476 research outputs found

    Slotted ALOHA Overlay on LoRaWAN: a Distributed Synchronization Approach

    Full text link
    LoRaWAN is one of the most promising standards for IoT applications. Nevertheless, the high density of end-devices expected for each gateway, the absence of an effective synchronization scheme between gateway and end-devices, challenge the scalability of these networks. In this article, we propose to regulate the communication of LoRaWAN networks using a Slotted-ALOHA (S-ALOHA) instead of the classic ALOHA approach used by LoRa. The implementation is an overlay on top of the standard LoRaWAN; thus no modification in pre-existing LoRaWAN firmware and libraries is necessary. Our method is based on a novel distributed synchronization service that is suitable for low-cost IoT end-nodes. S-ALOHA supported by our synchronization service significantly improves the performance of traditional LoRaWAN networks regarding packet loss rate and network throughput.Comment: 4 pages, 8 figure

    Scalability analysis of large-scale LoRaWAN networks in ns-3

    Full text link
    As LoRaWAN networks are actively being deployed in the field, it is important to comprehend the limitations of this Low Power Wide Area Network technology. Previous work has raised questions in terms of the scalability and capacity of LoRaWAN networks as the number of end devices grows to hundreds or thousands per gateway. Some works have modeled LoRaWAN networks as pure ALOHA networks, which fails to capture important characteristics such as the capture effect and the effects of interference. Other works provide a more comprehensive model by relying on empirical and stochastic techniques. This work uses a different approach where a LoRa error model is constructed from extensive complex baseband bit error rate simulations and used as an interference model. The error model is combined with the LoRaWAN MAC protocol in an ns-3 module that enables to study multi channel, multi spreading factor, multi gateway, bi-directional LoRaWAN networks with thousands of end devices. Using the lorawan ns-3 module, a scalability analysis of LoRaWAN shows the detrimental impact of downstream traffic on the delivery ratio of confirmed upstream traffic. The analysis shows that increasing gateway density can ameliorate but not eliminate this effect, as stringent duty cycle requirements for gateways continue to limit downstream opportunities.Comment: 12 pages, submitted to the IEEE Internet of Things Journa

    Cross-layer framework and optimization for efficient use of the energy budget of IoT Nodes

    Full text link
    Both physical and MAC-layer need to be jointly optimized to maximize the autonomy of IoT devices. Therefore, a cross-layer design is imperative to effectively realize Low Power Wide Area networks (LPWANs). In the present paper, a cross-layer assessment framework including power modeling is proposed. Through this simulation framework, the energy consumption of IoT devices, currently deployed in LoRaWAN networks, is evaluated. We demonstrate that a cross-layer approach significantly improves energy efficiency and overall throughput. Two major contributions are made. First, an open-source LPWAN assessment framework has been conceived. It allows testing and evaluating hypotheses and schemes. Secondly, as a representative case, the LoRaWAN protocol is assessed. The findings indicate how a cross-layer approach can optimize LPWANs in terms of energy efficiency and throughput. For instance, it is shown that the use of larger payloads can reduce up to three times the energy consumption on quasi-static channels yet may bring an energy penalty under adverse dynamic conditions

    2D Time-frequency interference modelling using stochastic geometry for performance evaluation in Low-Power Wide-Area Networks

    Full text link
    In wireless networks, interferences between trans- missions are modelled either in time or frequency domain. In this article, we jointly analyze interferences in the time- frequency domain using a stochastic geometry model assuming the total time-frequency resources to be a two-dimensional plane and transmissions from Internet of Things (IoT) devices time- frequency patterns on this plane. To evaluate the interference, we quantify the overlap between the information packets: provided that the overlap is not too strong, the packets are not necessarily lost due to capture effect. This flexible model can be used for multiple medium access scenarios and is especially adapted to the random time-frequency access schemes used in Low-Power Wide-Area Networks (LPWANs). By characterizing the outage probability and throughput, our approach permits to evaluate the performance of two representative LPWA technologies Sigfox{\textsuperscript \textregistered} and LoRaWA{\textsuperscript \textregistered}

    Analysis of LoRaWAN Uplink with Multiple Demodulating Paths and Capture Effect

    Full text link
    Low power wide area networks (LPWANs), such as the ones based on the LoRaWAN protocol, are seen as enablers of large number of IoT applications and services. In this work, we assess the scalability of LoRaWAN by analyzing the frame success probability (FSP) of a LoRa frame while taking into account the capture effect and the number of parallel demodulation paths of the receiving gateway. We have based our model on the commonly used {SX1301 gateway chipset}, which is capable of demodulating {up to} eight frames simultaneously; however, the results of the model can be generalized to architectures with arbitrary number of demodulation paths. We have also introduced and investigated {three} policies for Spreading Factor (SF) allocation. Each policy is evaluated in terms of coverage {probability}, {FSP}, and {throughput}. The overall conclusion is that the presence of multiple demodulation paths introduces a significant change in the analysis and performance of the LoRa random access schemes

    IoT Security Vulnerabilities and Predictive Signal Jamming Attack Analysis in LoRaWAN

    Get PDF
    Internet of Things (IoT) gains popularity in recent times due to its flexibility, usability, diverse applicability and ease of deployment. However, the issues related to security is less explored. The IoT devices are light weight in nature and have low computation power, low battery life and low memory. As incorporating security features are resource expensive, IoT devices are often found to be less protected and in recent times, more IoT devices have been routinely attacked due to high profile security flaws. This paper aims to explore the security vulnerabilities of IoT devices particularly that use Low Power Wide Area Networks (LPWANs). In this work, LoRaWAN based IoT security vulnerabilities are scrutinised and loopholes are identified. An attack was designed and simulated with the use of a predictive model of the device data generation. The paper demonstrated that by predicting the data generation model, jamming attack can be carried out to block devices from sending data successfully. This research will aid in the continual development of any necessary countermeasures and mitigations for LoRaWAN and LPWAN functionality of IoT networks in general
    • …
    corecore