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Abstract

Visual illusions teach us that what we see is not always

what is represented in the physical world. Their special na-

ture make them a fascinating tool to test and validate any

new vision model proposed. In general, current vision mod-

els are based on the concatenation of linear and non-linear

operations. The similarity of this structure with the oper-

ations present in Convolutional Neural Networks (CNNs)

has motivated us to study if CNNs trained for low-level vi-

sual tasks are deceived by visual illusions. In particular, we

show that CNNs trained for image denoising, image deblur-

ring, and computational color constancy are able to repli-

cate the human response to visual illusions, and that the

extent of this replication varies with respect to variation in

architecture and spatial pattern size. These results suggest

that in order to obtain CNNs that better replicate human

behaviour, we may need to start aiming for them to better

replicate visual illusions.

1. Introduction

Visual illusions are fascinating examples of the complex-

ity of the human visual system, and of the intrinsic differ-

ence between perception and reality: while we constantly

assume that what we see is a faithful representation of the

world around us, visual illusions make clear that what we

see is just an internal construct of eyes and brain, because

our internal representation and the world itself often do not

match.

For instance, Fig. 1 shows a simple color illusion, where

three identical cats are seen as having quite different colors

depending on their surround. Visual illusions are so striking

because, even after we go and check that the three cats have

indeed the same triplet RGB value and therefore send the

same light to us, we still see them as having different colors.

There are many types of illusions apart from color-based,

involving other percepts such as brightness, motion, geom-
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Target InducerVisual illusion

Figure 1. Anatomy of a simple color visual illusion. While the

target (cat) is always the same, with the same RGB triplet in the

three cases, we perceive it as “pink” when it is isolated, but ma-

genta with one inducing surround and orange with the other.

etry or grouping, to name a few [1]. For the visual science

community the study of visual illusions is key [2, 3], as the

mismatches between reality and perception provide insights

that can be very useful to develop new vision models of per-

ception or of neural activity [4], and also to validate existing

ones. This remains a very challenging open problem, as at-

tested by the variety of vision science models (e.g. percep-

tual models based on edge-integration, Gestalt-anchoring,

spatial-filtering, intrinsic images or purely empirical ones)

and the fact that none of them can replicate a wide range of

visual illusions; even models that can successfully predict

an illusion may fail when a slight modification (like adding

noise) is introduced [5].

A very popular approach in vision science is to model

neural activity and also perception as a cascade of modules,

each consisting of a linear convolution operation followed

by a nonlinearity, see [6] and references therein1. These are

of course the building blocks of convolutional neural net-

works (CNNs), but while the filters in visual models are de-

signed so that the model best replicates neural or perceptual

data, filters in CNNs are learned in a supervised manner in

order to perform a specific imaging task, such as classifica-

tion, recognition or denoising, to name just a few.

The authors find rather stunning that, given the impor-

tance of visual illusions for the vision science community,

the neural inspiration of CNNs, and that so often the aim

of CNNs is replicating human behaviour, there is virtually

no work done on linking visual illusions and CNNs. To the

1We want to stress that linear+nonlinear cascades are very common but

definitely not the only approach to modeling in vision science, given their

well-known limitations [7].
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best of our knowledge there are only two, very recent, pub-

lications in this regard. The first one comes from the vision

science field [8], where a CNN trained to predict videos was

able to reproduce motion illusions. In the second one, from

the perspective of computer vision [9], the authors classify

and attempt to generate new visual illusions using genera-

tive adversarial networks.

In this paper we report what we consider to be a quite re-

markable and surprising finding, namely that CNNs trained

on natural image databases for basic low-level vision tasks

reproduce the human response to some visual illusion im-

ages, i.e. the CNNs are deceived by the visual illusions in

the same way that we are deceived by them. Our other main

contribution is to study how the ability of these CNNs to

replicate visual illusions is affected by common architec-

ture variations and spatial pattern size.

These results have, we believe, important consequences

both for visual science and computer vision. For the vi-

sual science community, they support the idea that in order

to perform low level vision tasks, the human visual system

performs operations that as by-product create visual illu-

sions. Moreover, these findings could help vision science

in developing a taxonomy of which visual illusions are as-

sociated to which visual tasks. For the computer science

community, the results build a new bridge between CNNs

and the visual system. However, as it is shown on our ex-

periments, this relationship and its possible consequences

are constrained by the fact that not all optical illusions are

replicated by the CNNs here studied. This can shed light

on the limitations of CNNs for mimicking the visual sys-

tem, and therefore offers an opportunity for the design of

new architectures that, by better replicating visual illusions,

could behave more like humans do.

2. Methods

2.1. Replication of human visual perception

Let us start by explaining how vision science measures

the capacity of a model for replicating visual perception in

a particular scenario. Observers first assess their percep-

tion of some aspect of the stimulus (e.g. the brightness) in

a manner that is quantifiable (e.g. by ranking it on a scale

from 0 to 5). Then, subject responses are averaged, and

these averages are compared with the output values pro-

duced by the model. This last comparison can be either

performed qualitatively or quantitatively.

In this paper, we will follow the qualitative paradigm.

We say that a CNN replicates a VI if the difference between

the values of the input image and the values of the output

produced by the CNN agrees qualitatively with human per-

ception. This is, if for instance we perceive a mid-gray level

to be a darker gray and the CNN turns a mid-gray input

value into an output value that is closer to black.

2.2. Selected visual illusions

There are two antagonistic basic effects in brightness and

color visual illusions known as assimilation and contrast. In

the case of assimilation effects, the image values change to-

wards those of the neighboring region. Conversely, in the

case of contrast effects, the image values move away from

those of the neighboring region. We choose two assimila-

tion VIs (Fig. 2a 2b), one contrast VI (Fig. 2d), and two

non-defined (not assimilation, neither contrast) VIs (Fig. 2c

and 2e). The first row in Figure 3 shows the color version

of the same VIs.

The illusions 2a-d present targets that have identical val-

ues but that are seen differently depending on their sur-

rounds. The targets are, in the Dungeon illusion ([10], Fig.

2a) the large central squares, in Hong-Shevell ([11], Fig.

2b) the middle rings, in the White illusion ([12], Fig. 2c)

the small grey bars, and in the Luminance gradient (Lum.)

illusion (combination of [13, 14], Fig. 2d) the circles. The

fact that the targets have indeed the same values (0.5 in all

cases) can be seen in the second row of Fig. 2, that plots

the image values along the segments shown in color over

the visual illusions in the top row. The Chevreul illusion

[15] presents homogeneous bands of increasing intensity,

from left to right, but these bands are perceived to be in-

homogeneous, with darker and brighter lines at the borders

between adjacent bands. In the color version (first row in

Fig. 3), the phenomena are similar: for the Dungeon and

the Hong-Shevell cases, the right target must go towards

green and the left target towards red; for the White illusion,

the left target must go towards yellow and the right target

towards red; in the Luminance gradient illusion, the left tar-

gets should move towards red and the right targets towards

green; finally, the Chevreul illusion should be perceived in

the red channel analogously to the grayscale case.

2.3. Lowlevel vision tasks studied

In this work we consider three key image processing

problems that have close correlates in human perception:

denoising that relates to our ability to discount noise in im-

ages [16], deblurring that relates to our capabilities of avoid

perceiving the blur provoked by moving objects [17], and

color constancy that relates to the way our perception of

colors matches quite well the reflectance properties of ob-

jects rather independently of the color of the illuminant.

2.4. CNN architectures

For our core experiment, we chose a very simple ar-

chitecture for the CNNs: input and output layers of size

128 × 128 × 3 pixels, one hidden layer with eight features

maps with a receptive field (kernel size) of five and no stride

(stride 1), and sigmoid activation functions. At the end there

is a convolutional layer that works as output layer (hence

it has three layers for the red, green, and blue channels).
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Figure 2. The first row displays the selected grayscale visual illusions as explained in Section 2. The scale of the illusions in the Figure is

different from the scale used in the experimenta for displaying purposes. The magenta and cyan lines represent the location in the images

of the profiles plotted in the rows 2-4.

Note that no pooling, residual connections or other modifi-

cations were added to this architecture. Mean squared error

was used as loss function in all the tasks and all the models

were implemented2 using Keras [18]. We name the CNNs

based on the task they were trained for. Hence, DN-NET,

CC-NET, and DB-NET correspond to denoising, color con-

stancy, and deblurring, respectively

Then, we move to a similar CNN presented by Jain et

al. [19], one of the first successful CNNs designed for im-

age denoising. Our implementation of this CNN, that we

denote as Jain2009 from now on, has an input/ouput size of

128×128 and is composed of four hidden layers with a ker-

nel size of five and a sigmoid as activation function. This

CNN can be considered as a deeper version of the CNNs of

the first experiment. We used this CNN to study common

variations in the architecture of CNNs and how they affect

to the replication of VIs.

Finally, we use a recent CNN for denoising (Zhang2017)

2The source code is publicly available at:

https://github.com/alviur/convnets_vs_vi

[20] to test the response for more complex architectures.

2.5. Datasets

For denoising we consider the Large Scale Visual Recog-

nition Challenge 2014 CLS-LOC validation dataset [21]

(which contains 50k images), and corrupts images with

additive Gaussian noise of σ = 25 after resize them to

128x128. For deblurring we consider the same dataset

as before, and blur the images with a Gaussian kernel of

σ = 2. For color constancy we consider the dataset of

Cheng et al. [22] that provides the color of the illumina-

tion for each image. We computed the ground-truth image

by applying the inverse of the illuminant color to the orig-

inal image, and then we performed an end-to-end training

between the original image and the ground-truth one. For

this problem, we divide each original image into four sub-

images in order to increase the pool of available images for

the training of the net. By doing this, we end up with a total

of 6944 images. In all three cases, the dataset was split in

70% for training, 20% for validation, and 10% for test.
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Figure 3. The first row displays the selected color visual illusions as explained in Section 2. The scale of the illusions in the Figure is

different from the scale used in the experimenta for displaying purposes. The black continuous and dashed lines represent the location in

the images of the profiles plotted in the rows 2-4. Only the profiles from the Red and the Green Channels are displayed.

2.6. Experiments

A base spatial scale for each of the five VIs was fixed in

order to evaluate replication. This base scale was 4x4 pixels

(px.) target squares for Dungeon (Dun), 1 px. ring width

for Hong-Shevell, 4x4 px. target for White, 5 px. diameter

target for Luminance gradient (Lum.) and 10 px. step width

in Chevreul. A corresponding base size of the receptive field

(also referred later as kernel size) was chosen to be 5x5.

In humans there is an observed relationship (see e.g. [1])

between spatial frequency and visual effect. In most cases

this relationship states that higher frequencies imply a larger

difference between the observed targets. This relationship

lead us to study the effect of the spatial scale in the replica-

tions of the VIs. For this end, we reasonable assume a re-

lation between the receptive field and the spatial frequency

of the patterns. Following this assumption, we increase the

illusion’s scale by 3, 4 and 6 times the base scale. In the

case of the kernel size, we also test receptive field sizes of
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Table 1. Summary of experiments performed.

Label CNN Visual Illusions Illusions’ scale Kernel size Figure

E1 DN-NET, CC-NET, DB-NET Full set grayscale Base 5 2

E2 DN-NET, CC-NET, DB-NET Full set color Base 5 3

E3a DN-NET G/RGB Dun. & Lum. {1, 1.1, 1.2, 1.3}×Base 5 4 a,b

E3b DN-NET G/RGB Dun. & Lum. {1, 1.1, 1.2, 1.3}×Base 3, 5, 7, 11, 15 4 c

E4a Jain2009 G/RGB Dun. & Lum. Base, 5 5

E4b Jain2009+Pooling G/RGB Dun. & Lum. {1, 1.1, 1.2, 1.3}×Base 3, 5, 7, 11, 15 6a

E4c Jain2009+Dilated Convolutions G/RGB Dun. & Lum. {1, 1.1, 1.2, 1.3}×Base 3, 5, 7, 11, 15 6b

E4d Jain2009+Residual Connections G/RGB Dun. & Lum. {1, 1.1, 1.2, 1.3}×Base 3, 5, 7, 11, 15 6c

E5 Zhang2017 G/RGB Dun. & Lum. Base 5 7

3x3, 5x5, 7x7, 11x11 and 15x15.

The first two experiments consisted in evaluating the

replication of DN-NET, CC-NET and DB-NET when pre-

sented with all the selected grayscale (E1) and color (E2)

visual illusions for the base scales and kernel size.

Further experiments in the paper are restricted to the

color and grayscale versions of the Dungeon and the Lum.

illusions, which are representative of the opposite effects of

assimilation and contrast, respectively.

In the third experiment, we studied the replication for

DN-NET when the spatial scale and the kernel size are dif-

ferent from the base case. First, with fixed kernel size, we

vary the illusion’s scale (E3a). Secondly, we modify both,

the scale of the illusions and the size of the receptive field

(E3b).

We later moved to a deeper CNN (Jain2009) and we

tested its replication for the base scales and kernel size

(E4a). Then, in this same experiment, we tested all the

scales and all the sizes for the illusions and the receptive

fields, respectively.

Next, we studied three different variations of the

Jain2009 CNN. First, two pooling layers were added to this

architecture after the first and second convolutional layers

respectively. In order to recover the original scale of the in-

put, after each of the last two hidden convolutional layers

an upsampling layer was added. Pooling sizes of 2, 4, and

8 were tested (E4b). The second variation was to replace

the standard convolutional layers of Jain2009 with convo-

lutional layers with a dilation rate of 2, 4, and 8 (E4c).

The last test consisted on trying several configurations of

Jain2009 with residual connections (E4d).

The last experiment studied the replication of a state-of-

the-art CNN for denoising, Zhang2017. It was tested for the

base scale of the illusions (E5).

A summary of all experiments above presented can be

found in Table 1.

Finally, we addressed the question if simple image pro-

cessing algorithms can also explain the VI phenomena. In

particular, we study if a classical contrast enhancement

(CLAHE [23]) and a classical denoising (Total Variation

besed denoising [24]) can reproduce both assimilation and

contrast.

3. Results

Due to the outstanding amount of experiments and the

difficulty to show its results, in this paper we will focus on

some selected cases. Nevertheless, our selected cases rep-

resent the main effects and trends found in our proposed

experiments. We invite the reader to look at our supple-

mentary material for the full set of experiments.

We present our results as profiles of the output of the

CNN. A profile is a 1-dimensional plot of the pixel values

of a row from the output image. For each VI, the plotted row

is indicated with a color segment over the VI. For instance,

in Fig. 2 the input profiles (second row) are the profile of

the marked region (as magenta or cyan)in the VI (first row).

This qualitative representation of results is common in vi-

sion science [2].

The output profiles showed in the figures corresponding

to grayscale illusions are the grayscale values obtained us-

ing the formula 0.2989R + 0.5870G + 0.1140B, with R, G

and B being the corresponding values in the red, green and

blue channels.

In all the results (output profiles) of this paper VI inputs

were not contaminated with noise or blurred before feeding

them to the CNNs. Additional experiments with contami-

nated inputs (not shown due to space limitation) resulted in

similar replication effects.

3.1. Replication of grayscale VIs (E1)

Fig. 2 shows the results of the experiment E1. We can see

that DN-NET is capable of replicating illusions from (a) to

(d) (see the row Output profiles: DN-NET in Fig. 2). While

Dungeon (a) and H.S. (b) are very well replicated, in White

(c) and Lum. (d) the effect is less marked. CC-NET repli-

cates illusions from (b) to (d) (see Output profiles: CC-NET
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Figure 4. Assimilation results in DN-NET for low and high frequency grayscale and color visual illusions.

in Fig. 2) but produces the opposite effect to that of human

perception in (a). Finally, DB-NET replicates illusions from

(b) to (e), but presents the same opposite effect as CC-NET

in (a). Nevertheless, DB-NET is the only one able to repli-

cate the effect for the Chevreul illusion in grayscale (e).

3.2. Replication of color VIs (E2)

In Fig. 3 we show the results of the experiment E2. DN-

NET replicates illusions (a),(b),(c), and (e). For Dungeon

(a) and H.S. (b) the right target increases its green value

(w.r.t. the input) while the left target increases its value in

the red channel. For White (c), the left target gets closer to

a yellow color by increasing its green channel value. In the

case of Chevreul (e), there is a slight replication in the red

channel. Finally, in the case of Lum. (d), DN-NET fails to

reproduce the VI.

DB-NET replicates all illusions except for H.S. (b). For

illusions Dungeon (a) and White (c) the effect is the same

as that observed for DN-NET. For Chevreul (e), the effect is

replicated both in the red and the green channels. Finally in

Lum. (d), there is a clear increase in the red and the green

channels for the left and the right targets respectively, to-

gether with a corresponding decrease of the same channels

in the opposite target.

3.3. Influence of scale of the VIs (E3a)

DN-NET reduces the replication error when the size of

the pattern is increased (increasing the size of the pattern is

equivalent to reducing the spatial frequency), therefore em-

ulating the behaviour observed in human perception [1]).

However, the reduction of the effect is dependent on the re-

ceptive field size and on whether the illusion is in grayscale

or color.

The replication effect observed for DN-NET in the Dun-

geon illusion in grayscale is completely lost when moving

to sizes equal or larger than 8 pixels (see the middle col-

umn of the first row in Fig. 4). However, the same VI in

color still replicates the effect for that size specially in the

red channel (middle column of the second row in Fig. 4).

The same evolution but in a smaller degree is also observed

in the case of Lum.

Furthermore, increasing the spatial frequency leads to an

attenuated replication, contrary to the effect produced in

human perception. Figure 4a in its first row shows how

the assimilation effect in Dungeon almost disappears in

grayscale. That is also the case for the contrast effect in

Lum. In the case of color, the assimilation effect is still

clearly present (Fig. 4a) but not the contrast effect of Lum.

3.4. Effect of receptive field size (E3b)

For the Lum. VI, the use of larger receptive fields lead

to an increase of the replication effect. However, for the

Dungeon effect when using the largest receptive field size

(15×15), moving from a target size of 4 to 3 pixels changes

the assimilation into a contrast effect (see Fig. 4c). For the

color VIs there were no significant qualitative changes for

either illusion.

Although there is a relation between the receptive field

and the spatial frequency of the patterns. The nature of this

relation is not directly understood from the current experi-

ments. In most of the combinations of pattern’s frequency

and size of receptive field tested the qualitative results do

not change.

3.5. Jain2009, a deeper architecture (E4a)

Figure 5 shows the results of Jain2009. We find replica-

tion (although reduced) of both effects in grayscale. Despite

being four times deeper than DN-NET, Jain2009 shows

qualitatively similar results to the original DN-NET. For the

case of color VIs, there is still a replication of the assimila-

tion effect in Dungeon but not of the contrast effect in Lum.

(as was the case for DN-NET, see Fig. 3).
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Figure 5. Replication results for Dungeon and Lum. for Jain2009, the architecture based in [19].

Figure 6. Selected results from Jain2009 when adding Pooling of size two. Assimilation effect is only replicated in color while the contrast

effect is replicated in grayscale.

3.6. Adding pooling layers to Jain2009 (E4b)

When pooling layers were used (in this case of size two)

the side effect in grayscale images is that higher frequency

VIs are destroyed. Also, in the case of Dungeon the replica-

tion is lost, in fact, the opposite effect is observed. However,

there is still a replication effect in Lum. for bigger target

sizes (see Fig. 6a). In the case of color, the same effect of

spatial pattern destruction occurs, but the replication effect

still remains for the Dungeon VI in the red and green chan-

nels. Larger pooling sizes lead to a total spatial destruction

of the patterns in the VIs such that further analysis is pre-

vented.

3.7. Adding dilated convolutions to Jain2009 (E4c)

Two main effects are observed when dilated convolu-

tions were added. First, the contrast effect of Lum. is not

replicated in grayscale or color for any of the dilation rates.

Second, in all the cases the effect in grayscale for Dungeon,

when considering targets equal or larger than 4 pixels, is no

longer replicated. In fact, it shows a contrast effect instead.

However, in the case of color there is still replication for the

Dungeon VI even when larger targets are considered (see

Fig. 6b second row).

A special case is observed only when using a dilation of

size four: Replication does appear in Dungeon in grayscale

for the smallest pattern size (shown in the left column of

Fig. 6b first row). This is not the case for any other size of

the dilation.

3.8. Jain2009 with residual connections (E4d)

Several configurations of Jain2009 with residual connec-

tions were tested. They shared the effect of annulling the

replication of both Dungeon and Lum. in grayscale. How-

ever, an architecture with a single residual connection going

from the output of the first convolutional layer to the input

of the final output layer was still able to replicate the assim-

ilation effect in the grayscale Dungeon VI for the highest

frequency (see the left column in Fig. 6c). In the case of

color, for all the different variations of Jain2009 with resid-

ual connections, there is a replication for Dungeon even if

we increase the pattern size (second row in Fig. 6c ) but not

for Lum. in none of the cases.

3.9. Replication in recent denoising CNNs (E5)

Figure 7 shows how, to a small degree, Zhang2017 can

replicate the effect in both Dungeon and Lum. VIs. This

is also the case for the color VI, in where it behaves in the

same way as DN-NET and Jain2009.

3.10. VIs and classical image processing methods

It is to be expected that a sharpening filter, or a classic

contrast enhancement algorithm like CLAHE [23], may be
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Figure 7. Replication results for Dungeon and Lum. for Zhang2017, the state-of-the-art CNN for image denoising presented in [20].

Hong-Shevell Lum.

TV

Lum.Hong-Shevell

CLAHE

0.5

0

1

0.5

0

1

Figure 8. Replication results for classical image processing algo-

rithms. Left: Total-Variation denoising. Right: CLAHE.

able to reproduce VIs that are of the contrast type, i.e. that

make the image value of a region to change in the oppo-

site direction to the values of the neighboring pixels. Anal-

ogously, a simple average filter, or a classic denoising al-

gorithm like Total Variation based denoising [24], may be

able to reproduce VIs that are of the assimilation type, i.e.

that make the image value of a region to change towards

the values of the neighbors of said region. Nevertheless,

these simple filters or classic algorithms do not seem able

to reproduce simultaneously both types of illusions, as fig-

ure 3.7 shows. TV denoising reproduces Hong-Shevell (as-

similation) but not the Luminance illusion (contrast), while

CLAHE does the opposite. In contrast, the DB-NET and

DN-NET CNNs introduced in this paper were capable of

reproducing these two illusions at the same time.

4. Conclusions

In this work we showed that CNNs trained on natural

image databases for basic low-level vision tasks reproduce

the human response to some visual illusion images, i.e. the

CNNs are deceived by the visual illusions in the same way

that we are deceived by them. Versions of a single hid-

den layer CNN trained for denoising, color constancy, and

deblurring were tested to replicate five common visual il-

lusions. Deeper architectures and their common modifi-

cations (such as pooling layers, dilated convolutions, and

residual connections) were explored too in order to evalu-

ate their effect in the replication of visual illusions. It was

found that even the simplest single hidden layer with 8 fea-

ture maps is already capable of replicating the human re-

sponse to several grayscale and color illusions. Moreover,

changes in the input image or CNN architecture lead to a

change in the illusions that the network is able to reproduce.

We argue that the CNNs in this paper reproduce visual

illusions as a by-product of the low level vision tasks of de-

noising, color constancy or deblurring. Albeit clearly dif-

ferent, the biological correlates of all of these tasks aim to

improve the efficiency of the representation and the visual

processing, so this supports the argument that visual illu-

sions are the price we have to pay in order to optimally use

the limited resources of our visual system.

The illusions that the CNNs are able to replicate depend

on the task each CNN is solving. It would be interesting,

from a vision science perspective, to use this insight to try to

associate specific illusions (or families of illusions) with vi-

sual processing tasks. Another interesting finding was that

CNNs trained with color images can replicate visual illu-

sions in grayscale too: this could maybe give some cues

towards answering the question of where precisely in the

visual system is the brightness percept derived from color

signals, which is still an open one.

Finally, and from a computer vision perspective, if we

want CNNs that better replicate human behaviour, we

should maybe start aiming for them to better replicate vi-

sual illusions. We are currently working along these lines,

developing a CNN architecture with the goal of reproducing

as many visual illusions as possible, with validations from

psychophysical data.

As future work we want to evaluate if CNNs that repli-

cate visual illusions are more resistant to adversarial attacks

that do not fool humans. And to generate new visual illu-

sions using for instance generative adversarial networks.
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