
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.G. Blom, H. Brunner

The numerical solution of nonlinear Volterra integral equations
of the second kind by collocation and iterated collocation methods

Department of Numerical Mathematics Report NM-R8522 October

B:'"">!':11-l1eelc
,~r v c;·: ;'n\:orrn:aiic.::

Amsi!jrdam

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum; which was founded on February 11 , 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.O.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

The Numerical Solution of

Nonlinear Volterra Integral Equations of the Second Kind

by Collocation and Iterated Collocation Methods

J.G. Blom
Centre for Mathematics and Computer Science,

Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

H. Brunner
lnstitut de Mathematiques, Universite de Fribourg,

CH-1700 Fribourg, Switzerland

The subject of this paper is a variable-stepsize one-step method of collocation type for solving general non­

linear second kind Volterra integral equations. We extend the iterated collocation method corresponding to

polynomial spline collocation to nonlinear Volterra integral equations of the second kind. The resulting

superconvergence properties of either the collocation approximation or the iterated collocation approxima­

tion are used to obtain (local and global) error estimates which in turn form the basis of a variable stepsize

code. The performance of this code is illustrated by means of numerous test problems.

1980 Mathematics subject classification: Primary:65R20. Secondary:45005, 45L 10

Key Words & Phrases: nonlinear Volterra integral equation, polynomial splines, collocation, iterated colloca­

tion, superconvergence, error estimates, variable stepsize

Note: This paper is submitted for publication

0. INTRODUCTION

1

Most of the work on the numerical solution of Volterra integral equations of the second kind done to

date deals with fixed-step methods. Recently, some automatic codes have been published . Some of

these employ fixed stepsizes and make use of extrapolation tableaux to control the global error

(VOLCON[l3] , IVRKX(C)[l9]). Others use variable stepsizes based on local error controlling techniques

(VOLTEX[l4], RKVIEP[l2], INTSOL[l6], ORION[3] ,[17]).
The variable stepsize method we propose offers the user the choice to control the global or the local

error, with the possibility to control also the uniform error, as suggested by Arndt[2] .

It is believed by the authors that iterated collocation is a very robust and not too expensive method

to control the global error. Since there exists a class of problems to which this method cannot be

applied, some other combinations of collocation methods are investigated. The performance of these

methods was considerably improved by using uniform error control.

The variable-stepsize collocation methods described below have been implemented in a FORTRAN

code COLVI2 (see [4]).

Report NM-R8522
Centre for Mathematics and Computer Science

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

1. POLYNOMIAL SPLINE COLLOCATION

1.1. Exact collocation equations
Consider the nonlinear second-kind Volterra integral equation,

t

y(t) = g(t) + jk(t,s,y(s))ds, tEl := [0,T], (1.1.l)
0

where g and k are given continuous functions on I and on S XIR (with S : = {(t,s): O..;;;s ..;;;t ..;;;T},
respectively, and where k is such that (1.1.1) possesses a unique solution yEC(/) (compare, e.g.,
Miller[18], or Brunner and van der Houwen[IO]).

In order to discretize (l.1.1) let

IIN : O=t0 <t1 < · · · <tN=T (N;;;;a.I)

denote a partition (or: mesh) for the given interval /, and set

hn : = In +l -tn (n =O, ... ,N -1),

oo := [to,tiJ, On:= (tn,ln+d (n=l, ... ,N-1),

ZN : = {tn: n = 1, ... ,N -1} (the set of interior mesh points),

and

ZN := ZNU{T}.

In the following analysis it will always be assumed that the mesh sequence {IIN} (NEIN) is quasi­
uniform; i.e.,

max(hn)
(n) ,,.;;;;; Y < 00
min(hn)
(n)

uniformly for NE IN (for ease of notation we have suppressed the superscript N in 1r>, hr>, indicat­
ing the dependence of these quantities on N). In the following h:=max(hn) denotes the diameter of

(n)
the mesh IIN.

The exact solutiony of (1.1.1) will be approximated in the polynomial spline space

S~.!.>1(ZN) := {u: ula.=:unE'lTm-1' n=O, ... ,N-1 (m;;;;a.1)}, (1.1.2)

whose elements reduce, on each subinterval on, to (real) polynomials of degree not exceeding m - I
and which, in general, possess (finite) discontinuities at their knots ZN. Here, the value m =I yields,
of course, the space of step functions having knots ZN.

Let { cj }, with O..;;;c 1 < · · · <cm,,.;;;;; 1, be a given set of parameters, and define the sets

Xn := {tn,j:=tn+cjhn:j=l, ... ,m} (n=O, ... ,N-I), (l.l.3a)

and
N-l

X(N) := LJ Xn.
n=O

(1.1.3b)

The desired approximation uES~.!.>1 (ZN) will be determined by requiring that u satisfy the integral
equation (1.1.1) on the finite set X(N) ('collocation' on X(N)):

t

u(t) = g(t) + jk(t,s,u(s))ds for all tEX(N).
0

This collocation equation may also be written as

3

t n-J (;+I

Un(t) = g(t) + J k(t,s,un(s))ds + ~ J k(t,s,u;(s))ds,
t. i =o t;

tEXn (n =0, ... ,N-1),
(1.1.4)

thus explicitly exhibiting its recursive character. Note that if the collocation parameters { cj} are such

that c 1 =O and cm=l, then the approximation defined by (1.1.4) will be continuous on I; i.e., we then

have

uES~>-1 (ZN) := S~.!.\ (ZN)nC(J).

For the subsequent analysis we introduce the integrals
I

J k(tn,j•ti +Th;,ui(t; +Thi))dT, if O.s;;;i .s;;;n -1,
0

CJ

<ll~J[ui] : = j k(tn,j•tn +Thn,Un(tn +Thn))dT, if i =n
0

(j=l, ... ,m).

With this notation the collocation equation (1.1.4) becomes

n-1
Un(tn,j) = g(tn,j) + hn<I>~1£un] + ~ hi<ll~}[u;],

Setting

i=O

j =l, ... ,m (n =O, ... ,N-1).

m

un(tn+Thn) = ~L1(T)Yn,J. tn+ThnE'1m
/=I

with Yn,1: =un(tn,1), and where the polynomials

m (T-cK)
Li(T): =IT ()

K=l c,-cK
tc=f.=I

(1.1.5)

(1.1.6)

(1.1.7)

represent the Lagrange canonical polynomials for the collocation parameters {cj}, we see that (1.1.6)

represents, for each n =O, ... ,N -1, a nonlinear system in IR.m for the vector Yn: =(Yn, i. ... , Yn,ml·

Once Yn has been determined, the approximation u on the subinterval an is given by (l.1.7).

1.2. Discretization of the collocation equations
In most applications the integrals (l.1.5) occurring in the collocation equation (1.1.6) cannot be

evaluated analytically, and one is forced to resort to employing suitable quadrature formulas for their

approximation. In the following we shall use m-point interpolatory quadrature formulas of the form

A (j) m • •
<I>n,;[u;] := ~w1k(tn,j•ti,l•ui(t;,1)), if0.;;;;1.s;;;n-l;

/=I

for the approximation of <I>~1[Un] we shall employ either

or

-(j) m
<I>n,n[Un] : = ~w1k(tn,j•tn,l•Un(tn,J)),

/=I

(1.2.1)

(l.2.2a)

(l.2.2b)

4

Here, the quadrature weights are given by

1

and by

Wt : = f L1(T)dT,

0

Wj,1 := CjWt (j,/=l, ... ,m).

Note that when using the quadrature approximation (l.2.2a) we need kernel values k(t,s,.) at points
(t,s) no longer contained in S (since tn,1>tn,j for l>j), while (1.2.2b) is based on the abscissas
tn +cjcthn.,,;;;,.tn,j (i.e., the affine images of tn,l in [tn,tn,j]).

The resulting fully discretized collocation equations are thus given by, respectively,

-v> - n-1 A(j) -
Un(tn,j) = g(tn) + hn<I>n,n[Un] + ~ h;<I>n,;[u;],

i=O

j = l, ... ,m (n =O, ... ,N -1); (1.2.3a)

and

j = l, ... ,m (n =O, ... ,N -1); (1.2.3b)

they yield approximations u and u in s~-_!>1 (ZN) (whose restrictions to the subinterval <1n are given by
interpolation formulas analogous to (1.1.7)). These approximations will, in general, be different from
the 'exact' collocation approximation u defined by (1.1.6); due to the differing quadrature errors asso­
ciated with (l.2.2a) and (l.2.2b) we have also u=t=u. However, the approximations u, u, and u all exhi­
bit the same order of (global and local) convergence; in particular, we have the following results (see,
e.g., Brunner and van der Houwen[lO] ; compare also de Hoog and Weiss[l5] , Brunner[7] , and
Brunner and N0rsett[ll]).

THEOREM 1.1. Let g and k be smooth functions, such that (1.1.1) has a unique solution y which is

sufficiently many times continuously differentiable on I, and let u, u, u ES~-_!>1 (ZN) denote, respectively,
the co/location approximations determined by (1.1.6), (l.2.3a), and (1.2.Jb).
Moreover, let p, p, and p be the largest integers satisfying

m~IY(tn)-u(tn)I = O(N-P),

m~ ly(tn)-u(tn) I = O(N-P),
t,eZN

and

(a) If the collocation parameters { cj} are given by the zeros of the Legendre polynomials P m(2s - 1)
(i.e., the Gauss points for (0,1)), then

- A

p=p=p=m. (1.2.4a)

(b) If the {cj} are the zeros of Pm-1(2s - l)-Pm(2s -1) (i.e., the Radau II points for (0,1]), then

p = p = p = 2m-1. (l.2.4b)

(c) If the { cj} are the zeros of s(s - l)P' m-1(2s -1) (i.e., the Lobatto points for [0,1]), then

p = p = p = 2m -2. (1.2.4c)

5

Note that p attains the indicated values only if the kernel k(t,s,.) is smooth not only for (t,s)ES but
also for (t,s)ES': = {(t,s): O:s;;;;s :s;;;;1 +8} nIXI, for some 8>0. This is, of course, a consequence of
the special form of the quadrature approximation"(l.2.2a).

We also recall that the order of global convergence on I of these three spline approximations equals
m. Hence, while collocation at the Radau II points or at the Lobatto points leads to a higher order of
convergence on ZN ('local superconvergence'), collocation using the Gauss points does not have this
local superconvergence property (in contrast to polynomial spline collocation applied to initial-value
problems for ordinary differential equations).

In order to prepare the ground for the convergence analysis for iterated collocation (Section 2) we
consider a somewhat different discretization of the collocation equation (1.1.6). To be precise, let
z Es<,;;-1>(ZN) be determined by the (exact) collocation equation

n-1
Zn(tn) = g(tn,j) + hncI>W,~[zn] + ~ h;cI>W,}[z;], (1.2.5)

i=O

where now j=l, ... ,m+l, tn,/=tn+cjhn, with O:s;;;;c1< · · · <cm<Cm+1=1. Here, the integrals cI>W,}
are as in (l.1.5) (except that now j varies between 1 and m + 1). These integrals are approximated by
m-point (instead of (m +I)-point!) interpolatory quadrature formulas using abscissas based on the fust
m of the m + 1 collocation parameters; i.e., we employ again the quadrature approximations (1.2.1),
(l.2.2a), (l.2.2b), with z replacing u, and with j ranging from 1 tom+ 1. Accordingly, the two possi­
ble discretizations of (1.2.5) are given by

-(j) - n-1 A(j) -
Zn(tn,j} = g(tn,j} + hn<I>n,n[Zn] + ~ h;cI>n,;[z;],

i=O

j=l, ... ,m+l (n=O, ... ,N-1), (l.2.6a)

and

A(j) A n-1 A(j) A
Zn(tn,j) = g(tn,j) + hn<I>n,n[Zn] + ~ h;<I>n,;[z;],

i=O

j = l, ... ,m + 1 (n =O, ... ,N -1); (l.2.6b)

these equations yield, respectively, approximations z and z in the space s~- 1>(zN). In analogy to
(l.1.7) we set, e.g.,

m+l _

znCtn +Thn) = ~ L; (T)Zn,l• ln +Thn Eon>

/=l

(1.2.7)

with Zn,i:=zn(tn,1), and with L;(1") denoting the /-th Lagrange canonical polynomial (of degree m)
with respect to c i. ... , Cm + l ·

Consider first (1.2.6a): it follows from the quadrature approximation (l.2.2a) and from (1.2.7) that

- (j) - m - .
<I>n,n[Zn] = ~w1k(tn,j>ln,1,Zn,1), J = 1, ... ,m + l

/=l

(note that L~ +l (c1)=0 for/= l, ... ,m). Hence, the _first m equations of (l.2.6a) (corresponding to
j = l, ... ,m) constitute a nonlinear system in IR.mforZ11, i. ... , Zn,m; the last equation (j =m +I) then
determines, in an explicit way, the approximation Zn,m+l which, by Cm+l =1, equals Zn(tn+1) and
thus approximates y (tn + l).

Turning to the discretization (l.2.6b), we observe that now, by (l.2.2b),

A(j) m m+l A

<I>n,n[znl = ~wj,1k(tn,j,tn +cjcthm ~ L;(cjc1)Zn,s), j = 1, ... ,m + 1,
/=l s=l
A A A

depends not only 011 Zn, J, ••• , Zn,m, but also on Zn,m + l ; hence, (1.2.6b) represents a nonlinear sys-
tem in IR.m + 1 , with Zn,m + 1 approximating y (tn + i).

6

The following theorem shows that the approximations generated by the discretizations (l.2.6a) and
(l .2.6b) exhibit the same order of convergence.

THEoREM 1.2. Let g and k be smooth functions, such that the integral equation (1.1.1) possesses a unique
solution y which is sufficiently many times continuously differentiable on I, and let z, z, z ES~- 1>(zN)
denote, respectively, the collocation approximations determined by (1.2.5), (1.2.6a), and (J.2.6b). If p, p
and p are the largest integers satisfying

m~IY(tn)-z(tn)I = O(N-P),

m~IY(tn)-z(tn)I = O(N-;),
t.EZN

and

m~IY(tn)-z(tn)I = O(N-fa),
tnEZN

and if the first m collocation parameters c 1, ... , Cm are the zeros of P m(2s -1) (Gauss points for (IJ,l)),
while Cm+ 1 =I, then

p=p=p=2m. (1.2.8)

The assertion p =2m will hold only if the kernel k(t,s,.) can be extended smoothly to the domain
S' : = {(t,s): O:s;;;s =s;;;;t +8} n/Xl, where 8>0 is suitably chosen.

A proof of this result may be found in Brunner[?], or in Brunner and van der Houwen[IO].

We mention in passing that the discretized collocation equation (l.2.6a) represents an m-stage
implicit Volterra-Runge-Kutta method of POUZET type (cf. Brunner, Hairer and Nersett[9]). It will be
shown in the next section (Theorem 2.1) that this method is equivalent to a certain discretized version
of ~ iterated collocation method , in the sense that they both produce identical approximations to y
onZN.

2. ITERATED COLLOCATION APPROXIMATIONS

2.1. Exact iterated collocation
Suppose that the collocation approximation uES~-_!.>1 (ZN) (defined by (l.1.6)) has been computed.
The (exact) iterated collocation approximation u1 corresponding to u is then defined by

t

u1 (t) : = g(t) + J k(t,s,u(s))ds, t El. (2.1.1)
0

(Compare also Brunner[8] and the references cited there for some background and history of iterated
approximations for (linear) Fredholm and Volterra integral equations.) It is readily verified that u1

has the following properties:

(i) u1 EC(/) (while u is, in general, not continuous on/);
(ii) u1(t)=u(t) for all tEX(N).

This second property implies, in particular, th~ if Cm= 1 (i.e., if ZN is a subset of the set X(N) of col-
location points), then u1(tn)=u(tn) for all tnEZN. _

In the following we shall be interested in the values u1(tn), tnEZN, in the case when cm<l. Setting
I

<Pn,ilu;] : = J k(tn,t;+Th;,u;(t; +-rh;))d-r, O:s;;;;i :s;;;;n - I:s;;;;N -1,
0

(2.1.2)

7

we may write (2.1.1) in the form
n-1

u1 (tn) = g(tn) + ~ h;cI>n,;[u;], tn EZN. (2.1.3)
i=O

2.2. Discretized iterated collocation
The integrals (2.1.2) will, in general, have to be approximated by appropriate numerical quadrature;
as in Section 1.2 we choose m-point interpolatory quadrature formulas of the form

A m
cI>n,;[u;] : = ~w1k(tmt;,1,u;(t;,1)),

/=l

(2.2.1)

with quadrature weights {wL} as in (1.2.1). Moreover, as indicated in Section 1.2, we shall usually not
be able to compute u itself but only either UES~-.. 91 (ZN), or uES~-.!_)l (ZN) (i.e., the solutions of the
discretized collocation equations (l.2.3a), (l.2.3b)). Accordingly, the discretization of (2.1.3) will be
given either by

-I n -1 A -

U (tn) : = g(tn) + ~ h;cf>n,ilu;], tn EZN,

,
(2.2.2a)

i=O

with uEs<,;..91 (ZN) defined by (l.2.3a), or by

. (2.2.2b)
i=O

with u Es<,; ..91 (Z N) given by (l.2.3b).
In the convergence analysis for y(tn)-uI(tn) and y(tn)-u\tn) the following result will play an

important role.

-I AI
LEMMA 2.1. Let the iterated approximations u (tn) and u (tn) be given by (2.2.2a) and (2.2.2b), and
assume that g and kin (1.1.1) satisfy the customary smoothness hypotheses. If the collocation parameters
{ cj} are the zeros of P m(2s -1) (Gauss points for (0,1)), then

-I AI I 2 m~xl u (tn)-u (tn) =O(N- m) (as N ~oo, Nh -s;;;:yT). (2.2.3)

PROOF Assuming that k(t,s,y) has a bounded partial derivative ok I ay, with L denoting an upper
bound for its absolute value, we obtain, using (2.2.2a) and (2.2.2b) together with (2.2.1),

I UI (tn)-u I (tn) I ,,;;;;, n~ \ I ~n,;[u;]- ~n,;[U;] I
i=O

n-lm
,,;;;;;; h ~ ~I k(tn,t;,1,u;(t;,1))-k(tmt;,1,u;(t;,1)) I

i=O/=I

i=O/=l

Here, we have used the fact that weights { w1} of the Gaussian quadrature formula are all positive and
m .

hence bounded by one (since ~w1 = 1). An argument analogous to the one used in Brunner[8]
/=l

(pp. 1138-1139), involving the Gauss quadrature errors and a discrete Gronwall inequality, yields,
observing (l.2.3a) and (l.2.3b),

I u;(t;,1)-u;(t;,1) I ,,;;;;;; Ch 2m, I= l, ... ,m (i =O, ... ,N -1),

with some constant C not depending on N. The estimate (2.2.3) now follows since Nh .;;;;yT for all
NElN. p

8

THEOREM 2.1. Let o,;;;;;;c1 < •.. <cm<l. Assume that UES~-!_}I (ZN) is the solution of the discretized
collocation equation (l.2.3a), and let z ES~ I}(ZN) be determined by the discretized collocation equation
(l.2.6a) (m-stage implicit Volte"a-Runge-Kutta method of Pouzet type), where the co/location parameters
are O,;;;;;;c 1 < · · · <cm <cm+ 1 = 1. It then follows that

-I - -
U (tn) = z(tn), tn EZN; (2.2.4)

-I
i.e., the values of the discretized iterated collocation approximation u determined by (2.2.2a) are identical
with the approximations z(tn)furnished by them-stage implicit VRK method of Pouzet type (1.2.6a).

PROOF Using

m -
Uj(ti +Thj) = ~L1(T)Yi,l• t; +Th; E<J;,

/=I

with Yi,/:= u;(ti,1), we may write (l.2.3a) as

- n m -
Yn,j = g(tn,j) + ~h;~Wrk(tn,j•ti,l• Y;,1),

i=O /=I

j = l, ... m (n =O, ... ,N -1), (2.2.5a)

and (2.2.2a) becomes

(2.2.5b)
i=O /=I

On the other hand, it follows from (1.2.7) that the first m equations of (l.2.6a) (j = l, ... ,m) assume
the form

- n m -
Zn,j = g(tn,j) + ~h;~W1k(tn,j•ti,t•Zi,/),

i=O /=I

j = l, ... ,m (n =O, ... ,N-1). (2.2.6a)

This nonlinear system (2.2.6a) is identical with the nonlinear system (2.2.5a); hence, they possess, for
@. sajficiently small values of the mesh diameter h, the same solution:
Yn,j = Zn,j• j = l, ... ,m (n =O, ... ,N -1).

For j =m + 1 in (l.2.6a) we find, using Cm+!= 1 (and hence tn,m +I =tn + 1),

n m -
z(tn+1) = Zn,m+I = g(tn+d + ~h;~W1k(tn+1>t;,1,Z;,i)

i=O /=I

(n =O, ... ,N-1). (2.2.6b)

- -
Since Zi,t = Y;,1 (1 = l, ... ,m; i =O, ... ,N -1), (2.2.6b) coincides with (2.2.5b) (with n replaced by
n + 1), thus verifying (2.2.4). D

COROLLARY 2.1. Let g and kin (1.1.1) be subject to the smoothness hypotheses of Theorem 1.2, and let
CJ, ••• ,Cm be the zeros of Pm(2s -1). If u\tn) is defined by (2.2.2a), with uES~-!_)I (ZN) denoting the
solution of the discretized collocation equation (l.2.3a), then we have

m~ IY(tn)-u
1
(tn) I = O(N-2m) (2.2.7)

t.eZN

(as N ~ oo, with Nh ,;;;;;; yT).

PROOF The above local superconvergence result follows readily from Theorem 1.2 and from (2.2.4). D

In most applications one will not work with the discretized collocation equation (l.2.3a) and the

9

corresponding discretized iterated collocation approximation (2.2.2a), since it may not be possible to
extend the given kernel smoothly to the domain S'. Instead, the pair of discretized equations (1.2.3b),
(2.2.2b) will be used: as (l.2.3b) employs only kernel values k(t,s,.) with (t,s)ES, (l.2.3b) and (2.2.2b)
represent the natural discretizations of exact collocation and iterated collocation for (l.1.1). The fol­
lowing local superconvergence result holds.

THEOREM 2.2. Let g and k in (1.1.1) be supect to the smoothness hypotheses of Theorem 1.2, and let

c i. ... , cm be the zeros of P m(2s -1). If u (tn) is determined by (2.2.2b), where u ES~-_!)1 (ZN) is the
solution of the discretized collocation equation (1.2.3b), then we have

m~ ly(tn)-uI (tn) I = O(N-2m) (2.2.8)
t,EZN

(as N-700, Nh .;;.-yT).

PROOF The result of Theorem 2.2 can be established in complete analogy to (2.2.7) and (2.2.4), using
(l.2.6b), (l.2.3b), and (2.2.2b).

An alternative way to verify (2.2.8) consists in writing

AI I -I I 1-I AI IY(tn)-u (tn)I ,;;;;, y(tn)-u (tn) + U (tn)-u (tn)I, tnEZN;

Since the collocation parameters c 1, ••• , Cm are the Gauss points for (0, 1), (2.2.8) follows by Corol­
lary 2.1 and by Lemma 2.1. D

We note in passing that the 'exact' iterated collocation approximation uI defined by (2.1.1), with
uEs<,;;-.. ~\ (ZN) being the solution of the exact collocation equation (1.1.6), satisfies also

m~ly(tn)-uI(tn)I = O(N- 2m) (2.2.9)
t,EZN

(as N -7 oo, Nh .;;;;,.yT).
This is an immediate consequence of

IY(tn)-uI(tn)I .;;;;,. ly(tn)-u\tn)I + juI(tn)-uI(tn)I

and of the form of the Gauss quadrature errors determining the order of uI(tn)-uI(tn)· Hence, (2.2.9)
and (2.2.8) generalize the results of Brunner[8] to nonlinear Volterra integral equations.

As an illustration for the above local superconvergence results, we mention the case of linear poly­
nomial spline collocation (m =2): if uES\- 1>(ZN) is determined by (l.2.3b), with
CJ = (3-y3) I 6, C2 = (3+ y3) I 6, then the corresponding values uI(tn) given by (2.2.2b) are con­
vergent of order p=4: m~jy(tn)-uI (tn) I = O(N-4).

l,EZN

2.3. Polynomial solutions to (1.1.1)
Suppose that the exact solution to (1.1.1) is a polynomial, yE'lTm-I· It is then clear that the (exact)
collocation approximation uES~-2\(ZN) defined by (1.1.6) satisfies u(t) = y(t) for all tEJ, since
'1T m _ 1 is a subspace of s~-2>1 (ZN). This does no longer hold, however, for the collocation approxima­
tion uEs<,;;-2\ (ZN) determined by the discretized collocation equation (l.2.3b). To see this, note first
that

Let

y(t)-u(t) = (Y(t)-u(t)) + (u(t)-u(t))
m A

= u(t)-u(t) = ~L1(T)(Yn,1- Yn,1), t =tn +Thn E<1n·
/=I

• • A (j) •
Jf.!)[u·] : = ~V>.[u·] - ~ ·[u·] (z .;;;;,.n) n,z z n,z 1 n,z 1

10

denote the quadrature errors induced by the approximations (1.2.1), (l.2.2b) to the integrals (1.1.5). It
follows from (1.1.6) and (l.2.3b), invoking~ stan9ard argument based on a discrete Gronwall inequal­
ity, that the order of the differences Yn,1- Yn,1 is given by the order of the quadrature errors E~}[uJ.
According to the above we thus obtain, e.g.,

{

O(N-2m), if {cj} are the Gauss points;

m~!y(tn)-u(tn)I = O(N-<2m-I)), if {cj} are the Radau II points;
1
nEZN O(N-(2m-2>), if { cj} are the Lobatto points.

Note in particular that if the collocation parameters { cj} are the zeros of P m(2s -1) (Gauss points),
then the errors y(tn)-u(tn) and y(tn)-u

1
(tn) (cf. (2.2.8)) exhibit the same order of local superconver­

gence:

(as N ~oo, Nh ~:yT). , ,
This result will have certain implications in connection with global error estimation based on colloca­
tion at the Gauss points and corresponding iterated collocation (see Section 3.2.1).

3. VARIABLE STEPSIZE METHOD

A one-step method with variable stepsize can be separated into three major components:
a basic fixed-step method
an error estimator
a stepsize strategy

In this chapter these three will be discussed.

3.1. Fixed-step method
The underlying fixed-step method will be a collocation method as described in the previous chapters.
The integrals will be approximated by interpolatory quadrature formulas. For the sake of conveni­
ence we give a summary of the formulas used to approximate the solution at the point tn + 1
(cf. l.2.3b):

A A

Yn,j g(tn,j) + Fn(tn,j) +
$ m A

hncj "2.w1k(tn,j,tn +cjclhn, "2.L,c(cjcl)Yn,1<)
/=I K=I

(3.1.1)

i=O 1=1

j=l, ... ,m; s=m or m -1.

If cm=l, the approximate solution in tn+1' Un+I equals Yn,m· Otherwise, Un+J is either computed by
Lagrange interpolation:

m A

Un+I = "2.L"(l) Yn,K•
K=I

which is the discrete analogue of (1.1.7), or by iterated collocation (cf. 2.2.2b):

AI A s A

Un+ J = g(tn +hn)+ Fn(tn +hn)+hn "2.w1k(tn +hn,tn,l• Yn,1).
/=I

(3.1.2)

(3.1.3)

The free collocation parameters can be used to get a method that combines high accuracy with a
minimum amount of work involved. The order p of the method is assumed to give an indication of
the accuracy of the solution. The amount of computational work involved is normally expressed by

11

the number of kernel evaluations needed. For various choices of collocation parameters these values
are (see Theorem 1.1, Theorem 1.2 and Theorem 2.2): ·

(a) Gauss-Legendre points ci. ... ,cm; s = m

p - m N(N-1)
n =m2 + Nn m2

kev 2 I

(b) Gauss-Legendre points c i. ... , Cm - i. Cm = 1; s = m - 1
p = 2m-2

nkev = N(~-l)(m2 -m) + Nn1(m2-m)

(c) Gauss-Legendre points ci. ... ,cm + Iterated collocation; s = m
p = 2m

n = N(N-l)(m2 +m) +Nm+ Nn m2
~ 2 I

(d) Lobatto points c i. ... , Cm; s = m
p = 2m-2

nkev = N(~ - l) (m -1)2 + 2N(m -1) + Nn1(m -1)2

(e) Radau II points ci. ... ,cm; s = m
p = 2m-l
n = N(N-I)m2 + Nn m2 kev 2 I

Here, N denotes the m1mber of steps taken and n1 the number of iterations needed to solve the
(non)-linear system for Yn,j; n1 =1 if the integral equation has a linear kernel, and n1 is bounded by a
constant for nonlinear kernels.

Notice the low number of kernel evaluations in the case of Lobatto points as compared to the
amount needed when using (the same number of) Radau II points. This decrease in the number of
kernel evaluations is caused by the fact that one can make use of the coincidence of the points
tn -1 + Cmhn - I and tn + c 1 hn and reformulate (3.1.1) into :

A A

Yn,j g(tn) + FnCtn,j) + hncjw1k(tn,j•tn,Un) +
m m A

hncj ~w1k(tn,j•tn +cjclhm ~Licjc1)Yn,1e),
1=2 1e=I

j=2, ... ,m,
A

Fn(t) how1k(t,to,y(to)) +

;~2 [h; ;;1
w1k(t,t;,1,:i\1) + (h;+h;+1)Wmk(t,t;+h;,Y;,m)] +

m A

hn-1 ~w1k(t,tn-I,/. Yn-1,1).
/=2

(3.1.1')

From the above, it seems that the method with the best accuracy I computational work ratio will be
obtained by using the Lobatto points.

12

3.2. Error estimation
To estimate the error in the approximate solution Un+ 1 in the point tn + 1 one has the choice between
global and local error estimation. Both will be treated below.

3.2.1. Global error estimation.

The global error in the point tn + 1 is defined by IY (tn + 1)- un + 1 I · It is normally approximated by the
difference between un + 1 and a reference solution that is assumed to have a higher accuracy. We will
compute the reference solution with a higher order method using the same stepsize.
Here, two combinations of methods are preferable with respect to reliability and efficiency: Gauss­
Legendre for the computation of Un + 1 combined with iterated collocation, using the same collocation
points, for the reference solution, and Lobatto combined with a Lobatto method of the next higher
order.
If the error in Un+I is O(N-2

"), then the number of kernel evaluations for these two variants is
approximately:

Gauss2" + iterated collocation :

LobattoK+ 1 + Lobatto"+2 :

(2ic2 +IC) N 2

2ic2+2K+1 N2
2

For each method the index denotes the number of collocation points needed in order to obtain the
desired order.
Note, that Gauss+(cm = 1), respectively Radau II combinations, need roughly the same number of
kernel evaluations as the Lobatto method, and can be expected to be equally robust.

Although the Gauss method seems obviously less efficient, it has some additional advantages. Its
implementation is straightforward and it needs considerably less overhead. Besides, the order of accu­
racy not only of the reference solution but also of the quadrature part of the approximation doubles
the order of u(t) in the steppoints, which makes it more robust for a variable stepsize method (see
also Section 3.3). However, as mentioned in Section 2.3, it has one drawback. If the solution of the
integral equation is a polynomial of degree <m, u(t) has an error of O(N-2m) not only in the collo­
cation points but also in the steppoints. Since the reference solution is equally accurate this results in
a very unreliable error estimate. It is however possible to detect this failure automatically and switch
to another method whenever this undesired superconvergence in the steppoints occurs (see
Section 4.2).

3.2.2. Local error estimation.
In analogy to what is common practice in the theory of initial-value problems for ordinary differential
equations, we define the local error as the error resulting from a single step of the approximating
method, not taking into account the errors inherited from previous steps. So, the local error in the
point tn + 1 is defined by:

ln+I m A

LEn+1:= I J k(tn+J.S,yn(s))ds - hn~W1k(tn+1'tn,l•Yn,i)I, (3.2.2.1)
L /=I

with
t

Yn(t) : = g(t) + Fn(t) + J k (t,s,yn(s))ds (3.2.2.2)
In

(cf. Arndt[l]).
An estimation of the local error is obtained by approximating the integral by a higher-order

method using the same stepsize; i.e.

fn+I -
m -J k(tn+J.s,yn(s))ds ~ hn~W1k(tn+1>tn+c1hn,Yn,1), (3.2.2.3)

L /=I

13

where
- A

Yn,j = g(tn + cjhn) + Fn(tn + cjhn) +
(3.2.2.4) - -m m - -

hnc/'.£w1k(tn +cjhnotn +ciihn, ~Licii)Yn,K).
/=I K=l

Note that it is assumed that c;n = 1.

3.3. Stepsize strategy
Having an estimation of the error, we will now discuss how to determine the stepsize to limit this
error to a user specified tolerance.

The stepsize strategy consists of advancing the solution with a trial stepsize, then accept or reject
the result and repeating the process with as trial stepsize a modification of the previous stepsize. This
modification should account for the (lack of) accuracy in the accepted or rejected trial solution. It
should result in as large a stepsize as possible while still providing an accuracy that satisfies the
specified tolerance.

The control of the global error in a steppoint, say tn + 1, is a straightforward process if a global error
estimation is available. A trial solution will then be accepted if the global error estimation is less than
the specified error tolerance, i.e.

GEEn + 1 .;;;;; TOL. (3.3.1)

The modification of the stepsize reads:

h~ = h, [G~~~I f (3.3.2)

Here, p is the order of the underlying method, and hnew stands for hn + 1 if the trial solution has been
accepted, and otherwise for hn.

Note that, once a certain point tn + 1 has been reached, we cannot control the error in the lag term
part any more, since the approximating solution for that part of the interval has already been
accepted. This means that it is defensible to control only the local error and assume that the global
error in the endpoint will be more or less equal to the sum of the local errors.
In this case one accepts a trial solution only if

(3.3.3)

and modifies the stepsize by:
I

[
TOL.hn lq

hnew = hn '
tn+1.LEEn+1

(3.3.4)

where q is the order of the quadrature formula to approximate the integral.
So far, the stepsize strategy is completely analogous to the strategy used in variable stepsize

methods for ordinary differential equations. However, the intention is to limit the global error over
the whole interval to the user-defined tolerance, i.e. to have

ly(t) - u(t) 1 .;;;;; roL,
The disadvantage of proceeding in the same way as in the case of ODEs is, as Arndt ([I] ,[2]) points
out, that the consequence of accepting the approximated solution to future quadrature computations
is not taken into account. This means that the assumption that the sum of the local errors equals the
global error in the endpoint is not necessarily valid.

To obviate the problem of the possibly large errors in future lag term computations, once tn + 1 has

14

been reached, one has to demand that:

IY (t) - u(t) 1 ..;;; roL,
This reads in discretized form:

..;;; TOL, (3.3.5)

for t1 = T, T - H, ... , tn + 1 ; with H some fixed number.

Let
f;+l

m A

EEf+ 1 ~ f k(t1>s,y(s))ds - h;~wjk(t1,t;,j,Yi,j). (3.3.6)
a j=I

Then (3.3.5) is satisfied when:
1-1 n-1
~ IEEf+1 I + I ~ EEf+1 I ..;;; TOL.

i=n i=O

In this way one gets, as Arndt suggests, a modified stepsize strategy that strives for a uniform control
of the error, .i.e.:

Let

[
I EE~ + 1 I n - I l

EEn+I = max (ti-tn)· h + 1 1.~=0 EEf+1 I ·
t,,+ 1 :s;;;,.11~T n

Accept the trial solution in tn + 1 if

EEn+I ..;;; TOL

The modification of the stepsize is:

h- =h. [~~~t
with q the order of the quadrature formula.

(3.3.7)

(3.3.8)

(3.3.9)

Note that although global error control does not lead to an erroneous error estimate in the endpoint,
it is certainly possible that by allowing too large a stepsize at the start, it will be impossible to meet
the tolerance as the integration advances, due to an unacceptably large error in the lag term. There­
fore, to avoid problems later on, it seems advisable to use the global error control without the uni­
form error control only if p « q, which is the case for the Gauss collocation method combined with

iterated collocation to estimate the global error.

1. IMPLEMENTATION

For the miscellaneous programming matters and heuristics, e.g. stepsize constraints, the solution of
nonlinear systems, etc., we refer to Blom and Brunner[4]. Here, we consider two more general topics.

1.1. Approximation of the lag term
The lion's share of the computational work in all methods is the approximation of the lag term by
some quadrature rule. Moreoyer, for all methods except the iterated collocation method the additional

storage space needed for all Yn,j is substantial.
However, the number of kernel evaluations needed to compute the reference solution can be

significantly reduced by approximating the lag term by Lagrangian interpolation instead of using a

15

quadrature formula. Interpolation over m points yields:

:..(!) m A

F~ (tn +-rhn) = ~Fn(tn,K) (4.1.1)
1e=l

and adds an additional interpolation error of O(h';), unless the kernel saiisfies kE'TTm- 2• So, in gen­
eral, this interpolation gives rise to a reference solution of O(h';), which is not adequate.
However, one can also interpolate over 2m points:

:..(2) m - hn - I + -rhn A -

F~ (tn+Thn) =~Li h h)Fn(tn-1 +c"(hn-1 +hn)), (4.1.2)
1<=! n-1 + n

where

m = 2m

and

and where the L" denote the Lagrange can~nical polynomials corresponding to the '0· This interpola­
tion introduces an error of O((hn-I +hnr), unless kE'TT;n-2 , which is small enough to preserve the
legitimacy of the reference solution in case the approximating method is based on Gauss collocation.

For all other methods that are mentioned in Section 3.1 this kind of approximation of the lag term
cannot be used when computing the global error estimation, since the error in the Fn will always be a
spoiling factor, no matter howAaccurate the interpolation will be. However, since local error estima­
tion needs only the values of Fn in some intermediate points, one can use the interpolation formula
(4.1.2) which is sufficiently accurate for all methods described.

Note that for Lobatto collocation the value of m is 2m -1 instead of 2m, due to the coincidence of
tn-1 +cmhn-1 and tn+c1hn.

4.2. Detection of a polynomial solution when using Gauss collocation
As mentioned in Section 2.3 the Gauss method yields an error of O(N-2m) in the steppoints if the
solution is an element of 'TT m - I· If the reference solution is equally or less accurate, then this res11lts in

an unreliable global error estimate. One can detect this error by computing the approximations Yn,j to
y (tn + cjhn / 2) and use Lagrangian interpolation to compute the solution at ~ome point of the interval
[tmtn+hn /2], say tm both with these approximations and with the Yn,j· If y fl. 'TTm-1> then

e1 = ly(tn)-un I ~ O(h'::) and e1 = IY(tn)-ii"n I ~ O((hn /2r). So, if e1 / e1 ~ 2m, the order of
the Gauss method is as expected.

To avoid the computation of the quadrature of the lag term, we use Lagrang~ interpolation iwer the
points 0.0, cj, 1.0 . No additional kernel evaluations are needed, since the Fn(tn) and the Fn(tn + 1)
already have been calculated during the computation of the reference solution in tn, respectively tn + 1•

Now, if e 1 / e2 « 2m, then it is almost certain thaty E 'TTm-1·
In

Note that if bothy E'TTm -I and J k(t,s,y(s))ds E 'TTm +1> then it is not clear what the value of the ratio
0

e 1 / e2 will be. But in this case the approximation of both the lag term and the solution is 'exact',
which means that the only problem that can arise is an unjustifiable rejection of the current combina­
tion of methods for approximating the solution and the reference solution.

16

5. NUMERICAL PERFORMANCE

The ideas presented in the preceding sections have resulted in a FORTRAN code named COLVI2; com­
pare Blom and Brunner[4], where a description of this code and its usage is given.

To show some properties of the code, we tested it on the six problems that were used by
Schlichte[l9] to compare his method, IVRKX, with the codes ORION of Bader and Kunkel[3] , VOLTEX

of Hock[l4], and VOLCON of Hairer, Lubich and Schlichte[l3] . The performance data of these codes
for the six problems are listed in the Appendix. We also added the results of VEl of Bownds and
Appelbaum[6] ,[5] and of INTSOL of Jones and McKee[l6] , in so far as we could find these results in
the literature.

The tests were performed on a CDC CYBER-750, in single precision (a machine precision of approxi­
mately 14 digits).

The problems are:
1 (problem 4 from Schlichte)

i
1 (t-s)2

y(t) = 1t2e-:' + j
2

e8
-

1.y(s) ds, for tE[0,5]
0

with solution:

y(t) = 3 1 - e 2 [cos(21V3) + V3sin(21V3)] l [_ _l_, l l l
2 (problem 15 from Schlichte)

t

y(t) = 1 + (sin(t))2 - j 3 sin(t-s).y2(s) ds, for tE[0,5]
0

with solution:

y(t) = cos(t)

3 (problem 19 from Schlichte)

t 2
y(t) = cos(t) - j 2 .(y(s)+y3(s)) ds, for tE[0,40]

0 (t -s +2)

with solution:

y(40) ~ -0.65013110133344

4 (problem 20 from Schlichte)

y(t) = 1 + f(t-s)3(4-t+s)e8
-

1
• y4(s) ds, fortE[0,10]

o 1 +2y2(s)+2y4(s)

with solution:

y(IO) = 1.2599558233723

5 (problem 16 from Schlichte)
t

y(t) = e-1 + j e5 - 1[y(s)+e-y(s)] ds, for tE[0,40]
0

with solution:

y(t) = ln(t +e)

17

6 (problem 21 from Schlichte)
I

y(t) = t - 1 + (1 +t2)e-
12 + jt2e-18.y(s) ds, for tE[0,5]

0

with solution:

y(t) = t

The following combinations of methods for the approximation of the solution, respectively the refer­
ence solution, have been used:

Gm+ IG
lGm + lG(m + 1)

m points Gauss + iterated collocation
m - 1 Gauss points+ (cm = 1), together with
m Gauss points+ (cm+ 1 = 1)

Lm + L(m+l)
Rm+ R(m +l)

m, combined with m + 1 points Lobatto collocation
m, together with m + 1 points Radau collocation

As stepsize strategies we used global error estimate I global error control (G), and, if applicable, 16cal
error estimate I local error control (L). In the latter the lag term needed for the reference solution
has been approximated by interpolation (cf. 4.1.2).

The meaning of the headers in the tables is:
10 A

sd number of significant digits : - log I Y (1)-u(1) I
max(l.O, Iv (1) I)

EE/GE ratio between the global error estimate in 'f and the real global error

N
#F tot
#FO
#kev

Note: if the local error is uniformly controlled, the global error in T is estimated by:
N-1
~ EE~+ 1, with t1 = T (cf. 3.3.6)

i=O
number of intervals used
number of failed steps in total
number of failed steps at the start in t = 0.0
total number of kernel evaluations needed.

Table 5.1 gives the results that are obtained when no special care has been taken. E.g. for the
(iterated) Gauss method, no testing on polynomial solutions has been done, and for the other
methods, the error is not uniformly controlled.

For all experiments the initial stepsize was 1.0; the maximal stepsize allowed was 5.0, which was
actually used in problem 5.

18

Table 5.1 Results for method combinations, without special features

Prob. 1 requested tolerance I E-4 requested tolerance I E-7

method sd
#F

#kev sd
#F

#kev EE/GE N EE/GE N
tot 0 tot 0

G G4+IG 5.2 I 8 2 2 760 9.3 I 33 5 3 l2l00

G IG4+IG5 4.6 I 4 0 0 320 7.l I 12 2 I 2592

G IA+LS 4.5 I 4 0 0 278 7.l I 12 2 1 2123

G R3+R4 4.5 I 5 I 0 425 --- - - - - ---
G G8+1G 7.4 I 3 0 0 432 9.8 1 4 0 0 720

G IG6+1G7 8.2 1 3 0 0 432 8.2 1 3 0 0 432

G L6+L7 8.5 1 3 0 0 399 8.1 1 4 0 0 654

G R5+R6 6.8 1 3 0 0 366 8.0 I 4 0 0 610

L IG4+ IGS 4.6 4 0 0 276 7.1 ll 2 1 13ll

L IA+LS 4.5 4 0 0 282 7.1 II 2 I 1213

L R3+R4 5.6 6 2 0 472 4.9 20 2 0 2612

L IG6+IG7 8.2 3 0 0 429 8.2 3 0 0 429

L L6+L7 8.5 3 0 0 438 8.l 4 0 0 ' 634

L R5+R6 6.8 3 0 0 366 8.0 4 0 0 538

Prob. 2 requested tolerance 1 E-4 requested tolerance 1 E-7

method sd
#F

#kev sd
#F

#kev EE/GE N EE/GE N
tot 0 tot 0

G G4+1G 6.0 SE-I 9 3 I 1596 8.4 I 43 5 2 21988

G IG4+IG5 --- - -- - - ---- --- - -- - - ----
G IA+LS --- - -- - - ---- --- - -- - -

G R3+R4 --- - -- - - ---- --- - -- - - ----
G G8+1G 6.2 I 3 0 0 ll36 8.4 IE-l 4 I 0 2152

G IG6+IG7 5.2 IE-l 3 0 0 1224 --- - -- - -

G L6+L7 4.1 I 3 0 0 1070 --- - -- - - ---
G RS+R6 --- - -- - - ---- --- - -- - - ----
L IG4+1G5 l.5 7 I 0 1396 4.9 22 5 I 6429

L IA+LS l.3 8 2 0 1535 4.6 23 4 I 5425

L R3+R4 2.8 12 4 I 2251 5.6 45 8 2 14730

L IG6+IG7 5.2 3 0 0 1221 6.3 5 I 0 2490

L L6+L7 4.l 3 0 0 ll09 5.9 5 I 0 2246

L R5+R6 2.9 4 I 0 1672 5.4 7 I I 2740

19

Table 5.1 (cont.) Results for method combinations, without special features

Prob. 3 requested tolerance I E-4 requested tolerance I E-7

method sd
#F

#kev sd EE/GE
#F

#kev EE/GE N
0

N
tot tot 0

G G4+IG 4.2 l 70 31 2 75696 8.7 l 366 72 4 1615392

G 1G4+ 1G5 5.6 2 34 14 0 31552 7.9 l 98 41 2 231828

G L4+L5 4.7 l 43 20 0 38350 8.6 l 104 50 2 214553

G R3+R4 4.5 l 44 18 0 39759 7.3 l 175 52 2 513900

G G8+IG 6.2 l 27 13 0 48824 7.1 l 54 19 2 154616

G 1G6+1G7 5.3 l 15 2 0 14832 7.2 l 33 9 0 61242

G L6+L7 5.3 l 17 l 0 13679 7.9 l 39 12 l 73395

G R5+R6 5.0 l 28 7 0 37235 7.8 l 45 10 l 88511

L 1G4+1G5 6.1 54 21 0 34093 9.5 176 45 2 262811

L L4+L5 7.2 57 13 0 26104 9.9 190 47 2 226241

L R3+R4 6.3 90 30 0 58567 9.2 358 68 2 714682'

L 1G6+1G7 7.3 26 5 0 21167 9.2 50 18 0 72508

L L6+L7 6.8 28 5 0 21113 9.3 50 11 l 55681

L R5+R6 6.8 28 3 0 18805 9.8 61 24 l 87408

Prob. 4 requested tolerance 1 E-4 requested tolerance I E-7

method sd
#F

#kev sd EE/GE
#F

#kev EE/GE N
0

N
tot tot 0

G G4+IG 4.5 l 11 5 l 2224 7.7 l 50 9 3 29588

G 1G4+1G5 4.9 l 10 0 0 2368 7.5 l 32 3 2 19168

G L4+L5 4.8 l 10 0 0 1920 7.4 l 33 3 2 16102

G R3+R4 5.2 l 15 2 l 3841 7.3 I 60 2 2 48541

G G8+1G 7.5 l 4 0 0 1360 8.8 l 7 l I 3240

G 1G6+1G7 5.7 l 5 0 0 1872 7.5 l 7 0 0 3240

G L6+L7 5.6 l 5 0 0 1641 7.1 l 7 0 0 2761

G R5+R6 6.0 l 5 0 0 1525 8.0 l 9 0 0 3843

L 1G4+1G5 6.1 12 l 0 2255 8.1 42 3 2 15303

L L4+L5 6.3 13 l 0 2168 8.1 44 3 2 13338

L R3+R4 4.7 21 2 I 3749 7.6 90 3 2 42831

L 1G6+1G7 5.7 5 0 0 1657 8.3 8 0 0 2896

L L6+L7 5.6 5 0 0 1526 8.4 8 l 0 3001

L R5+R6 5.5 6 0 0 1689 7.8 10 l 0 3709

20

Table 5.1 (cont.) Results for method combinations, without special features

Prob. 5 requested tolerance 1 E~4 requested tolerance 1 E-7

method sd N
#F

#kev sd
#F

#kev EE/GE EE/GE N
tot 0 tot 0

G G4+IG 3.2 -5E-3 11 0 0 1672 5.8 -6E-3 39 2 2 16984

G 1G4+1G5 4.3 1 29 0 0 15776 7.3 1 93 1 1 146048

G IA+L5 4.3 1 30 0 0 13335 7.3 1 98 1 1 127043

G R3+R4 4.2 1 51 1 0 35325 7.3 1 227 3 2 658650

G G8+IG 9.2 5E-5 10 0 0 5432 9.3 4E-4 11 0 0 6672

G 1G6+1G7 5.0 1 10 0 0 5616 7.5 1 17 0 0 13968

G L6+L7 4.9 1 10 0 0 4868 7.5 1 18 0 0 13252

G R5+R6 4.3 I 11 0 0 5551 7.5 1 24 0 0 21594

L 1G4+1G5 4.2 27 0 0 7349 7.3 92 1 1 61043

L IA+L5 4.6 33 1 0 8367 7.4 99 1 1 54443

L R3+R4 4.1 47 0 0 13581 7.2 208 2 2 212869

L lG6+1G7 5.3 11 0 0 4693 7.0 15 3 0 8856

L L6+L7 5.5 11 1 0 4538 8.0 19 0 0 9258

L R5+R6 4.9 12 1 0 4791 7.0 20 1 0 9826

Prob. 6 requested tolerance 1 E-4 requested tolerance 1 E-7
.. #F #F

method sd EE/GE N #kev sd EE/GE N #kev
tot 0 tot 0

G G4+IG 3.9 -7E-3 3 0 0 120 3.9 -3E-5 5 2 0 400

G 1G4+1G5 --- - -- - - ---- --- - -- - - ----
G IA+L5 --- - -- - - ---- --- - -- - - ----
G R3+R4 --- - -- - - --- - -- - - ----
G G8+1G 10.4 -4E-4 3 0 0 432 10.4 -4E-4 3 0 0 432

G 1G6+1G7 5.5 1 3 0 0 432 --- - -- - - ----
G L6+L7 5.4 1 3 0 0 399 --- - -- - -

G R5+R6 4.7 1 3 0 0 366 --- - -- - - ----
L 1G4+1G5 2.5 4 1 0 327 3.8 9 3 1 1044

L IA+L5 2.4 4 1 0 332 3.8 9 3 1 987

L R3+R4 1.9 5 1 0 336 3.3 14 5 1 1679

L 1G6+1G7 5.5 3 0 0 429 5.5 4 1 0 745

L L6+L7 5.4 3 0 0 438 5.5 4 1 0 744

L R5+R6 4.7 3 0 0 366 4.7 4 1 0 635

TABLE 5.1. Results for method combinations, without special features

All failures in Table 5.1 were due to a rejection of a step with the minimum allowed stepsize, which
was 5 E-3.
As was expected, problem 6, with solution y = t, resulted in a bad performance for the
Iterated Gauss method; but problem 5, with solution y = ln(t +e), also seemed to suffer from a bad
error estimate. Both problems were rerun with the polynomial test on and with an automatic escape
to a local error estimate and uniform local error control Gaussm, Gaussm+I +(cm+2 =1) combination.
The escape was made after two consecutive occurrences of polynomial behaviour, and the last three
steps were discarded. As can be seen in Table 5.2, in most cases an escape was needed.

21

Prob. 5 requested tolerance 1 E-4 requested tolerance 1 E-7

method sd EE/GE N
#F

#kev sd
#F

#kev EE/GE N
tot 0 tot 0

G G4+IG escape at t = 2.3 escape at t = 3.2

L G4+1G6 4.5 6E-2 14 6 0 8604 6.2 IE-3 33 9 2 21541

G G8+IG escape at t = 21.0 escape at t = 2.7

L G8+1GIO 9.2 -IE-1 10 3 0 11537 9.3 -3E-2 II 2 0 16360

Prob.6 requested tolerance 1 E-4 requested tolerance 1 E-7

method sd EE/GE N
#F

#kev sd
#F

#kev EE/GE N
tot 0 tot 0

G G4+IG escape at t = 2.8 escape at t = 1.8

L G4+IG6 7.3 1 7 4 2 1417 9.6 I ll 5 2 2436

G G8+IG 10.4 -4E-4 3 0 0 624 10.4 -4E-4 3 0 0 624 ,
L G8+1G10

TABLE 5.2. Results for Iterated Gauss; esc. to Gaussm + Gaussm+I +(cm+i = 1), local error control

In Table 5.3 the results are listed that were obtained by using a uniform error control, or rather an
error control in discrete points spaced 1.0. Here, if a step was rejected which already had a minimum
size, the tolerance was relaxed by a factor 4 and the computation was resumed.
Recall that when using iterated Gauss collocation to compute the reference solution there is no need
to employ a uniform error control (see Section 3.3).

Table 5.3 Results with uniform error control and tolerance relaxing

Prob. I requested tolerance 1 E-4 requested tolerance 1 E-7

method sd EE/GE N
#F

#kev sd
#F

#kev EE/GE N
tot 0 tot 0

G 1G4+1G5 4.8 I 4 0 0 390 7.2 I 10 I I 2016

G L4+L5 4.6 I 4 0 0 368 7.2 l II I 1 2056

G R3+R4 4.6 I 5 1 0 548 7.2 1 18 2 2 4752

G 1G6+ 1G7 8.2 I 3 0 0 531 9.0 1 4 0 0 830

G L6+L7 8.5 l 3 0 0 516 8.9 I 4 0 0 784

G RS+R6 6.8 1 3 0 0 465 8.3 I 4 0 0 731

L 1G4+IG5 4.8 SE-I 4 0 0 346 7.3 3E-l II 1 1 1498

L L4+L5 4.7 I 4 0 0 372 7.3 4E-l II I 1 1478

L R3+R4 5.7 -1 6 l 0 536 8.2 2E-l 22 3 2 3631

L 1G6+1G7 8.2 1 3 0 0 528 9.0 1 4 0 0 742

L L6+L7 8.5 -2 3 0 0 555 8.9 1 4 0 0 764

L RS+R6 6.8 2 3 0 0 465 8.3 1 4 0 0 659

22

Table 5.3 (cont.) Results with uniform error control and tolerance relaxing

Prob. 2 1 requested tolerance 1 E-4 requested tolerance 1 E-7

method sd
#F

#kev sd
#F

#kev EE/GE N EE/GE N
tot 0 tot 0

G 1G4+1G5 3.2 l 53 14 l 55521 6.6 l 24 16 2 20762

G L4+L5 3.1 l 19 16 l 9849 7.4 l 24 16 2 16953

G R3+R4 4.3 l 70 4 2 65979 6.0 l 54 17 3 50337

G 1G6+1G7 4.8 l 4 0 0 1766 6.4 l 115 13 l 506569

G L6+L7 4.1 l 4 0 0 1577 --- - -- - - ----
G R5+R6 --- - -- - - ---- 6.1 l 8 18 l 12305

L 1G4+1G5 3.5 -lE-1 9 2 l 2204 6.3 -5E-2 26 3 2 8058

L L4+L5 3.8 -lE-1 9 2 l 1943 6.3 -5E-2 27 3 2 7345

L R3+R4 3.1 2E-2 15 5 2 3446 5.7 8E-3 52 4 3 18608

L 1G6+1G7 4.8 2E-l 4 o· 0 1678 6.4 -4E-2 6 l l 3026

L L6+L7 4.1 5E-2 4 0 0 1557 6.3 -3E-2 6 l l 27"16

L R5+R6 3.0 -5E-3 4 0 0 1452 6.3 -lE-2 8 l l 3481

Prob. 3 requested tolerance 1 E-4 requested tolerance 1 E-7

method sd
#F

#kev sd
#F

#kev EE/GE N EE/GE N
tot 0 tot 0

G 1G4+1G5 5.0 l 33 6 0 30327 7.4 l 105 26 2 252649

G L4+L5 4.5 l 38 12 0 37036 8.3 l 113 32 2 242699

G R3+R4 4.6 l 51 24 0 63912 7.5 l 186 23 2 526699

G 1G6+1G7 4.8 l 16 0 0 17587 8.3 l 37 8 0 82764

G L6+L7 6.1 l 18 2 0 21046 8.9 l 40 12 l 90095

G R5+R6 5.3 l 27 5 0 40615 7.8 l 44 7 l 91051

L 1G4+1G5 6.1 l 55 25 0 47213 9.6 l 177 51 2 297461

L L4+L5 6.5 3E-l 60 20 0 44197 9.9 2 189 44 2 263067

L R3+R4 6.3 l 89 30 0 73244 9.2 l 359 68 2 769421

L 1G6+1G7 7.3 -1 26 5 0 28064 9.1 l 48 16 0 80400

L L6+L7 7.7 6 28 4 0 28346 9.2 1 50 12 l 71930

L R5+R6 6.9 -6 28 3 0 25616 10.0 2 63 22 l 106765

l. The tolerance has been relaxed two times in all global methods except for the R3 + R4, the l G6 + l G7, and the L6 + L 7

combinations with tolerance l E-4

23

Table 5.3 (cont.) Results with uniform error control and tolerance relaxing

Prob. 4 requested tolerance 1 E-4 requested tolerance 1 E-7

method sd
#F

#kev sd
#F

#kev EE/GE N
0

EE/GE N
tot tot 0

G IG4+ IG5 4.9 I 10 0 0 2697 7.4 1 32 2 2 20422

G IA+L5 4.8 1 10 0 0 2370 7.5 1 34 2 2 18776

G R3+R4 5.3 1 15 1 1 4320 7.3 1 60 2 2 51008

G 1G6+1G7 5.8 I 5 0 0 2158 8.8 1 8 1 0 4904

G L6+L7 5.7 I 5 0 0 1979 8.6 1 8 1 0 4401

G R5+R6 6.0 1 5 0 0 1822 8.8 1 10 1 0 5818

L 1G4+1G5 6.1 -1 12 1 0 2724 8.1 -3E-l 42 2 2 16896

L IA+L5 6.3 -5 13 1 0 2816 8.1 -2E-l 44 2 2 15506

L R3+R4 4.8 -8E-2 21 2 1 4603 7.8 -2E-l 90 2 2 46162

L 1G6+1G7 5.7 -2E+l 5 0 0 1901 8.5 2 8 1 0 3837 .
L L6+L7 5.6 -5 5 1 0 2124 8.2 -1 8 0 0 3177

L R5+R6 6.7 -2E+l 6 1 0 2310 7.9 1 11 1 0 4816

Prob. 5 requested tolerance 1 E-4 requested tolerance 1 E-7

method sd
#F

#kev sd
#F

#kev EE/GE N EE/GE N
tot 0 tot 0

G 1G4+1G5 4.3 1 29 0 0 19535 7.3 1 92 1 1 155629

G IA+L5 4.3 1 30 0 0 18375 7.3 1 97 1 1 141564

G R3+R4 4.2 1 51 I 0 42108 7.3 1 225 3 2 678032

G 1G6+1G7 5.0 1 10 0 0 7948 7.5 1 17 0 0 17543

G L6+L7 4.9 I 10 0 0 7624 7.5 1 18 0 0 17555

G R5+R6 4.3 I 11 0 0 7960 7.5 1 24 0 0 26478

L 1G4+1G5 4.2 3E-2 27 0 0 10898 7.3 2E-2 92 1 1 73391

L IA+L5 4.6 3E-2 33 l 0 14145 7.4 3E-2 100 1 1 72694

L R3+R4 4.1 2E-2 47 0 0 19580 7.2 2E-2 208 2 2 240743

L 1G6+ IG7 5.3 -IE-2 11 0 0 7102 7.0 -6E-4 15 3 0 13036

L L6+L7 5.5 1 11 1 0 7853 8.0 6E-2 19 0 0 14016

L R5+R6 4.9 -3E-l 12 l 0 7838 7.0 -6E-3 20 1 0 14468

24

Table 5.3 (cont.) Results with uniform error control and tolerance relaxing

Prob. 6 requested tolerance 1 B-4 requested tolerance 1 E-7

method sd EE/GE N
#F

#kev sd
#F

#kev EE/GE N
tot 0 tot 0

G 1G4+1G5 7.7 1 9 2 2 1805 8.7 1 21 3 3 8174

G IA+L5 7.1 1 9 2 2 1648 8.6 1 21 3 3 6918

G R3+R4 6.3 1 12 2 2 2392 8.4 1 38 4 4 19892

G 106+1G7 5.6 1 5 0 0 1223 10.1 1 8 2 2 3154

G L6+L7 5.5 1 5 0 0 1152 10.1 1 8 2 2 2922

G R5+R6 5.7 1 6 1 1 1573 10.2 1 9 2 2 3340

L 1G4+1G5 6.8 1 9 2 2 1277 9.2 1 21 3 3 4401

L IA+L5 6.9 1 9 2 2 1315 9.1 1 22 3 3 4383

L R3+R4 6.9 1 12 2 2 1549 8.7 1 40 4 4 10090

L 106+1G7 5.6 1 5 0 0 1019 10.0 1 8 2 2 2339

L L6+L7 5.5 1 5 0 0 1050 9.9 1 8 2 2 2345"

L R5+R6 5.7 1 6 1 1 1260 9.7 1 9 2 2 2401

TABLE 5.3. Results with uniform error control and tolerance relaxing

The failures in Table 5.3 were caused by a lack of working storage, which occurred, depending of
the method used, after about 200 - 350 successful steps.

Furthermore, we tried for one problem what the influence is if only the stepsize is adjusted accord­
ing to the estimated error, but if no steps are rejected. Although in most cases this results in fewer
kernel evaluations (if the code reaches the endpoint), it is by far not as reliable.

To present a survey of the performance of the code on these six problems a weighted sum has been
computed over all (available) 'sd'- and '#kev'-values. The weights are inversely proportional to the
square of the length of the interval on which the solution has been computed.
Table 5.4 contains the figures of the average performance of the different methods. For the iterated
collocation method the results have been taken from Table 5.1 and 5.2 for problems 1-4, respectively
5 and 6. For the other methods the 'sd'- and '#kev'-values of Table 5.3 have been used. The results
in the first column are the average results computed over all problems. The second contains the aver­
age values when the 'bad ones' are left out, i.e. for the Gauss + Iterated collocation method
problems 5 and 6, and for all other methods problem 2.

25

All problems Selected problems

method tol. 1 E-4 tol. 1 E-7 tol. 1 E-4 tol. 1 E-7

sd #kev sd #kev sd #kev sd #kev

G G4+IG 5.3 941 8.3 11583 5.0 1023 8.5 16681

G G8+1G 7.8 579 9.0 ll62 6.8 667 8.5 1524

G lG4+lG5 5.0 9861 7.4 7072 5.3 729 7.6 4334

G IA+L5 4.7 2220 7.7 6104 5.1 694 7.8 3934

G R3+R4 4.9 11942 7.3 17759 5.0 ll35 7.5 11243

G lG6+lG7 5.7 743 8.4 85557 5.9 538 8.7 1355

G L6+L7 5.8 697 8.8 1297 6.1 522 8.8 1297

G R5+R6 5.6 650 8.1 3277 5.6 650 8.5 1472

L lG4+lG5 5.3 902 8.0 3995 5.6 642 8.3 3183

L IA+L5 5.5 874 8.0 3721 5.8 660 8.4 2996

L R3+R4 5.2 1355 7.8 9942 5.6 937 8.2 8209

L 1G6+1G7 6.2 708 8.3 1421 6.4 514 8.7 llOO

L L6+L7 6.2 709 8.4 1337 6.6 540 8.8 1049

L R5+R6 5.7 712 8.2 1606 6.2 565 8.6 1231

TABLE 5.4. Average performance

6. CONCLUSIONS
It is clear that, in general, higher order results in a better performance.
In most cases local error estimation used in the higher order methods does not seem to yield a

significant decrease in the total number of kernel evaluations. Since it is less reliable than global error

estimate I control, which moreover supplies a global error estimate in the endpoint for free, it seems

advisable to use global error control in the stepsize strategy.
If the solution is not polynomial, then the Gauss + Iterated collocation method is the most

efficient when both computational time and storage are taken into account, especially for tolerances

that are not too tight.
The uniform error control was of great benefit to all other methods. The approximations were more

dependable with in most cases only a slight increase in computational work.

REFERENCES
1. H. ARNDT (1983). On step size control for Volterra integral equations, in Numerical Methods of

Approximation Theory, ISNM 67, 9-17, ed. L. Collatz, G. Meinardus and H. Werner, Birkhauser

Verlag, Basel-Boston-Stuttgart.
2. H. ARNDT (1985). An adaptive step size control for Volterra integral equations, in Constructive

Methods for the Practical Treatment of Integral Equations, ISNM 73, 44-52, ed. G. Hammerlin and

K.-H. Hoffmann, Birkhauser Verlag, Basel-Boston-Stuttgart.
3. G. BADER and P. KUNKEL. An adaptive multistep method for the solution of second kind Volterra

integral equations, (in preparation).
4. J.G. BLOM and H. BRUNNER. Algorithm XXX: Discretized collocation and iterated collocation for

nonlinear Volterra integral equations of the second kind, (to be submitted to ACM Trans. Math.

Software).
5. J.M. BOWNDS (1982). Theory and performance of a subroutine for solving Volterra integral equa­

tions, Computing, 28, 317-332.
6. J.M. BOWNDS and L. APPELBAUM (1985). Algorithm 627: A FORTRAN subroutine for solving

Volterra integral equations, ACM Trans. Math. Software, 11, 58-65.

26

7. H. BRUNNER (1980). Superconvergence in collocation and implicit Runge-Kutta methods for
Volterra-type integral equations of the second kind, in Numerical Treatment of Integral Equations,
ISNM 53, 54-72, ed. J. Albrecht and L. Collati, Birkhauser Verlag, Basel-Boston-Stuttgart.

8. H. BRUNNER (1984). Iterated collocation methods and their discretization for Volterra integral
equations, SIAM J. Numer. Anal., 21, 1132-1145.

9. H. BRUNNER, E. HAIRER, and S.P. N0RSETI (1982). Runge-Kutta theory for Volterra integral
equations of the second kind, Math. Comp., 39, 147-163.

10. H. BRUNNER and P.J. VAN DER HOUWEN (1985 (to appear)). 'The Numerical Solution of Volterra
Equations, North-Holland, Amsterdam.

11. H. BRUNNER and S.P. N0RSETI (1981). Superconvergence of collocation methods for Volterra
and Abel integral equations of the second kind, Numer. Math., 36, 347-358.

12. R.P. DUNCAN (1982). A Runge-Kutta method using variable stepsizes for Volterra integral equations
of the 2nd kind, Master's Thesis, Technical Report 157 /82, Department of Computer Science,
University of Toronto.

13. E. HAIRER, CH. LUBICH, and M. SCHLICHTE (1985). Fast numerical solution of nonlinear Vol­
terra convolution equations, SIAM J. Sci. Statist. Comput., 6, 532-541.

14. W. HocK (1981). An extrapolation method with step size control for nonlinear Volterra integral
equations, Numer. Math., 38, 155-178.

15. F. DE Hooo and R. WEISS (1975). Implicit Runge-Kutta methods for second kind Volterra
integral equations, Numer. Math., 23, 199-213.

16. H.M. JONES and S. McKEE (1985). Variable step-size predictor-corrector schemes for second kind
Volterra integral equations, Math. Comp., 44, 391-404.

17. P. KUNKEL (1982). Ein adaptives Verfahren zur wsung von Volterra'schen Integralgleichungen
zweiter Art, Diplomarbeit, Institut fiir Angewandte Mathematik, Universitat Heidelberg.

18. R.K. MILLER (1971). Nonlinear Volterra Integral Equations, Benjamin, Menlo Park (Ca).
19. M. SCHLICHTE (1984). Anwendung eines impliziten Runge-Kutta-Verfahrens auf Volterra'sche

Integralgleichungen zweiter Art mit Faltungskern, Diplomarbeit, Institut fiir Angewandte Mathema­
tik, Universitlit Heidelberg.

27

Appendix

tol. 1 E-4 tol. 1 E-7 tol. 1 E-4 tol. 1 E-7
prob method prob method

sd #kev sd #kev sd #kev sd #kev

IVRKX 7.2 510 9.0 1712 IVRKX 5.4 2124 7.7 5208

ORION 3.5 923 6.5 1624 ORION 2.0 1442 4.4 2998

VOLTEX 5.6 ll24 8.7 4110 VOLTEX 2.0 3562 5.6 15092

INTSOL 4.0 2722 4.8 127964 INTSOL LI 64808
1

4.1 1537 7.6 5684
2 VE lea VE lea 5.2 2527 7.6 7550

VElex 5.4 414 8.1 630 VElex 1.8 300 4.1 488

IVRKXC 7.2 359 9.0 868 IVRKXC 5.4 1041 7.7 1980

VOLCON 4.7 238 9.6 762 VOLCON 4.5 1262 8.3 2662

IVRKX 5.0 23763 7.6 54320 IVRKX 4.9 1044 7.4 2704

ORION 6.3 42325 7.8 182344 ORION 4.7 1805 6.1 6411

VOLTEX 5.4 76882 7.6 417014 VOLTEX 5.3 5626 8.2 22918

3 VE lea 2.4 19943 --- 4 VE lea 4.5 4157 8.5 12lll

VElex 4.9 830 6.8 1450

IVRKXC 5.0 4237 7.6 6358 IVRKXC 4.9 582 7.4 1052

VOLCON 6.6 2230 8.5 5370 VOLCON 4.8 366 7.3 1382

IVRKX 5.2 8625 8.9 21528 IVRKX 4.4 1029 9.7 4512

ORION 5.6 2647 8.1 7114 ORION 6.0 402 8.7 675

VOLTEX 5.2 120752 8.1 160910 VOLTEX 2.5 634 6.3 2648

INTSOL 3.6 337332 INTSOL 1.7 4312 2.0 9749
5

3.7 9225
6

VE lea ---

VElex 4.3 342 6.8 730

IVRKXC 5.2 2167 8.9 3864

VOLCON 6.5 2578 8.2 5170

TABLE A.I. Results of other published codes

The results of INTSOL were derived from Kunkel[17], all other results, except those of VEl, from
Schlichte[l9]. VElca gives the results of VEl when the kernel has been approximated by Chebyshev
series. The number of terms, m, has been chosen as the minimal number such that the estimated error,
as given by VEl, is less than the tolerance. VElex gives the results when an exact decomposition was
provided. In this case no global error estimate can be calculated.

Note that for VOLCON and for IVRKXC, '#kev' stands for the total number of K- plus fevaluations
where k(t,s,y) is written as K(t -s)f (s,y). For VElex, '#kev' represents the number of evaluations
of the right-hand side of the system of ODE's, '#Fev', times the dimension of the system, 'DIM',
times two. In the case ofVElca, #kev = #Kev + (DIM+2).#Fev, where DIM=2m +l.

28

tol. 1 E-4 tol. 1 E-7
method

sd ·#kev sd #kev

IVRKX 5.4 738 8.4 2216

ORION 4.7 653 6.9 1643

VOLTEX 4.3 1636 7.4 6101

INTSOL 2.6 19278 3.4 68857

VE lea 4.0 lll2 7.9 5420

VElex 4.1 232 6.5 373

IVRKXC 5.5 329 8.1 654

VOLCON 5.4 333 8.4 787

TABLE A.2. Average performance

