1,132 research outputs found

    Neuro-Evolution for Emergent Specialization in Collective Behavior Systems

    Get PDF
    Eiben, A.E. [Promotor]Schut, M.C. [Copromotor

    Cognitive modeling of social behaviors

    Get PDF
    To understand both individual cognition and collective activity, perhaps the greatest opportunity today is to integrate the cognitive modeling approach (which stresses how beliefs are formed and drive behavior) with social studies (which stress how relationships and informal practices drive behavior). The crucial insight is that norms are conceptualized in the individual mind as ways of carrying out activities. This requires for the psychologist a shift from only modeling goals and tasks —why people do what they do—to modeling behavioral patterns—what people do—as they are engaged in purposeful activities. Instead of a model that exclusively deduces actions from goals, behaviors are also, if not primarily, driven by broader patterns of chronological and located activities (akin to scripts). To illustrate these ideas, this article presents an extract from a Brahms simulation of the Flashline Mars Arctic Research Station (FMARS), in which a crew of six people are living and working for a week, physically simulating a Mars surface mission. The example focuses on the simulation of a planning meeting, showing how physiological constraints (e.g., hunger, fatigue), facilities (e.g., the habitat’s layout) and group decision making interact. Methods are described for constructing such a model of practice, from video and first-hand observation, and how this modeling approach changes how one relates goals, knowledge, and cognitive architecture. The resulting simulation model is a powerful complement to task analysis and knowledge-based simulations of reasoning, with many practical applications for work system design, operations management, and training

    Novelty-driven cooperative coevolution

    Get PDF
    Cooperative coevolutionary algorithms (CCEAs) rely on multiple coevolving populations for the evolution of solutions composed of coadapted components. CCEAs enable, for instance, the evolution of cooperative multiagent systems composed of heterogeneous agents, where each agent is modelled as a component of the solution. Previous works have, however, shown that CCEAs are biased toward stability: the evolutionary process tends to converge prematurely to stable states instead of (near-)optimal solutions. In this study, we show how novelty search can be used to avoid the counterproductive attraction to stable states in coevolution. Novelty search is an evolutionary technique that drives evolution toward behavioural novelty and diversity rather than exclusively pursuing a static objective. We evaluate three novelty-based approaches that rely on, respectively (1) the novelty of the team as a whole, (2) the novelty of the agents’ individual behaviour, and (3) the combination of the two. We compare the proposed approaches with traditional fitness-driven cooperative coevolution in three simulated multirobot tasks. Our results show that team-level novelty scoring is the most effective approach, significantly outperforming fitness-driven coevolution at multiple levels. Novelty-driven cooperative coevolution can substantially increase the potential of CCEAs while maintaining a computational complexity that scales well with the number of populations.info:eu-repo/semantics/publishedVersio

    The Restructuring of Technological Capabilities through Corporate Expansion

    Get PDF
    This paper analyses the restructuring of technological capabilities following M&A-based growth in large industrial firms with a substantial technological knowledge base. In particular, we focus on the restructuring of those technological capabilities that are of a general purpose kind (namely ICT) or related to the core capabilities of a firm. We develop and test a conceptual framework grounded on a co-evolutionary view, that relates the motivations and environment for corporate expansion to the firm-specific pattern of restructuring in the composition of corporate technological capabilities. We find that distinct patterns of technological capability restructuring are associated with each combination of the motivations and environment for firm growth. In particular, inter-industry contexts reduce technological relatedness in market motivated expansions, while relatedness has also declined in more recent technology-motivated growth in general. The acquisition of ICT is common as well to both technology-motivated inter-industry deals and more recent market-motivated deals. However, we speculate that any similarities in the outcomes of these alternative motives for firm growth arise for quite different purposes.

    Cooperative coevolution of partially heterogeneous multiagent systems

    Get PDF
    Cooperative coevolution algorithms (CCEAs) facilitate the evolution of heterogeneous, cooperating multiagent systems. Such algorithms are, however, subject to inherent scalability issues, since the number of required evaluations increases with the number of agents. A possible solution is to use partially heterogeneous (hybrid) teams: behaviourally heterogeneous teams composed of homogeneous sub-teams. By having different agents share controllers, the number of coevolving populations in the system is reduced. We propose HybCCEA, an extension of cooperative coevolution to partially heterogeneous multiagent systems. In Hyb-CCEA, both the agent controllers and the team composition are under evolutionary control. During the evolutionary process, we rely on measures of behaviour similarity for the formation of homogeneous sub-teams (merging), and propose a stochastic mechanism to increase heterogeneity (splitting). We evaluate Hyb-CCEA in multiple variants of a simulated herding task, and compare it with a fully heterogeneous CCEA. Our results show that Hyb-CCEA can achieve solutions of similar quality using significantly fewer evaluations, and in most setups, Hyb-CCEA even achieves significantly higher fitness scores than the CCEA. Overall, we show that merging and splitting populations are viable mechanisms for the cooperative coevolution of hybrid teams.info:eu-repo/semantics/publishedVersio
    • …
    corecore