real-time segmentation. In 2019, Fan et al. (47)

proposed a LeukocyteMask method, which first located the white

blood cell regions, and then segmented white blood cells in the

regions. This method can avoid background interference, and

improve the network performance. Yi et al. (48) combined the

object detection network SSD and U-net to segment cells, and

achieved excellent results for neural cell instance segmentation.

Graham et al. (16) proposed a new CNN Hover-net for

synchronous nuclear segmentation and classification, which

trained the vertical and horizontal distances feature information

of nuclei to attain a distance weight map, and then the distance

weight map was post-processed through the watershed method.

This network provided a good idea of segmentation for solving the

problem of clustered nuclei. In 2020, Zhou et al. (49) proposed a

novel deep semi-supervised knowledge distillation framework,

called MMT-PSM, for overlapping cervical cell instance

segmentation. To solve the problem of low medical image data,

both labeled and unlabeled image data were used to train the

segmentation network, and the segmentation accuracy through

knowledge distillation was improved. In 2021, Xie et al. (50)

proposed a popularmask++ instance segmentation model, which

transformed the instance segmentation problem into predicting

contours of objects in polar coordinate, and unified instance

segmentation and object detection into one framework by using

coordinate representation. In 2022, Chan et al. (51) proposed an

encoding-decoding network with Res2-UneXt, which included a

simple and effective data augmentation method. In 2023, Dhalls

et al. (52) proposed an encoder–decoder model based on deep

learning to focus on salient multiscale features of white blood cells,

which combined features extracted from standard and dilated

convolutions. Zhou et al. (53) proposed a novel dual-task

framework, which used a novel color activation mapping block to

produce a refined salient map as the final salient map, and then a

novel adaptive threshold strategy was proposed to automatically

segment the white blood cells from the final salient map. Abrol et al.

(54) proposed a white blood cells segmentation method in which

three color spaces are considered for image augmentation. The
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proposed algorithm uses a marker-based watershed algorithm and

peak local maxima.

Althought the cell segmentation methods based on deep

learning have achieved much more results than traditional

methods, there are also the following deficiencies in cell

segmentation research:
Fron
(1) There is a relationship between the morphological

characteristics of cells and the types of diseases, and when

making cytopathological images, there are often cell

adhesion (14–16). Therefore, how to segment adhesive

cells is a research difficulty. Nowadays researchers

segment cells by the semantic segmentation methods, and

then extract cell contours through post-processing, but the

segmentation effect of cell contours is still poor.

(2) Most of the existing segmentation networks are proposed

for natural images, and no distinctive designs are made for

the characteristics of cytopathological images. It is worth

noting that the existing instance segmentation networks for

cytopathological images are often complex and redundant,

which makes the network model difficult to apply in clinical

practice.
Motivated by above problems, according to the characteristics

of cells in cytopathology images, to realize white blood cell detection

and segmentation in cytopathology images, a cytopathology image

instance segmentation model named YOLACT-CIS based on the

instance segmentation frame YOLACT is proposed. The

experimental results demonstrate that our method outperforms

the existing methods.

Our study makes the following contributions:
(1) Taking the advantage of feature reuse of Ghost module, the

single-stage instance segmentation algorithm YOLACT is

redesigned to reconstruct the backbone network, aiming at

making the backbone network lightweight, thereby

reducing the number of the network parameters and

computational complexity.

(2) The feature fusion layer in the instance segmentation

algorithm for white blood cells is redesigned, and a dual-

stream feature fusion network (DFFN) is proposed, which

enhances the flow of information from shallow layers by

adding an extra bottom-up fusion path in the feature

pyramid, thereby improving the segmentation effect of

adhesive cells and blurred cell boundaries.

(3) A dual-domain attention module (DDAM) is designed to

extract global features from both frequency and spatial

domains simultaneously. The feature information

obtained from two different domains is complementary to

each other, thereby enhancing extraction of cell details and

improving the segmentation effect of adhesive cells and

blurred cell boundaries.
The rest of this paper is organized as follows. Section II presents

the proposed method. Section III provides the experimental details
tiers in Oncology 03
and results. The discussion is presented in Section IV. Finally,

Section V offers some conclusions.
2 Methods

2.1 Instance segmentation

At present, most of the existing instance segmentation algorithms

(46, 55–57) are proposed for natural images, which can detect and

segment objects at the same time. For cell segmentation tasks,

instance segmentation algorithms can often achieve better results

than semantic segmentation algorithms when dealing with cell

adhesion. Nowadays, the instance segmentation algorithms are

mainly divided into single-stage instance segmentation algorithms

and two-stage instance segmentation algorithms. The detection and

segmentation in the two-stage instance segmentation algorithms are

carried out step by step, which can get better segmentation accuracy,

but usually have higher computational complexity and slower

reasoning speed. The single-stage instance segmentation algorithms

perform detection and segmentation tasks simultaneously in the

network. In most cases, compared with the two-stage instance

segmentation algorithms, the segmentation accuracy of the single-

stage instance segmentation algorithms has a certain decline, but they

can attain faster reasoning speed. The YOLACT method belongs to

the single-stage instance segmentation algorithms. Although its

segmentation accuracy is slightly reduced compared with the two-

stages instance segmentation algorithms, it can achieve a good

balance between accuracy and speed when dealing with

downstream tasks such as cell segmentation.

This paper uses the YOLACT method as the basic architecture,

and proposes a cytopathology image instance segmentation model

named YOLACT-CIS (YOLACT-Cell Instance Segmentation)

network to realize white blood cells segmentation in cytopathology

images, as shown in Figure 1. The blue part is composed of the

backbone network (Ghost-ResNet (58, 59) except fully connected

layer) and the improved feature pyramid, which is mainly used for

feature extraction. The green part mainly consists of mask coefficient

network and prototype network, and is used to generate instance

mask. The cell segmentation process is the following: First, the

backbone network is used to primarily extract features of the input

images, following which, the improved feature pyramid structure is

used to further encode the extracted features at different stages.

Second, the features of P3-P7 and P3 layers are fed into the mask

coefficient network and the prototype network, respectively. At the

same time, a series of coefficients generated by the mask coefficient

network are multiplied with the mask generated by the prototype

network to obtain the instance mask. Finally, the final results are

attained through cropping the prediction box.
2.2 YOLACT-CIS network

2.2.1 Lightweight backbone network
According to the imaging characteristics of white blood cells in

blood smear images, the morphological characteristics and color of
frontiersin.org
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white blood cells are obviously different from the surrounding

background, instead white blood cells are very similar to each

other. Therefore, if the network has too many parameters and is

too complex, it may lead to the network over-fitting, thereby

resulting in low network utilization, parameter redundancy and

other problems. In order to resolve the aforementioned problems,

making the backbone network lightweight is needed by reducing the

amount of parameters in our method. In addition, with the

deepening of the backbone network, the number of parameters

and the amount of computation increase rapidly, in order to make

our network easily deployed to practical applications, the

lightweight backbone network are also needed. In GhostNet (59),

a more efficient and lightweight convolution is proposed, which

allows similar feature transfomations to be applied to redundant

features, thereby reducing computational overhead. Inspired by

this, in this paper, the standard convolution in the residual

module of the backbone network is replaced with the Ghost

module, as shown in Figure 2.

2.2.2 Feature fusion layer
When using the deep convolutional networks to extract image

features, the deep layers contain more high-level semantic features,

and the shallow layers contain a lot of detailed information, such as

positioning information. The YOLACT also uses the feature fusion

network structure based on the feature pyramid, but only uses the

feature layers of the last three stages of the backbone network,

instead of the feature layer (C1) of the first stage and the the feature

layer (C2) of the second stage in the top-down feature fusion. The

reason is that when the C1 and C2 layers conduct the top-down

feature fusion, the network performance is not significantly

improved, on the contrary, the computational cost is increased.

The information from the shallow layers is very important for

object positioning and segmentation. Therefore, the feature

pyramid is improved by adding a bottom-up path to enhance the

flow of information from the shallow layers.

The feature pyramid network (FPN) (60) combines the features

from the shallow and deep layers, thereby completing the multi-

scale object detection task with less computational cost. In spite of

the FPN structure in the YOLACT can better combine the
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information from the shallow and deep layers to improve the

network performance, there still exists a problem of insufficient

utilization of the information from the shallow layers.

It is worth noting that the deep layers contain less detailed

features, leading to the lack of positioning information from the

shallow layers in the deep layers, as a result, white blood cells

segmentation is not accurate enough. In view of the above-

mentioned facts, according to the characteristics of white blood

cells, a dual-stream feature fusion networks (DFFN) is proposed, as

shown in Figure 3.

The DFFN combines the ideas of PANet (61) and FPN, and it

can better transmit the detailed features, such as positioning and

edge information, from the shallow layers to the deep layers

through a bottom-up transmission. This can effectively promote

the information flow of the shallow layers, and through information

fusion for the shallow and deep layers, the DFFN can better obtain

the detailed information of cells. Therefore, the DFFN can

effectively improve accuracy of cell detection and segmentation.

The fusion calculation process of the DFFN is shown in Figure 4.

The process of the top-down feature fusion of the DFFN: First,

the feature map from the last layer Ck is fed into a 1×1 convolution

to generate the feature map Yk. Second, the feature map Pk+1 is

enlarged twice by upsampling to obtain the feature map P′k+1, which

has the same dimension as the feature map Yk. Finally, Pk is

obtained by adding the feature map Yk and the feature map P′k+1,

where C5 is fed into a 1×1 convolution to generate P5. In addition,

P5, P4 and P3 all have 256 channels.

The process of the bottom-up feature fusion: First, feature map

Nk from the shallow layers is downsampled twice by a convolution

to obtain the feature map Mkof the same size as Pk+1. Second,

pixelwise addition of Pk+1 and Mk is performed, followed by a 3 × 3

convolution, thereby better achieving the feature fusion. Finally, Nk

+1 is obtained, where all N5, N4, and N3 have 256 channels. N6 and

N7 are obtained from N5 and N7 by downsampling, respectively.

2.2.3 Dual-domain attention module
There are not only white blood cells but also other cells in

cytopathological images. In addition, the process of making blood

smear may be affected by human and machines, which will reduce
FIGURE 1

Schematic diagram of YOLACT-CIS.
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the imaging quality of blood smear. These factors will have a great

impact on the accurate white blood cells segmentation. In this

paper, channel attention can be used to focus on feature

information of white blood cells in the channel domain, which

makes the feature information of white blood cells easier extracted.

Additionally, it can be seen from Figure 5 that there exists not only

adhesion between white blood cells, but also similarity, both of

which contribute to the indistinct white blood cell boundaries.

Using spatial attention mechanism can make a network pay

attention to the details of white blood cell boundaries in the

spatial domain, thus effectively distinguishing white blood

cell boundaries.
Frontiers in Oncology 05
In recent years, Attention mechanism has drawn much attention

and shown promising results in medical image segmentation. As a

representative of channel attention mechanism, SENet (62)

recalibrates channels according to the importance of each channel.

Convolutional block attention module (CBAM) (63), on the basis of

SENet, increases its attention to spatial association. In this paper,

based on CBAM, a spectrum based hybrid attention mechanism is

proposed to enhance the attention to cell details.

CBAM module models the correlation between channel and

spatial information from feature maps, thereby making the network

focus on the key information from feature maps and improving

representation capability of the network. This module calculates the

attention distribution of feature maps from the channel and spatial

domains, respectively. In the channel attention module of CBAM, it

extracts key information by compressing spatial information.

Compared to SENet using only one pooling strategy to extract

feature information, both global max pooling (GMP) and global

average pooling (GAP) are used in CBAM, which can

comprehensively extract feature information, so that the network

can obtain better performance. Although CBAM can effectively

improve the network performance by using two pooling methods,

there is still a problem of losing some key information from feature

maps. Accordingly, more feature extraction methods are used to

extract effective information from multiple aspects, aiming at

improving the key information extraction capability of the

network for objects. The channel attention mechanism proposed

in this paper is different from the global feature extraction method

in CBAM. It can extract features from the frequency domain,

aiming at attaining more comprehensive features.

From the perspective of frequency domain, GAP is a special case

of frequency components, that is, when only GAP is used to extract

features, the information contained in other frequency components is

not fully utilized. In order to resolve this problem, two-dimensional

discrete cosine transform (2D-DCT) (64) is employed in our scheme,

2D-DCT of each channel from feature maps is defined by:

Yk
h,w = o

H−1

h=0
o
W−1

w=0
Fk(i, j) cos

ph
H

i +
1
2

� �� �
cos

pw
W

j +
1
2

� �� �
(1)

 s:t: i ∈ 0, 1,⋯,H − 1f g, j ∈ 0, 1,⋯,W − 1f g,  h ∈ 0, 1,⋯,H − 1f g,
w ∈ 0, 1,⋯,W − 1f g, k ∈ 0, 1,⋯,Cf g

where Yk
h,w ∈ RC�H�W is a 2D-DCT of a channel, and .. is the

position (i, j) of the k-th channel from the feature map. Yk
0,0 is the

lowest frequency component of . Yk
h,w ∈ RC�H�W . and defined as:

Yk
0,0 = o

H−1

h=0
o
W−1

w=0
fk(i, j) cos

p0
H

i +
1
2

� �� �
cos

p0
W

j +
1
2

� �� �

        ¼o
H−1

h=0
o
W−1

w=0
fk(i, j)

(2)

GAP is defined like this:

GAP(k) =
1

HW o
H−1

h=0
o
W−1

w=0
fk(i, j) (3)
FIGURE 2

Schematic diagram of Ghost-ResNet.
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which combined with (2) as follows

Yk
0,0 = o

H−1

h=0
o
W−1

w=0
fk(i, j)  ¼ HWGAP(k) (4)

where Yk
0,0 is proportional to GAP, so GAP can be considered as

a special case of the frequency components. Accordingly, only using

GAP to extract features will lose information of other components,
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which also shows that CBAM can obtain better results by using two

pooling methods for feature extraction than one pooling method. In

our method, other frequency components are added to the

calculation of channel attention in order to more fully obtain

information from the feature maps.

Yk
h,w ∈ RC�H�Wcan be calculated as a 2D-DCT of feature map

F ∈ RC�H�W , wh i ch i s composed o f CHW f r equency
FIGURE 3

The structure of DFFN.
FIGURE 4

Feature fusion calculation process.
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components. If all frequency components are included in the

calculation, which will lead to high computational complexity of

the network, and the network performance is not significantly

improved. Xu et al. (65) proposed a method of learning in the

frequency domain, analyzing frequency deviation from the

frequency domain, and proving that the CNN is more sensitive

to low spectral components. Accordingly, a frequency-domain

channel attention model (FCAM) is proposed, which uses the low

frequency components Yk
0,0, Yk

0,1, Yk
1,1 of 2D-DCT, as shown

in Figure 6.
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(1) Generation of spectral components. FCAM uses discrete

cosine transform to extract channel information, aiming at

ob t a i n i n g u s e f u l i n f o rma t i on f r om channe l mo r e

comprehensively. FCAM performs 2D-DCT for each channel of

the input. The 2D-DCT of the k-th channel is described in detail as

follows. Yk
0,0 ∈ RC�1�1 represents the spectral component at

position (0,0) of 2D-DCT and is defined as:

Yk
0,0 = o

H−1

h=0
o
W−1

w=0
fk i, jð Þ cos p � 0

H
i +

1
2

� �� �
cos

p � 0
W

j +
1
2

� �� �

(5)

Yk
1,0 ∈ RC�1�1 represents the spectral component at position

(0,1) of 2D-DCT and is defined as:

Yk
1,0 = o

H−1

h=0
o
W−1

w=0
fk i, jð Þ cos p

H
i +

1
2

� �� �
cos

p � 0
W

j +
1
2

� �� �
(6)

Yk
0,1 ∈ RC�1�1represents the spectral component at position

(1,0) of 2D-DCT and is defined as:

Yk
0,1 = o

H−1

h=0
o
W−1

w=0
fk i, jð Þ cos p � 0

H
i +

1
2

� �� �
cos

p � 1
W

j +
1
2

� �� �

(7)

(2) Channel weights prediction. First, the feature maps Yk
0,0  ,

Yk
0,1  ,Y

k
1,1  from the previous step are fed into the shared full

connectivity in parallel to perform two linear mappings, the first

of which is that the feature maps are linearly mapped (W0) to a

vector with size C/r, followed by a rectified linear units, the second

of which is that the feature maps are linearly mapped (W1) to a
FIGURE 5

Cytopathological image.
FIGURE 6

Schematic diagram of Frequency-domain Channel Attention Module.
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vector with dimension C, the compression rate r is set to 16. Second,

the three feature vectors which are output by fully connected layer

are added, followed by a sigmoid function. Finally, the weight

coefficient MF∈RC×1×1 is obtained. The spectral attention module

is defined as:

MF = s (MLP(Yk
0,0) +MLP(Yk

0,1) +MLP(Yk
1,0))

= s (W1(W0Y
k
0,0) +W0(W1Y

k
0,1) +W0(W1Y

k
1,0))

(8)

where MLP is the shared fully connected layer, W0 ∈ RC=r�C ,

W1 ∈ RC�C=r , and s is a sigmoid activation function.

In this paper, the improved FCAM which replaces the CAM is

in series with SAM, thereby constructing a hybrid attention

mechanism from frequency and spatial domains, namely dual-

domain attention module (DDAM). In order to improve

segmentation performance of YOLACT, our method combines

the DFFN and the DDAM, as shown in Figure 7, the idea of which

is to enable the network to recalibrate features that is given

attention by itself. Given the fact that the feature layer after top-

down feature fusion contains rich positioning and classification

information, and the subsequent detection and classification can

be more effectively recalibrated by connecting the attention

module, the DDAM is placed between the DFFN and mask

coefficient network. Also due to the fact that the smaller size of

the feature maps output by the DFFN, connecting attention

modules here cann’t increase the complexity of our method too

much. Therefore, the DDAM is placed after layers N3 to

N7, respectively.
3 Experiments and results

In this section, the dataset and preprocessing, performance

evaluation metrics and hyperparameter settings used in our

experiment are first introduced, and then the effectiveness of each

component, a tremendous amount of ablation studies on the All-

IDB1 (66) and BCCD (67) datasets are verified. Finally,

experimental results of our method compared with state-of-the-

art counterparts on the All-IDB1 (66), BCCD (67) and Raabin-

WBC (68) datasets are reported.
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3.1 Dataset and preprocessing

3.1.1 Dataset
Due to medical image datasets usually need to be annotated by

pathologists, leading to a fewer numbers of medical image datasets.

Therefore, to better evaluate the performance of our method, we

combine the public blood smear cell pathology image dataset ALL-

IDB1 (66) from the University of Milan, Italy, and the blood smear

cell pathology image dataset BCCD (67) from MIT to increase the

number of blood smear images. Furthermore, to further validate our

method, experiments on the Raabin-WBC dataset are conducted.

ALL-IDB1 is used for the study of white blood cells

segmentation and classification. The images in the dataset were

taken at a magnification of 300 to 500 of the microscope. The

dataset consists of 108 images, which contains about 39000 blood

elements, and each image resolution is 2592 × 1944. The BCCD

Dataset includes 364 microscopic images of various white blood

cells. Each image contains various blood cell components, such as

white blood cells, red blood cells and platelets. The size of each

image is 640 × 480 pixels. Raabin-WBC is a publicly available

dataset, which contains professional annotations related to WBCs

and consists of a training set (912 images) and a testing set (233

images). The size of each image is 575 × 575 pixels.

3.1.2 Dataset preprocessing
In the ALL-IDB1, each image resolution is 2592 × 1944. Taking

into account the limitation of the experimental equipment and directly

reducing image resolution will make segmentation objects too small,

which may affect the segmentation performance. Therefore, in this

paper, each blood smear image is cropped with a sliding window to 512

× 512 sub-images, and the stride is set to 256. Finally, 314 images with

white blood cells are obtained. In BCCDDataset, each image resolution

is 640 × 480. In order to keep the ratio of the height-to-width of each

image unchanged, all images are directly zero-padded to square (640 ×

640). Noting that our method uses the instance segmentation

algorithm for white blood cells. However, both ALL-IDB1 and

BCCD do not provide instance segmentation labels for white blood

cells. Accordingly, white blood cells are annotated according to the

guidance of pathologists, as shown in Supplementary Figure 1. In this

experiment, there are 678 images in total and each image is reshaped to
FIGURE 7

Schematic diagram of DDAM and DFFN connection.
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550 × 550. Notably, all images are divided into a training set, a

validation set and a testing set with 474, 68, 136 images respectively

(i.e., a ratio of 7:1:2). Similarly, in the Raabin-WBC dataset, all images

are resized into 550 × 550. Meanwhile, the Raabin-WBC dataset is

divided into a training set, a validation set and a testing set with 798,

114, 233 images respectively (i.e., a ratio of 7:1:2).
3.2 Configuration

The segmentation method was implemented in Python on a

computer equipped with two NVIDIA 1080Ti graphics cards, each

of which has 11GB of memory, and a CPU of Intel Xeon E5-2630.

The pytorch library served as a high-level framework, the

experimental platform was based on the Ubuntu 18.04 system.

The training time for our model was approximately 3.6 hours. All

methods used in this experiment were compared using a set of the

same hyper-parameters, ensuring the fairness of the experimental

results. Regarding the selection of optimization methods, the more

stable SGD method during the training process was adopted and

600 epochs were conducted to ensure our model convergence. In

addition, the experience values for learning rate and batch size were

chosen, and the hyper-parameter details of the segmentation model

are shown in Table 1.
3.3 Performance evaluation metrics

Currently, the most widely used measures for the quantitative

evaluation of image segmentation results are the following:

Precision and Recall. Two criteria are defined by:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

where TP and TN represent the number of the pixels that were

correctly determined to be white blood cells and the background,

respectively. Conversely, FP and FN represent the number of pixels

that were incorrectly predicted to be white blood cells and the

background, respectively. The two metrics are used to quantify the

similarity between the automatically segmented white blood cell

and the manually segmented white blood cell. Their values range

from 0 to 1: the higher the value, the better the match.

For white blood cells instance segmentation, IoU (Intersection

over Union) represents the degree of overlap between the

segmentation results and the ground truth. A represents the

ground truth, and B represents the segmentation result, the IoU is

defined as follows:

IoU =
A ∩ B
A ∪ B

(11)

where the IoU threshold is 0.5, when the IoU is greater than 0.5,

the segmentation result of our method is TP. The segmentation
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results of our method are mainly measured by mAP and AP. mAP

refers to the mean AP of each category. Note that, there is only one

category of detection and segmentation algorithms of white blood

cells in this paper, the AP is mAP. AP50 is defined like this:

AP50 =
Z 1

0
p(r)dr (12)

where p(r) represents the P-R (Precision-Recall) curve, when

the IoU threshold is smaller than 0.5, that is, the curve is composed

of Precision and Recall, as shown in Supplementary Figure 2. AP is

the area under the P-R curve.

In this paper, AP is the average APIoU over IoU thresholds from

0.5 to 0.95 with an interval of 0.05. In addition, there are AP75,

FLOPs, Params and other evaluation metrics. AP75 means that the

IoU threshold is set to 0.75, FLOPs is floating point operands, and

Params is the number of the network parameters.
3.4 Ablation experiment

3.4.1 Impact of adjustment factor S on
network performance

Our method takes advantage of feature reuse of Ghost module to

reconstruct the backbone network of the YOLACT, therebymaking the

network lightweight. The number of features adjustment factor S of

Ghost module is used to control the number of feature maps generated

in the first step of Ghost module, and the number of parameters and

computational cost decreases with the increase of the value of S. In

order to explore the relationship between the network complexity and

the network performance, we compare the impact of different S values

on the model performance. The experimental results are shown in

Table 2. In this experiment, the values of S are set to 2, 4 and

6 respectively.

In Table 2, it can be seen that the network has the best performance

when S=4, although the number of parameters and computational cost

are both the smallest when S=8, which proves that parameter

redundancy of the network results in over-fitting. But when S=8, the

segmentation performance of the network decreased which

demonstrated that excessive compression may lead to the decline of

the learning capability. Accordingly, to avoid severe segmentation

performance degradation, S is set to 4 in our experiments.

3.4.2 Performance comparison of different global
extraction methods in DDAM

DDAM converts spatial domain to frequency domain for global

information extraction. Note that, 2D-DCT of a feature map contains

many frequency components, not all of which contain useful

information. Therefore, combination of different frequency

components have different influences on the network performance.

Table 3 shows the performance comparison of different global feature

extraction methods. Yk
h,w ∈ RC�H�W is computed as a 2D-DCT of F

∈ RC�H�W , and then C × H × W frequency components are

generated. In this paper, frequency components Yk
0,0, Yk

0,1, Yk
1,0

and Yk
1,1 are viewed as extracted global information. The following

conclusions can be drawn from Table 3:
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Fron
(1) From the comparison of two extraction methods Yk
0,0 and

CBAM (GMP+GAP), it indicates that the CBAM is better,

which proves that it is not comprehensive to only use GAP

to extract global information, and adding GMP together

can supplement some missing important feature

information.

(2) From the comparison of Yk
0,0 + Yk

0,1 and CBAM (GMP

+GAP), it can be seen that using Yk
0,0 + Yk

0,1 (i.e., converting

the spatial domain to the frequency domain) can improve

segmentation accuracy, which demonstrates that more key

information missed in the spatial domain can be extracted

by Yk
0,0 + Yk

0,1. Thus, Y
k
0,1 is a good supplement to Yk

0,0.

(3) The feature information in Yk
1,0 is somewhat different from

that in Yk
0,0 and Yk

0,1. Therefore, use of Yk
1,0 can effectively

enhance extraction of global key information, which is a

supplement to other feature extraction methods

(4) From the comparison of Yk
0,0 + Yk

0,1 + Yk
1,0 + Yk

1,1 and Yk
0,0 +

Yk
0,1 + Yk

1,0, we can see that not all the information in the

frequency components is valid, and some information may

interfere with the network performance. Therefore,

different combinations of the frequency components can

affect the network performance to some extent.

(5) From Table 3, it shows that the combination of Yk
0,0 + Yk

0,1 +

Yk
1,0 is somewhat better than CBAM (GMP+GAP).
Consequently, the combination of Yk
0,0 + Yk

0,1 + Yk
1,0 is chosen for

following experiments.

3.4.3 Impact of DFFN on network performance
In this section, the contribution of the DFFN to the

network performance is explored. Table 4 presents the effect

comparison of DFFN and FPN methods on the network

performance. The experimental results show that, compared
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to FPN, DFFN can capture more details, and thus effectively

improving the network performance. In contrast to the FPN,

the three metrics of AP, AP50 and AP75 of DFFN are 0.8%,

1.02% and 1.09% higher.

3.4.4 Ablation study of our method
In order to show the effect of each improvement, the following

ablation study was performed. The AP, AP50 and AP75 of utilizing the

adjustment factor S=4 achieve 0.78%, 0.89% and 1.41% gains compared

with the YOLACT algorithm, respectively. When setting S=4 and using

the DDAM, the AP, AP50 and AP75 are 1.27%, 1.20% and 1.03% higher

than only employing S=4, respectively. When further adding the

DFFN, the AP, AP50 and AP75 reach to optimal perfomance,

87.41%, 97.82% and 95.38%, respectively. As shown in Table 5,

among all the modules the DDAM improves the performance of the

AP and AP50 themost. Additionally, the adoption of S=4 contributes to

the biggest improvement for the AP75.
3.5 Performance comparison with other
instance segmentation methods

In order to measure the quantitative metrics of our method, we

compare our method with other instance segmentation methods. The

segmentation results are shown in Table 6. Noting that YOLACT-CIS

method obtains comprehensive improvements for nearly all metrics

compared with Mask R-CNN, PointRend, MS R-CNN, SOLOv2 and

YOLACT. Among them, Mask R-CNN, MS R-CNN and PointRend

are two-stage instance segmentation algorithms, which generally have

high segmentation accuracy, but have more network parameters and

high computational cost. SOLOv2 and YOLACT are single-stage

instance segmentation methods with fast segmentation speed, but

segmentation accuracy is not high.

In this paper, ResNet-50 is used as the backbone of all networks.

As listed in Table 6, although the two-stage instance segmentation
TABLE 1 Hyper-parameters of our instance segmentation model.

Model Optimization algorithm Learning rate Batch size Epoch

YOLACT-CIS SGD 0.001 16 600
front
TABLE 2 The model’s performance of different S values on the ALL-IDB1 and BCCD datasets.

S AP (%) AP50 (%) AP75 (%) FLOPs (G) Params (M)

ResNet (58) 84.86 94.81 92.03 25.66 25.56

2 85.04 94.98 92.69 14.69 13.28

4 (Ours) 85.52 95.65 93.33 9.19 8.16

8 83.22 93.95 91.72 5.6 6.44
Bold fonts indicate the best values in each column.
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algorithms achieve a higher segmentation accuracy than the single-

stage instance segmentation algorithms. The AP, AP50 and AP75 of

our method are 1.40-24.14%, 0.42-8.40% and 0.74-19.83% higher

than those of other algorithms, respectively. In the meantime, our

method significantly reduces the number of parameters and FLOPs.

In the meantime, our method significantly reduces the number of

parameters and FLOPs, which is 50.3% and 70.7% of YOLACT

respectively. Furthermore, the above-mentioned six methods in

Table 6 are also validated on the Raabin-WBC dataset. In

Supplementary Table 1, it is easily observed that our method

outperforms the other methods, demonstrating that the proposed

method attains superior performance in terms of AP, AP50, and

AP75. Besides, Supplementary Table 2 shows computation time

comparison of instance segmentation methods. Our method is the

fastest among all methods.

Moreover, to more intuitively compare performance of the

aforementioned methods, we have constructed scatter plots of the

number of the network parameters and FLOPs. From Figure 8, it

can be seen that our method achieves best results in the

segmentation accuracy and the network lightweight compared

with other methods.
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The visualization segmentation results of our method are shown in

Figure 9. It can be seen that each white blood cell in the blood smear

images can be accurately detected, and our method can more

completely segment the white blood cells. It is worth noting that for

white blood cells with overlapping and irregular edge, our method still

performs well, and overlapping and adhesive contours between cells

can be completely segmented. The visualization segmentation results

further indicate our method has good segmentation performance.
4 Discussion

First, our method is significantly better than the current state-

of-the-art single-stage methods in terms of both the number of

parameters and FLOPs, and our method has the best performance

among all methods. However, the performance of our method is

still lower than the two-stage instance segmentation algorithms.

Second, there are still some equipment with insufficient

performance, so the lightweight network research needs to be

further explored. In order to make white blood cells segmentation

methods more practical, in future work, how to design a more
TABLE 4 The effect of feature fusion layer for model’s performance on the ALL-IDB1 and BCCD.

Method AP (%) AP50 (%) AAP75 (%)

FPN (60) 86.61 96.80 94.29

DFFN 87.41 97.82 95.38
Bold fonts indicate the best values in each column.
TABLE 3 The model’s performance of different extraction methods on the ALL-IDB1 and BCCD datasets.

Method AP (%) AP50 (%) AP75 (%)

CBAM (GMP+GAP) (63) 86.12 96.53 93.87

Yk
0,0 85.99 95.80 93.59

Yk
0,0 + Yk

0,1 86.21 96.55 93.80

Yk
0,0 + Yk

0,1 + Yk
1,0 (Ours) 86.61 96.80 94.29

Yk
0,0 + Yk

0,1 + Yk
1,0 + Yk

1,1. 86.31 96.61 94.01
Bold fonts indicate the best values in each column.
TABLE 5 Ablation study of our method on the ALL-IDB and BCCD datasets.

Method S=4 DDAM DFFN AP (%) AP50(%) AAP75(%)

1 84.86 94.81 92.03

2 ✔ 85.52 95.65 93.33

3 ✔ ✔ 86.61 96.80 94.29

4 ✔ ✔ ✔ 87.41 97.82 95.38
Bold fonts indicate the best values in each column.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1223353
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Luo et al. 10.3389/fonc.2023.1223353
lightweight network model while ensuring a good accuracy will

become an important problem.

Because a large number of annotated data are required for cell

segmentation in deep learning methods, the training of our method

has used conventional data augmentation methods. The effect of

data augmentation on the ALL-IDB1 and BCCD datasets is

analyzed in Supplementary Table 3. In the future, semi-

supervised learning and data distillation can be used to reduce the

need for a large number of annotated data. Also, the generative

adversarial network can also be used to augment datasets.
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5 Conclusion

In summary, motivated by the instance segmentation network

YOLACT, according to features of cell in cytopathological images,

we propose an instance segmentation model named YOLACT-CIS

to segment white blood cells in cytopathological images. First, the

Ghost module has been used to make the structure of the backbone

network lightweight, aiming at reducing the number of network

parameters and computational cost. Second, a novel DFFN is

proposed. Specifically, a bottom-up path has been added to the
TABLE 6 Comparison with instance segmentation methods on the ALL-IDB1 and BCCD datasets.

Method AP (%) AP50 (%) AP75 (%) FLOPs (G) Params (M)

Mask R-CNN (69) 85.72 96.92 94.64 123.48 43.75

PointRend (56) 82.39 95.90 91.60 73.26 55.48

MS R-CNN (55) 86.01 97.40 94.40 123.48 60.01

SOLOv2 (70) 63.27 89.42 75.55 \ \

YOLACT (46) 84.86 94.81 92.03 56.29 34.99

Ours 87.41 97.82 95.38 39.82 17.59

Ours(ALL-IDB1) 85.01 94.97 93.83 39.82 17.59

Ours(BCCD) 84.81 95.14 92.99 39.82 17.59
Bold fonts indicate the best values in each column.
B

C D

A

FIGURE 8

Comparison of parameters and performance of different instance segmentation networks. (A) AP-Params scatter plot; (B) AP-GFLOPs scatter plot;
(C) AP50-Params scatter plot; (D) AP50-GFLOPs scatter plot.
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fusion layer of FPN to improve the capability of obtaining detailed

feature information. Finally, the DDAM is proposed to extract

global features from both frequency and spatial domains

simultaneously, so as to enhance the capability to extract features.

Adequate experimental results proved that our proposed
Frontiers in Oncology 13
method can further lighten the network structure while

achieving competitive white blood cells segmentation

performance compared with other state-of-the-arts. In the future,

we will val idate our method in more medical image

segmentation scenarios.
B CA

FIGURE 9

Comparison of labels and prediction results. (A) Input images; (B) Labels; (C) Prediction results.
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