377 research outputs found

    Numerical Methods for Integral Equations

    Get PDF
    We first propose a multiscale Galerkin method for solving the Volterra integral equations of the second kind with a weakly singular kernel. Due to the special structure of Volterra integral equations and the ``shrinking support property of multiscale basis functions, a large number of entries of the coefficient matrix appearing in the resulting discrete linear system are zeros. This result, combined with a truncation scheme of the coefficient matrix, leads to a fast numerical solution of the integral equation. A quadrature method is designed especially for the weakly singular kernel involved inside the integral operator to compute the nonzero entries of the compressed matrix so that the quadrature errors will not ruin the overall convergence order of the approximate solution of the integral equation. We estimate the computational cost of this numerical method and its approximate accuracy. Numerical experiments are presented to demonstrate the performance of the proposed method. We also exploit two methods based on neural network models and the collocation method in solving the linear Fredholm integral equations of the second kind. For the first neural network (NN) model, we cast the problem of solving an integral equation as a data fitting problem on a finite set, which gives rise to an optimization problem. In the second method, which is referred to as the NN-Collocation model, we first choose the polynomial space as the projection space of the Collocation method, then approximate the solution of the integral equation by a linear combination of polynomials in that space. The coefficients of the linear combination are served as the weights between the hidden layer and the output layer of the neural network. We train both neural network models using gradient descent with Adam optimizer. Finally, we compare the performances of the two methods and find that the NN-Collocation model offers a more stable, accurate, and efficient solution

    A M\"untz-Collocation spectral method for weakly singular volterra integral equations

    Get PDF
    In this paper we propose and analyze a fractional Jacobi-collocation spectral method for the second kind Volterra integral equations (VIEs) with weakly singular kernel (x−s)−μ,0<μ<1(x-s)^{-\mu},0<\mu<1. First we develop a family of fractional Jacobi polynomials, along with basic approximation results for some weighted projection and interpolation operators defined in suitable weighted Sobolev spaces. Then we construct an efficient fractional Jacobi-collocation spectral method for the VIEs using the zeros of the new developed fractional Jacobi polynomial. A detailed convergence analysis is carried out to derive error estimates of the numerical solution in both L∞L^{\infty}- and weighted L2L^{2}-norms. The main novelty of the paper is that the proposed method is highly efficient for typical solutions that VIEs usually possess. Precisely, it is proved that the exponential convergence rate can be achieved for solutions which are smooth after the variable change x→x1/λx\rightarrow x^{1/\lambda} for a suitable real number λ\lambda. Finally a series of numerical examples are presented to demonstrate the efficiency of the method
    • …
    corecore