10,900 research outputs found

    The science of color and color vision

    Get PDF
    A survey of color science and color vision

    Convolutional Neural Networks Can Be Deceived by Visual Illusions

    Get PDF
    Visual illusions teach us that what we see is not always what is represented in the physical world. Their special nature make them a fascinating tool to test and validate any new vision model proposed. In general, current vision models are based on the concatenation of linear and non-linear operations. The similarity of this structure with the operations present in Convolutional Neural Networks (CNNs) has motivated us to study if CNNs trained for low-level visual tasks are deceived by visual illusions. In particular, we show that CNNs trained for image denoising, image deblurring, and computational color constancy are able to replicate the human response to visual illusions, and that the extent of this replication varies with respect to variation in architecture and spatial pattern size. These results suggest that in order to obtain CNNs that better replicate human behaviour, we may need to start aiming for them to better replicate visual illusions

    On the Computational Modeling of Human Vision

    Full text link

    A Robust Quasi-dense Matching Approach for Underwater Images

    Get PDF
    While different techniques for finding dense correspondences in images taken in air have achieved significant success, application of these techniques to underwater imagery still presents a serious challenge, especially in the case of “monocular stereo” when images constituting a stereo pair are acquired asynchronously. This is generally because of the poor image quality which is inherent to imaging in aquatic environments (blurriness, range-dependent brightness and color variations, time-varying water column disturbances, etc.). The goal of this research is to develop a technique resulting in maximal number of successful matches (conjugate points) in two overlapping images. We propose a quasi-dense matching approach which works reliably for underwater imagery. The proposed approach starts with a sparse set of highly robust matches (seeds) and expands pair-wise matches into their neighborhoods. The Adaptive Least Square Matching (ALSM) is used during the search process to establish new matches to increase the robustness of the solution and avoid mismatches. Experiments on a typical underwater image dataset demonstrate promising results
    corecore